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BACKGROUND 

Previous prediction models of severe RSV disease 

Several clinical prediction models for severe RSV disease have been developed, but they 

have considerable limitations.  

 

A model by Rietveld et al.1 was developed in a Dutch registry-based data of 140 000 

children. They used 5 predefined predictors, and trained the model to predict the monthly 

risk of RSV hospitalisation. The predictors were gestational age, birth weight, sex of the 

child, bronchopulmonary dysplasia (BPD) and age during the month of prediction. The model 

predictions were, however, strongly dependent on the local epidemic pattern in the 

Netherlands, and the model lacks validation in external data; the model was only validated in 

the training data with re-sampling methods. It is likely that this model will not generalise well 

to countries with even slightly different epidemic patterns, due to the fixed coefficients of the 

baseline monthly risk included in the model.  

 



In another study from Netherlands,2 Houben et al. developed a prediction model from a 

prospective birth cohort and implemented it as a scoring tool. Predictors were day care 

attendance and/or having older siblings, parental education level, birth between September-

April and birth weight >4kg. However, despite interesting setting, the study had low sample 

size (298), and lacked validation.  

 

Several prediction models have been developed for preterm infants, and they do not likely 

generalise to term infants.3–6 

METHODS 

Study subjects and registry data 

The study leverages nationwide integrated registry data from the FinRegistry project 

(www.finregistry.fi). The FinRegistry covers approximately 7,2 million Finnish persons and 

integrates their registry data regarding health, sociodemographic factors and family relations. 

This dataset includes 7,166,416 individuals of whom 5,339,804 (74.5%) are index individuals 

(every resident of Finland alive on January 1st 2010). The remaining 1,826,612 individuals 

are relatives (offspring, parents, siblings) and spouses of index individuals who are not index 

individuals themselves. 

 

In this study, the most important of registries were: 1) the Medical Birth Register containing 

data on newborn babies, their diagnoses after birth and pregnancy-and mother-related 

variables; 2) Care Register for Health Care (CRHC) of The Finnish Institute for Health and 

Welfare (THL) which contains data on hospitalizations and contacts to secondary healthcare 

with diagnoses; 3) Drug purchase register of Kela (the Social Insurance Institution of 

Finland), containing all prescription drug purchases; 4) population registry of Digital and 

Population Data services Agency of Finland containing family relations; 5) the Register of 

Congenital malformations of THL; and 6) the Finnish National Infectious Diseases Register 

(NIDR) of THL containing data on microbiological samples. The detailed descriptions of 

FinRegistry and included registries can be accessed at https://www.finregistry.fi/finnish-

registry-data. 

 

In FinRegistry, the majority of health-related data are structured into predefined clinically 

meaningful composite endpoints based mainly on the ICD-classified diagnoses, drug 

purchases and reimbursements, hospitalisations, causes of death and procedural codes.7 

These endpoint data were used for screening the family members’ health conditions.  

 

The Swedish data originated from a register linkage of several national health and 

population registers including the National Patient Register containing data on ICD-10 codes 

for all hospital visits and most visits to specialist outpatient clinics, which was used to define 

the comorbidities. Data on birth weight, gestational age and maternal smoking during 

pregnancy were retrieved from the Medical Birth Register. Data on asthma medications, 

which were used for the definition of asthma in the study subjects and their family members, 

were retrieved from the Prescribed Drug Register.  

http://www.finregistry.fi/
https://www.finregistry.fi/finnish-registry-data
https://www.finregistry.fi/finnish-registry-data


Model development and validation data 

The Finnish study population was divided into a development dataset (birth between June 

1997 and May 2017,  n = 1 126 952) and an temporal hold-out validation dataset (birth 

between June 2017 and May 2020, n = 130 352). The full development dataset was used for 

predictor screening, but the last 10 years were used to estimate the final model coefficients 

(birth between June 2006 and May 2017, n = 621 487) to maximise generalisation to future 

years. We assessed the performance of the prediction model in the Finnish hold-out 

temporal validation set consisting of epidemics 2018-2020 (children’s birth date between 

June 1, 2017 and May 31, 2020). These epidemic years were not considered when training 

the model or selecting the predictors.  

 

External validation was performed in a nationwide dataset from Sweden in children 

consisting of epidemics 2007-2020 (children’s birth date between June 1 2007 and May 31 

2020, n = 1 459 472). The main results are shown in the epidemics 2018-2020, to facilitate 

comparison with the Finnish data and to illustrate the model performance in the most recent 

available data.  

 

Missing data 

Missing values in the predictors were rare. In the Finnish data, 2 602 (0.21%) infants were 

excluded because of missing information on gestational age or birth weight. Respectively, 

205 children (0.16%) were excluded from the Finnish internal validation set because of 

missingness in either gestational age or birth weight. In the Swedish data, 78 400 (5.1%) 

had missingness in either gestational age, birth weight or maternal smoking during 

pregnancy. The missingness was more prevalent in the Swedish data, but as it was used for 

testing the model only, we refrained from imputation. 

 

Additionally, 39 596 (3.1%) infants were missing their father’s ID, and they were not included 

in the data-driven screening analyses, but were included in the prediction model 

development and validation (as no directly father-related variables were selected to the 

prediction model). 

 

The following table details the missingness in each variable. 

 

 Finland Sweden 

Sample size (cases with missingness 

included) 1 257 515 1 537 872 

   

Missingness in clinical prediction model variables, n (%) 

   

The outcome (RSV hospitalisation) 0 0 

Gestational age 2602 (0.21%) 304 (0.01 %) 

Birth weight 2602 (0.21%) 1 902 (0.12%) 



Mother's age at birth  0 0 

Male gender 0 0 

Twin sibling 0 0 

Older siblings aged 0-4 years 0 0 

Older siblings aged 4-7 years 0 0 

Down's syndrome 0 0 

Sibling hospitalised for viral bronchitis at age 

0-4 years 0 0 

Mother has smoked during pregnancy 0 

76 922 

(5.00%) 

Term child having neonatal respiratory 

conditions 0 0 

Esophagus malformations 0 0 

Asthma in a first-degree relative 0 0 

Congenital heart defect requiring operation 

during the first year of life 0 0 

Lower complexity atrial or ventricular septal 

defect 0 0 

   

Missingness in other variables not used in the model, n (%) 

Father's ID 39596 (3.1%) 

(Not 

analysed) 

 

Sample size calculation 

Before starting the data analysis, we did a preliminary sample size calculation for the 

number of outcomes required to assess a certain number of predictors 8. In the sample size 

calculation, we used following assumptions: a) acceptable difference of 0.05 in apparent & 

adjusted R-squared b) margin of error of 0.05 in estimation of intercept and c) outcome 

prevalence of 0.016 in events per predictor parameter (EPP) d) desired AUC of 0.75. The 

estimated EPP was 10.35, and the required sample size for studying 1500 parameters in the 

development dataset was 970742. However, instead of actually considering the full number 

of 1500 variables, most variables were excluded from the final model because of their 

definition or characteristics (see below).  



Variable definitions 

The outcome (RSVH) 

The outcome was defined as hospitalisation with the ICD-10 diagnosis J21.0 meaning RSV 

bronchiolitis between the age of 7-365 days. Excluding the age 0-7 days from outcome was 

deemed reasonable from the prediction interval’s perspective. Even if prophylaxis was given 

during the very first days of life, the passive immunisation is unlikely to provide full protection 

during the first week of life. The rationale for the 1-year follow-up was that severe RSV 

bronchiolitis develops most commonly during the first months of life, and after the first year 

of life the risk of hospitalisation is significantly lower. Consequently, the main target 

population for novel immunoprophylaxis methods are infants entering their first RSV season. 

 

The outcome was defined from the Care Register for Health Care (CRHC). In Finland, all 

paediatric inpatient care is given in public hospitals, and the CRHC has full coverage of 

paediatric hospitalisations. Misclassification is in practice only possible through imperfect 

use of diagnosis codes (e.g., an infant was hospitalised due to RSV bronchiolitis, but did not 

have J21.0 code recorded for some reason). As rapid antigen detection (RADT) RSV tests 

have been in routine use in paediatric hospitals throughout the study period and availability 

of nucleic acid amplification tests (NAAT) has increased in recent years, most children 

hospitalised with clinical suspicion of RSV bronchiolitis are routinely tested with 

microbiological RSV tests.  

 

As a post-hoc analysis of outcome validity, we compared the routinely reported positive RSV 

tests of in the Finnish National Infectious Diseases Register (NIDR) to those hospitalised 

with RSV bronchiolitis. All clinical microbiological laboratories automatically report all RSV 

detections to the NIDR for epidemiologic monitoring purposes. However, the infectious 

disease registry does not have full coverage during the study period, as during the first years 

of the study period the majority of positive RSV tests were reported to the registry without a 

personal identification number, and the results could not be linked to the other registry data. 

This is why we didn’t include positive RSV tests to the outcome definition, but rather used it 

in the post-hoc validation analysis. 

 

Family member definitions 

FinRegistry data links family members to each other. We identified the mothers, fathers and 

siblings’ data for the infants being followed for RSV infection. Mother’s ID was identified from 

the Medical Birth Register for all children. Father’s ID was identified from the population 

registries, and was missing for 39596 (3.1%) of children. Sibling’s IDs were identified from 

the population registries for both “full siblings” (sharing both parents) and “half siblings” 

(sharing only one parent). We further used the mother’s ID to connect siblings to each other. 

The rationale for including also half siblings was that even if two siblings share only 1 parent, 

it is still considerably likely that they cohabit, or at least are in frequent contact with each 

other, especially if the two siblings are of similar age. This also makes the sibling variable 

more easily defined in the clinical prediction context. The presence of an alive twin sibling 

was identified from the Medical Birth Register. Twin sibling’s other information was not 

analysed in this study. 



 

Using these definitions, it is possible that a child is first an “index infant” being followed for 

the RSV hospitalisation, and then an older sibling to someone else. However, all of the 

predictors were defined separately for each scenario. 

 

 

 

Candidate predictor groups and prevalence 

For the data-driven screening, the data was first grouped to categories according to the 

registry as a source of information: 1) mother’s clinical endpoints, 2) father’s clinical 

endpoints, 3) siblings’ clinical endpoints, 4) the neonate’s diagnoses and malformations and 

Medical Birth Register information, 6) pregnancy-related maternal diagnoses from the 

Medical Birth Register and hospital registries, 7) mother’s, father’s and siblings’ drug 

purchases before the start of pregnancy, 8) mother’s drug purchases during pregnancy and. 

From these information sources, the candidate features were preselected according to the 

prevalence, using cutoffs of n = 1500 cases in the training data for the family member’s 

variables and n = 200 cases for the neonate’s variables. This prevalence-based preselection 

was done to minimise the risk of overfitting, and because very rare conditions would 

probably not be feasible for predicting the risk in the general population.  

 

Family members’ clinical endpoints 

In FinRegistry data, most healthcare-related registry data (disease diagnoses, prescription 

drugs, causes of death, operations) are coded into clinically interpretable clinical endpoints. 

These clinical endpoints describe certain medical conditions, e.g. an acute event such as 

stroke or the onset of chronic diseases, such as cardiovascular disease. The registries from 

which the main endpoints are created (Care Register for Healthcare, Register of Primary 

Healthcare Visits, Causes of Death, Drug Purchases, Drug Reimbursements, and Cancer 

Register) cover multiple decades of data, requiring harmonisation in order to produce 

comparable and interpretable endpoints. Currently, 3177 clinical endpoints have been 

defined in collaboration with clinical working groups with domain-specific knowledge about 

using diagnostic codes in clinical practice. The endpoint library is structured according to the 

ICD-10 hierarchy, with minor changes when the ICD-8/9 structure is very different from the 

ICD-10 structure, or when an endpoint is of specific interest. 

 

The clinical endpoints have originally been defined as part of the FinnGen project 7, 

www.finngen.fi, a research collaboration involving academic and industry institutions, aiming 

to collect and analyse genomic and health data from 500,000 Finns (10 % of the population). 

The clinical endpoints are adapted to FinRegistry,and can be explored interactively via the 

Risteys web portal (https://risteys.finregistry.fi). 

 

 

http://www.finngen.fi/
https://risteys.finregistry.fi/


Family member asthma  

Registry data contains multiple different variables and endpoints that are related to asthma, 

such as acute and long-term diagnoses and drug purchases. Definition of chronic asthma 

was given careful consideration because it was presumed to be linked with the risk of RSVH.  

 

Parent’s asthma was defined as having long-term reimbursement of inhalation medication, 

which requires that the patient fulfils the diagnostic criteria for asthma and adheres to the 

medication for 6 months. This reimbursement code can be considered as a strict asthma 

definition in Finland. Another definition for parents’ asthma was regular purchases of 

inhalation steroids (>=5 purchases in 3 last years before the start of pregnancy) and 

purchases of bronchodilators (>= 3 purchases in 3 years before pregnancy). For siblings, we 

required a diagnosis of asthma (J45 group) and >2 purchases of inhalation steroids and >= 2 

purchases of bronchodilators during the last year.  

 

In Sweden, the definition of asthma was taken from a validated algorithm based on 

combinations of inhalers for asthma and asthma diagnoses.9 In order to fulfil the asthma 

definition, we required fulfilling medication criteria of two or more dispenses of inhaled 

corticosteroid, leukotriene receptor antagonists or fixed beta2-agonist and corticosteroid 

combinations (2 weeks between dispenses in children under 4.5 years) or three or more 

dispenses of short acting beta2-agonists (within 12 months). For children under 4.5 years we 

required an asthma diagnosis (J45, J46) in combination with fulfilling medication criteria. In 

older individuals, either asthma diagnosis or medication criteria were sufficient. 

Sibling’s hospitalisation for viral bronchiolitis or viral wheeze 

We created a composite variable of sibling’s hospitalisation at young age (0-4 years) 

because of severe viral respiratory tract infection, which would capture the sibling’s 

underlying predisposition. Most common phenotypes for this were determined to be RSV 

bronchiolitis and viral wheeze. Because it may be difficult to determine whether the 

hospitalisation occurred because of bronchiolitis or viral wheeze, and as in some countries 

their definitions are considerably overlapping, we combined these disease entities into a 

single composite variable. In Finland, we used the ICD-10 group J21, which includes the 

RSV bronchiolitis (J21.0) as well as the viral wheeze in childhood (J21.90). In Sweden, the 

code J21.90 does not exist and viral wheeze is usually coded J20.9 or J21, and hence we 

used different definitions between Finland and Sweden to capture the same phenotype in 

siblings. 

Pregnancy-related diagnoses, neonatal diagnoses and 

malformations 

The diagnoses from pregnancy, neonatal period and possible congenital conditions were 

obtained from the Medical Birth Registry and from hospital registries. In addition, the Medical 

Birth Registry contains several structural variables we included as predefined or candidate 

predictors.  

 

The so-called neonatal diagnoses were the P chapter diagnoses from the ICD-10 

classification. Congenital malformation diagnoses were the Q chapter diagnoses, and 

pregnancy-related diagnoses were the O chapter diagnoses. The use of these diagnosis 



codes is specific to the time of pregnancy, neonatal period and congenital conditions. These 

neonatal, congenital and pregnancy-specific diagnoses were grouped considering their 

prevalence and clinical similarity, aiming for a prevalence of over 200 per 1 000 000 infants 

for each predictor.  

 

Months from birth to the next estimated epidemic peak 

Young age during the RSV infection is one of the most important known risk factors for 

severe RSV-LRTI. This feature is strongly dependent on the local epidemic patterns. We 

aimed to include this feature to the model in a robust way so that the model coefficients 

would not be directly dependent on the national epidemic patterns of RSV, and we aimed to 

keep the model simple enough for use during routine clinical activity. Age during the 

epidemic was modelled by calculating the distance of birth month to the next estimated 

epidemic peak in months. The epidemic peak was defined as the calendar month having the 

highest number of RSV hospitalisations. 

 

However, in the clinical prediction setting, the upcoming epidemic peak timing is not known. 

In the model training, we used data from the actual epidemic peaks, based on the number of 

RSV detections and hospitalisations. For the held-out test set and the external validation 

dataset from Sweden, we estimated the epidemic peaks from the previous years’ RSV 

epidemiological pattern by averaging the epidemic peaks 2 years, 4 years and 6 years ago. 

This averaging method was used because of the biennial pattern of RSV epidemics in 

Finland. This averaging method also probably mimics the situation in clinical decision 

making, when the epidemic peak is not known and no tools exist for its modelling. When 

using the clinical prediction model presented in the paper, the user can estimate the next 

epidemic peak with a method and data that is most appropriate in their specific context and 

location. Importantly, when evaluating model performance in hold-out validation data, we 

have only used information available at 7 days after birth for each infant. 

 

Months to the next estimated epidemic peak was estimated as the time difference in months 

between the birth month and the estimated peak month of RSV hospitalisations. We used 

the actual timing of the peak month in the model training data, but in the validation data, the 

next epidemic peak was estimated by taking the average peak month from epidemics 2 

years, 4 years and 6 years prior to birth in order to account for the biennial variation 

observed in both countries10,11, and to restrict the validation analyses to information available 

at the time of birth of the child. 

 

Birth weight relative to the reference values  

Birth weight is a fundamental recorded attribute of newborn children, and also relevant for 

RSVH risk. As children are born at different times of pregnancy (some are preterm, some 

term). It is common practice to record the birth weight in units of standard deviation (SD), i.e. 

compare the absolute weight to the reference values considering e.g. gestational age at 

birth.  

 

In Finland, we used the national reference values defined from Finnish population 

distribution.12 These reference values consider the gender, gestational age at birth and 



possible twinhood (twins usually weight slightly less). In Sweden, the Nordic reference 

values were used.13 Both reference values are in routine use in recording the birth weights in 

Finland and Sweden. 

 

Maternal smoking during pregnancy 

Maternal smoking during pregnancy was defined by either having a Medical Birth Register 

entry indicating any smoking during pregnancy, or the neonate having a diagnosis P04.2 

(The effect of mother’s smoking on the neonate). In Finland, the maternal smoking variable 

Medical Birth Register variable contains mention of any smoking history during pregnancy, 

even during the first trimester, and the information is obtained during routine primary-care 

based pregnancy checkups or during labour. 

 

In Sweden, maternal smoking during pregnancy was defined as smoking during the first 

antenatal checkup visit, usually in 8-12 weeks of gestation. Those mothers who quit smoking 

before that visit were not included in this variable. 

Congenital diseases of the infant 

For certain severe congenital conditions of the neonates, such as congenital heart defects 

(CHD) or Down’s syndrome, we confirmed the presence of these conditions by using registry 

data from the first year of life. In these conditions, the condition is often known already 

before or immediately after birth or at latest during the initial discharge from hospital, but the 

diagnosis might be confirmed only several months after birth because of e.g. delays in 

testing or accurate investigations. This confirmation was done before the development of the 

final prediction model, and the screening was done based on diagnoses associated with the 

neonatal period. This confirmation before the final model development was done for the 

following congenital conditions: BPD, CHDs, Down’s syndrome and esophagus 

malformations. 

 

Congenital heart diseases 

For hemodynamically significant congenital heart defects (hsCHD), we used the presence of 

corrective cardiac operations during the first year of life as an indicator for hsCHD. We 

identified those with a procedure code for cardiac procedures during the first year of life 

(Nordic Classification of Surgical Procedures, NCSP). Supplementary table 10 lists the 

operation codes considered.  

 

The rationale for this operation-based classification was that hsCHD consist often of multiple 

different lesions with several distinct ICD-10 codes being used for one child, and the ICD-10 

codes do not contain information on the severity of the lesion, differentiating between hsCHD 

and non-hsCHD based on ICD-10 codes alone, is not feasible. Furthermore, only scarce and 

inconclusive evidence describes this risk in more detailed subgroups of hsCHD, such as 

cyanotic or non-cyanotic hsCHDs 14. In the presence of hsCHD, the likelihood for a 

corrective operation during the first year of life can in most cases be determined by a 

paediatric cardiologist at the initial presentation, even before the accurate diagnosis is 

confirmed. In Finland and Sweden, palivizumab use in infants with hsCHD is conservative, 



only the infants with the most severe hsCHD receiving the prophylaxis and it is unlikely to 

confound the present CHD-related results. 

 

In addition to the severe congenital heart diseases, we defined variables for lower 

complexity atrial septal defect (ASD) and ventricular septal defect (VSD). To create these 

variables, we identified those with ICD-10 diagnosis codes for ASD (Q21.11, Q21.18 or 

Q21.19)) and VSD (Q21.0) in those who: a) did not have corrective cardiac operations 

during the 1st year of life, and b) had no other CHD diagnosis codes than ASD or VSD, other 

than the ICD-10 codes of patent ductus arteriosus (Q25.0) or patent foramen ovale (Q21.11) 

which often are incidental findings without hemodynamical significance, and do not need 

interventions. For the final model, we defined lower complexity CHD (lcCHD) as either 

having lower complexity ASD or lower complexity VSD.  

 

In Sweden, the severe CHD variable was defined on the basis of ICD-10 diagnoses, as the 

data of Swedish children did not include information on cardiac operations. We identified 

those ICD-10 codes for CHD that had operation rates in the Finnish data >50% during the 

first year of life, and defined the hsCHD in Sweden based on the presence of those ICD-10 

codes. Supplementary table 11 shows the operation rates observed in Finland for each ICD-

10 diagnosis code used to define the hsCHD in Sweden. The prevalence rates using both 

definitions were similar (table 1). 

 

 

 

Family members’ prescription drugs 

In the prescription drug purchases, the ATC codes were truncated with the first 5 characters 

of the ATC code to reflect drug groups. Some 5-digit ATC groups were further grouped if this 

was clinically justified. For example, the bronchodilator group included the 5-digit ATC code 

R03AC and the inhalation steroids group included ATC codes R03BA and R03AK.  

For parents, we require by default 5 or more purchases during the last 3 years before the 

child’s birth to count that variable as. However, as some drugs are not used regularly but 

might signify the presence of significant illness, for some drugs we required fewer 

purchases. For the following drugs, fewer purchases during the 3 last years were required: 

Injection adrenaline (2 or more purchases); peroral steroids (3 or more); inhaled 

bronchodilators (3 or more); antihistamines (4 or more); antibiotics (3 or more). For siblings, 

we required by default 3 or more purchases during the year before the child’s birth, and for 

the aforementioned temporary drugs, 1 or more purchase was required. 

 

 



Statistical analysis methods 

Restricted cubic spline encoding of continuous variables in logistic 

regression models 

In logistic regression analyses, the continuous variables were coded with restricted cubic 

splines. In the feature selection, we used 4 knots in all continuous variables placed in the 

default percentiles (5th, 35th, 65th and 95th) 15. Because the knot placement in 

quantiles depends on the data used in the rcs function, we prespecified and fixed the knot 

locations for the final model fit in order to produce a model object and equation that could be 

used in predicting with new and external data.  

 

In the final model, we used 4 fixed knots in default percentiles (5th, 35th, 65th and 

95th) for other continuous variables except for the gestational age. Regarding gestational 

age, the majority of children born term or close to term and the quantile-based knots were 

automatically based to close to full gestational age, but the most significant risk of severe 

RSV-LRTI is observed in very preterm infants. This is why we used the 4 default percentile-

based knots (placed in 257, 276, 283, 293, gestational days) and 2 manual knots in 203 and 

238 gestational days to ensure that the model would adequately capture the risk differences 

in the more preterm babies. Adding these 2 manual knots to the gestational age lead to the 

reduction of AIC by 100, calculated in a model containing only spline-transformed continuous 

variables. Equal AIC reduction of 100 was observed when modelling the gestational age with 

6 quantile-based knots. 

 

Interactions 

We explored the possible interactions by adding individual pairwise interaction terms to the 

clinical prediction model, and calculating the likelihood ratio test between the model with and 

without the interaction term. Interaction terms were tested only for the most common 

variables and where the interaction was clinically plausible. Supplementary table 9 shows 

the tested interactions and the respective chi-squared statistic from the likelihood ratio test. 

The strongest interaction was observed between the age during the next epidemic peak and 

gestational age, and also other variables had possible interactions with the age during the 

next epidemic peak. However, as the age during the next epidemic peak is subject to 

uncertainty and variation across different regions and epidemic patterns, we decided not to 

include any interaction terms in order to avoid model overfitting. Ultimately, no interaction 

terms were included in the final model. 

 

Lasso 

As a part of the predictor selection,, we trained a least absolute shrinkage and selection 

operator (Lasso) regression model with the potentially relevant candidate predictors 

identified in the initial feature screening. Lasso (L1-regularisation) was chosen because of its 

tendency to regularise variable coefficients to 0, i.e., to exclude irrelevant variables. The 

magnitude of regularised regression coefficients were analysed for the decision to include or 



exclude variables from the final model. The Lasso model was trained in 10-fold random-split 

cross validation in the training set, in contrast to the internal validation assessment, done 

with CV across epidemic years. The lambda value, i.e. the value of the regularisation 

parameter, was chosen to yield the most regularised model where the cross-validated 

prediction error was within 1SD of the minimum obtained error. This more conservative value 

for lambda was chosen to avoid overfitting, and to retain only the most important predictors. 

In the Lasso model, continuous variables were included as linear terms instead of splines.  

XGboost 

We used an eXtreme Gradient boosting (XGboost, 16) approach including all 1 510 risk 

factors to reach the upper limit of predictive information in the data, to use as a benchmark 

for the clinical prediction model, and also to compare the performance of a complex model 

including interactions to a simple logistic regression model. 

 

The XGboost model was trained in the 10 most recent epidemics (6/2007-6/2017) of the 

training data and tested in the Finnish hold-out test set, but the machine learning model 

could not be validated in the Swedish dataset. 

 

Hyperparameters were optimised with RandomSearchCV and GridSearchCV functions 

(scikit-learn) over the range of possible hyperparameter values reported in supplementary 

table 12. The optimization was done in the model training dataset using 5-fold cross 

validation. First, we searched a wider range of hyperparameters with the random search 

method, and then confirmed the position with the grid search method using narrower range 

around the values identified by the random search. We did not use class weights and did not 

consider the classification results of the model, but we analysed only the probabilities of RSV 

hospitalisation as the model output. SHapley Additive exPlanations (SHAP) values 17 were 

used to identify the most important predictors in the XGboost model.  

 

Predictor selection 

First, the association of each candidate predictor was assessed with logistic regression 

adjusted for the 14 predefined predictors. In summarising the results, statistical significance 

was set to a p<4e-5 after Bonferroni multiple-testing correction because of 1205 tests in the 

family member variables and p<1e-3, because of 255 tests in the child-related variables. 

Different p value thresholds were used because of the greater number of potentially 

interesting but rare conditions in the neonate, and because of the exploratory nature of this 

association analysis. However, the p value was never the only criteria to determine variable 

inclusion to the prediction model. 

 

When exploring the difference of the predictor effects (i.e. regression coefficients) in mothers 

and fathers (in figure 1c), we used the Z-test. In this analysis, p<0.01 was considered 

statistically significant due to the exploratory nature of the analysis, and in order to broadly 

visualise the differences in the regression coefficients between parents. 

 

To select risk factors to include in the final prediction model, we first selected the most 

relevant variables from each predictor category (infant’s, parents’ and siblings’ diagnoses 



and drug purchases; see above for details). We then proceeded with multivariate 

comparisons with the variables selected from each category. These selection processes are 

described next. 

 

Predictor selection inside predictor category 

The selection within each category (Mother’s, father’s, siblings’ and the infant’s diagnoses 

and drug purchases; described above) was based on the following three parallel logistic 

regression results: 

 

1. Univariate odds ratio separately for each variable, adjusted for predefined predictors  

2. Multivariate odds ratio, adjusted for the predefined predictors and all other variables 

from the risk factor category 

3. Backwards stepwise elimination of variables from the multivariate model created in 

the previous step, based on the Akaike Information Criterion (AIC) improvement 

Multivariable selection 

Based on the previous set, we selected the most important candidate predictors for further 

consideration. The most relevant candidate predictors from each category and the 

predefined predictors were compared in a multivariable setting. This multivariable 

comparison was done with two logistic regression models, containing all selected candidate 

predictors and the predefined predictors. 

 

1. Backwards stepwise elimination of variables based on AIC improvement 

2. L1-regularised LASSO model. 

 

From these two models, we assessed the following statistical parameters for each variable: 

1) the results of this multivariate comparison (i.e., the multivariate odds ratio and its 

statistical significance); 2) the possible exclusion from the stepwise model; 3) the 

regularisation in the LASSO model; 4) the chi-squared statistic from the likelihood ratio test 

and 5) the prevalence (i.e., rarity) of the predictor.  

 

 

Supplementary tables 2-7 show the results of the first step (the analyses inside each 

category, also including all variable definitions and prevalences), and supplementary table 

13 shows the results of the multivariate selection results, where most relevant variables from 

different categories were combined. 

 

Variable exclusion criteria 

Our aim was to only include features that would be easily defined in the clinical prediction 

context, that would have similar definitions across time and across different hospitals and 

countries, that would not have reporting bias due to registry limitations and where a potential 

mechanism of association was plausible to reflect the probability of severe RSV infection, 

and not a secondary cause affecting admission decision.  

 



As the most important criterion for predictor selection, we considered whether the predictor’s 

characteristics and definition justify its inclusion to the clinical prediction model. It has been 

shown that a model based on secondary care data might not perform as well in the primary-

care -based population 18. Furthermore, several registry-based variables might not be 

suitable for clinical prediction purposes or they might be inconsistently reported depending 

on the access to secondary or tertiary care.  

 

In the feature selection process, we used case-by-case consideration when deciding the 

inclusion or exclusion of each variable. We removed predictors where the registry based 

definition would be difficult to translate clearly to the clinical context, such as family 

members’ antibiotic purchases. We also discarded predictors where the association with the 

outcome is likely not due to disease severity, but parent or healthcare system related factors 

(e.g., mother tongue, parent’s anxiety disorder diagnoses) that plausibly affect the probability 

of hospitalisation without necessarily having an effect on disease severity. For the final 

model, Independent variables were combined into a composite variable if they were related 

and their odds ratios were similar.  

 

The most important arguments for excluding the variables from the prediction model are 

listed in the following table. 

 

Suspicion that the mechanism of association 

between the feature and RSV hospitalisation is 

unclear in nature, reflecting e.g. socioeconomic 

factors, treatment-seeking behaviour of parents or 

reduced admission threshold instead of the severity 

of the RSV-LRTI 

Mother’s mental-health-related 

diseases; Mother’s drug abuse during 

pregnancy; family members’ income 

The diagnosis may not capture all with the condition 

of interest, because of potentially biased reporting in 

the registries (primary-care -related diagnoses not 

fully covered in FinRegistry) or because not all 

individuals with the condition get the diagnosis 

Acute otitis media of siblings; 

Diagnosis of pregnancy-related 

fatigue 

Variable having potentially different definitions across 

time or in different countries. 

Socioeconomic factors; Symptomatic 

or non-specific diagnosis codes; use 

of certain drugs 

Vague or unclear variable definition for clinical 

prediction purpose 

Mother’s paracetamol purchase; 

family member depression 

medication purchase; Antibiotic 

purchase 

Overlapping variables - the most clearly defined 

variable is kept 

Chronic lower respiratory conditions 

vs. any asthma diagnosis vs. long-

term drug reimbursement for asthma 

Statistical criteria 

Small odds ratio; rare predictor; small 

or non-existent Akaike Information 

Criterion improvement; Regularised 

coefficient in LASSO model 

 



 

For example, one of the most important reasons for excluding a predictor was that the 

present data do not fully cover primary care records of the patients. The incomplete 

coverage means that the diagnoses given in primary care are not consistently captured or 

might have bias in their reporting. For example, sibling’s otitis media diagnoses are likely not 

fully captured in the FinRegistry data, and those cases with the registry entry of otitis media 

might represent the most severe cases of the disease spectrum. The variable and its 

coefficient would thus not represent the real-world association with the infant’s RSV 

hospitalisation risk, and the variable was excluded from the prediction model despite 

significant association. To further exemplify, the diagnosis of upper respiratory tract infection 

of the family member might be dependent on the treatment-seeking behaviour or access to 

care of the family.  

 

Final prediction model training 

After selecting the final predictors in the training set, we fitted the logistic regression model in 

the 10 most recent epidemics of the training set (epidemics between 2007-2017) to estimate 

the final model coefficients. Continuous variables were included as restricted cubic splines 

with 4-6 knots. The knots were fixed for prediction in the external data. See above for more 

in-detail description of the spline method used.  

 

We explored possible interactions by including interaction terms with the strongest risk 

factors and if the interaction was clinically justified. We assessed each interaction with 

likelihood ratio test comparing models with and without the interaction term (supplementary 

table 9). 

 

Population attributable fractions 

We described the importance of final prediction model variables in relation to each other in 

the population level with the population attributable fractions (PAF) 19,20. The PAF describes 

the fraction of cases in a population attributable to a certain variable, or alternatively, how 

much the observed cases would have decreased if the effect of this variable were 

completely removed. We did not aim e.g. to estimate the treatment effect with the PAF 

calculations, but its purpose was descriptive. The PAF estimates were adjusted for the other 

variables in the prediction model. 

 

To calculate PAF for the continuous variables, we used the method described by Ferguson 

et al 20. The PAF estimates were calculated from a logistic model containing the 16 

predictors, continuous variables coded with natural splines with 3 degrees of freedom 

(instead of restricted cubic splines as in the clinical prediction model), because the R 

functions required the use of natural spline functions and non-missing data.  

 

 



Model performance assessment 

Development and validation data 

The full development set was used in the predictor screening (1 126 952 Finnish infants). 

After selecting the final model predictors, we obtained the model coefficients from the 10 

most recent epidemics of the development set (training data, 621 487 Finnish infants). 

Finnish hold-out temporal validation data consisted of the infants born between June 2017 - 

May 2020 (n = 130 352). External validation data consisted of 1 459 472 Swedish children, 

born between June 2006 and May 2020.  

 

The model performance in the training data (Finnish infants born between June 2006 - May 

2017) was tested using so-called leave-one-out cross validation. In this method, one 

epidemic year at a time is held out for testing, and the model is trained with all remaining 

data. This process was iterated for each epidemic year of the training data. Thus, in all 

testing scenarios the model was tested in different data than in which it was trained 

 

 

In all testing scenarios, we calculated the discrimination and calibration measures in 

individual epidemic years, and we used a random effects meta-analysis to combine the 

estimates across the three epidemic years. In parallel with the meta-analysis estimates, we 

also obtained the discrimination and calibration measures from the pooled testing data for 

comparison. 

Model performance measures 

Discrimination was assessed with the C-statistics and its 95% confidence interval was 

obtained from using DeLong method 21. Calibration plots were created by dividing the 

predicted probabilities into deciles (10 equal-sized groups) and plotting the observed 

outcome rate in each of the deciles. Calibration slopes were calculated by training a logistic 

regression model for the outcome (RSV hospitalisation), with the logit-transformed predicted 

probability obtained from the prediction model as the only predictor, and examining the linear 

coefficient as the calibration slope. Calibration-in-the-large, i.e. the overall calibration metric 

was obtained from a logistic regression model, where the outcome (RSV hospitalisation) was 

predicted with the prediction model’s logit-transformed probability as the offset term (i.e., 

forcing its coefficient to be 1). The intercept of this regression model is the calibration-in-the-

large. 95% confidence intervals for calibration slope and intercept were obtained from 

standard errors of the regression coefficients.  

 

Discrimination and calibration were assessed in individual epidemic years, to illustrate the 

variance in model performance in different epidemics. For overall calibration and 

discrimination, we did random-effect meta-analysis from the metrics of the individual 

epidemic years, and also calculated the validation metrics in the complete validation dataset. 

 



Decision curve analysis 

In calculating net benefit, the trade-off between correctly predicting cases (true positives) 

and incorrectly predicting non-cases as positive (false positives) is weighted according to the 

threshold probability. The net benefit value reflects this quantified trade-off for certain 

probability cutoff. The decision curve analysis compares the net benefit across the range of 

realistic probability cutoffs, and compares different decision making strategies (common 

references being intervention for all and intervention for none). In the RSV immunisation 

context the probability range was determined to be 0-15%.  

 

We adapted the American Academy of Pediatrics (AAP) recommendations for palivizumab 

prophylaxis 22 as a reference prediction strategy. There are no national guidelines for 

palivizumab use in Finland, although the use of palivizumab in Finland is more conservative 

than recommended by the AAP guidelines. To reflect these recommendations in our data, 

we used the following three conditions: gestational age 29 weeks or less; having 

hemodynamically significant congenital heart defect; and having bronchopulmonary 

dysplasia. If any of these were fulfilled, the child was defined as fulfilling the AAP criteria for 

palivizumab.  

 

Hypothetical immunoprophylaxis targeting 

 

We assessed the model’s potential clinical impact by estimating the effect of prophylaxis on 

risk of RSVH if the prophylaxis were targeted using predictions from the model. To assess 

discrimination, we used different percentiles of predicted probability as cutoff for the 

prophylaxis. We estimated a hypothetical NNT value for each cutoff,separately for each 

country and each epidemic year of the hold-out validation data to account for the differences 

in outcome prevalence. We assumed that the efficacy of the immunoprophylaxis was 60% in 

preventing hospitalisations, chosen as a conservative estimate based on pooled analysis of 

data from two RCTs including preterm and term infants where the combined efficacy against 

RSVH was 77.3%.23–25  

 

Fairness 

We analysed the so-called algorithmic fairness, i.e. the possible difference or bias in the 

performance of the prediction model in vulnerable subgroups, by calculating the C-statistic of 

the clinical prediction model across parental income quintiles. This analysis was only done in 

the Finnish internal validation set because the Swedish external test set did not contain 

income data.  

 

The information on parental income was obtained from the Earnings Register of Finnish 

Centre for Pensions. We calculated the overall income of the full calendar year before the 

calendar year of the child’s birth. The year prior to the birth of the child was selected in order 

to reduce the confounding effect of childbirth and the child’s possible disease conditions on 

the parental income. We summed the mother’s and father’s incomes together to a parental 

income variable. The incomes were reported in euros. All numbers were corrected for the 

consumer price index. All these analyses were done in the held-out test set, meaning that 



we considered income from years 2016-2019. Finally, the incomes were divided into 

quintiles. Hospitalisation rates with 95% confidence intervals and the median incomes with 

interquartile ranges were plotted.  

 

In the Finnish internal validation set, 5 962 children (4.8%) have missing income. In this 

population, the C-statistic was 0.746 (95% CI 0.710 - 0.781), slightly worse than in all of the 

quintiles. 

 

Deviations from the original study protocol 

Prior to starting the analyses, we archived a study protocol, available at https://osf.io/h7r9b. 

The following deviations from the study protocol were made. We updated the study inclusion 

period to 31.5.2020, because we had data available until the end of 2021. However, as the 

RSV season in 2021 and 2022 was exceptional because of COVID-19 restrictions, we did 

not consider including those children born in proximity of this time period to the follow-up. 

Those born at the end of 5/2021 were followed until May 31st, 2022. The study protocol also 

doesn’t mention the external validation in the Swedish data, as this was confirmed only after 

the publication of the protocol. 

 

 

SUPPLEMENTARY RESULTS 

Predictor discovery - associations from the predictor screening 

analyses 

We systematically screened for predictors by testing the association between 1496 

candidate predictors from parents, siblings and the infant with the infant’s RSVH, adjusting 

for the 14 predefined predictors with logistic regression. 

 

Statistically significant associations were observed for neonatal respiratory conditions, such 

as transient tachypnea of the newborn (TTN, aOR 1.23, 95% CI 1.12 - 1.34), and “other and 

unspecified neonatal breathing problems” (aOR 1.41, 95% CI 1.27 - 1.58), but respiratory 

distress syndrome diagnosis was not associated with increased risk for RSVH (aOR 1.09, 

95% CI 0.94 - 1.25) when adjusting for  the 14 predefined predictors (including gestational 

age at birth). Bony and muscular malformations (ICD-10 codes Q67 and Q68) were 

associated with an increased RSVH risk (aOR 2.54, 95% CI 1.53 - 5.27). Regarding certain 

rare conditions considered as risk factors 26, the Q79 diagnosis group including 

diaphragmatic hernia (aOR 1.09, 95% CI 0.61 - 1.93) and respiratory organ malformations 

diagnoses Q30-Q34 (aOR 1.11, 95% CI 0.61 - 2.04) were not significantly associated with 

RSVH. 

 

Among the parents’ prior diagnoses, psychiatric diseases and substance use disorder 

diagnoses, both in mothers and fathers, were clearly associated with increased RSVH risk 

(figure 1). The highest aORs were observed for opioid use disorder diagnosis in fathers 

https://osf.io/h7r9b


(2.53, 95% CI 2.01 - 3.19) and mothers (2.43, 95% CI 1.78 - 3.22). Substance use of the 

mother were reflected in the pregnancy-related and neonatal variables through high aORs 

for diagnoses of withdrawal symptoms of the neonate (2.68, 1.77 - 4.07) and other effects of 

maternal addictive drug use on the neonate (3.08, 1.98 - 4.79).  

 

Asthma-related variables in all family members, but especially in older siblings, were 

associated with the risk of RSVH. Sibling’s regular montelucast medication, often indicating 

treatment-resistant or severe allergic asthma, had an aOR of 2.45 (with 95% CI 2.08 - 2.89). 

Similarly sibling’s asthma (aOR 1.75, aOR 1.67 - 1.84), mother’s asthma (aOR 1.53, 95% CI 

1.41 - 1.65) and father’s asthma (aOR 1.22, 95% CI 1.10 - 1.34) were associated with 

increased risk for RSVH. 

 

Several antibiotic purchases of family members had significant association with RSVH, such 

as cephalexin during pregnancy (aOR 1.34, 95% CI 1.27 - 1.43). Similarly, common 

infectious disease diagnoses of the sibling, such as acute otitis media (aOR 1.70, 95% CI 

1.63 - 1.77) and gastroenteritis (aOR 1.60, 95% CI 1.50 - 1.69) were associated with the 

infant’s RSVH. Among mother’s drug purchases during pregnancy, valproate was most 

clearly associated with RSVH (aOR 2.45, 95% CI 1.88 - 3.19), probably reflecting the known 

teratogenic effect of valproate. In fathers, valproate was not significant (aOR 1.18, 95% CI 

0.84 - 1.66). 

 

Hypothetical number needed to treat (NNT) calculations for 

immunoprophylaxis targeting 

To evaluate the potential utility of the model in different clinical scenarios we estimated the 

NNT to prevent one RSVH for an immunoprophylaxis targeted according to the prediction 

model risk percentiles in the validation data from epidemics of 2018-2020 (Figure 5b). We 

assumed 60% efficacy of the immunoprophylaxis in preventing hospitalisations.23,24 

 

In the Finnish validation data, the top 10% infants with highest predicted risk of RSVH (top 

90th percentile), the observed RSVH risk was 3.3 times higher (7.3%, vs 2.2%) than in all 

infants during the 2018-2020 epidemics, and the RSVHs in this top 10% accounted for 33% 

of all RSVHs. The NNT in this top 10% highest risk group of infants would be 23 (ranging 

from 18 in 2018 to 36 in 2019), and the prophylaxis would have prevented 20% of all RSVHs 

(ranging from 18% in 2019 to 21% in 2018). Similarly in Sweden the top 10% highest 

predicted risk infants had 3.3 times higher observed risk of RSVH than all infants (4.2% vs 

1.3%). The RSVHs in these top 10% accounted for 32% of all RSVHs. The NNT would have 

been 40 (ranging from 29 in 2019 to 77 in 2020), and the prophylaxis would have prevented 

19% of all RSVHs (ranging from 18% in 2020 to 20% in 2019). 

 

For comparison, if in Finland the immunoprophylaxis were targeted to the top 1% (the 99th 

percentile) of children, the NNT estimate would have improved to 14 but only 3% of all 

hospitalisations would have been prevented. Additionally, assuming the immunisation were 

targeted according to AAP criteria during 2018-2020 in Finland, the prophylaxis would have 

been given to 0.6% of infants with NNT of 39 and only 0.6% of all RSVHs would have been 

prevented. 



 

 

Clinical prediction model equation 

The R implementation of the prediction model equation, along with other code of this project, 

can be found in GitHub, through direct link 

https://github.com/dsgelab/rsv/blob/main/model_equation.R. The model equation file 

contains variable names and descriptions in the code comments, in order to facilitate 

possible future implementation regardless of the platform used.  

  

https://github.com/dsgelab/rsv/blob/main/model_equation.R


SUPPLEMENTARY FIGURES 

1 Overview of analysis methods 

 
Supplementary figure 1 The overview and summary of the analysis methods used in each 

step of the study.  

AIC = Akaike information criterion, used as the optimisation metric to guide the backwards 

stepwise model building. 

XGboost = eXtreme Gradient boosting, a machine-learning method 
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2 RSV hospitalisations, seasonality and comparison with 

infectious disease data 

 
Supplementary figure 2 The seasonality (upper panel) and age distribution (lower left 

panel) of RSV hospitalisations in Finland. In the upper panel, the monthly RSV 

hospitalisations are compared to the positive RSV test results in children <1 year old in the 

infectious disease registry. In the lower right panel, the rate of positive RSV test reported to 

the national infectious diseases register within +/- 7 days of RSV hospitalisation is compared 

during each calendar year. In the lower left panel, the density plot of the age at RSV is 

shown. RSV hospitalisation occurred typically during the first months of life; Median age at 

RSV hospitalisation was 80 days (IQR 44-150 days) in Finland and 91 days (IQR 43-224 

days) in Sweden.  
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3 Monthly RSV hospitalisation rates in Finland and in Sweden 

 
Supplementary figure 3 The monthly RSV hospitalisation rates compared between Finland 

and Sweden. Both countries have some biennial pattern in the epidemic intensity (height of 

the peaks), but Finland has more distinct biennial variation in the timing of the epidemic 

peaks. In addition to seasonal variation, we observed a biennial pattern in RSVH, where 

every other year, the number of hospitalisations peaked earlier and was higher. This biennial 

pattern diminished towards more recent years. Sweden had similar biennial variation in the 

epidemic intensity, but the variation in the epidemic timing was smaller. This corresponds to 

the earlier published reports of RSVH seasonality in the nordics 10,11  
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4 Histogram of the predicted probabilities 

 
 

Supplementary image 4 The density plot of the predicted probabilities in the Finnish data, 

for epidemics 2007-2020. Because of the skewed distribution, the x axis scale is logarithmic. 

The distribution of probabilities does not significantly vary between years. Supplementary 

table 15 shows the predicted probability cutoffs for each percentile.  
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5 Population attributable fractions of the model predictors 

 
Supplementary figure 5 The population attributable fractions for each predictor in the 

clinical prediction model. The results are obtained from a logistic regression model including 

the shown variables, and the shown estimates are adjusted for the effect of the other 

variables. The largest population attributable fractions were observed for months from birth 

to the next estimated epidemic peak (0.68), having older siblings aged less than 4 years 

(0.37; aOR 2.42 and 95% CI 2.34 - 2.50) and gestational age at birth (0.25), indicating that 

these variables were the most impactful at the population-level, reflecting the combination of 

large effect size and high prevalence of these predictors.   
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6 Discrimination and calibration measures in individual 

epidemic years  

 
Supplementary figure 6 The model performance metrics of the clinical prediction model, 

shown for the years used in the model training in the Finnish data.  

 

The Finnish metrics are obtained from leave-out cross validation, where each epidemic year 

is kept as a testing data in turn, the model is trained in all other data and tested in the test 

fold. The Swedish metrics are from the external test data, and no model training is done in 

the Swedish data. Note that the metrics, especially the c-statistics are not directly 

comparable, as in the Swedish data, the timing of the RSV epidemic is estimated from the 

previous years, and in the Finnish data, the actual epidemic timing is used.  

 

The year in the x axis indicates the RSV epidemics; We used the 1st of June as a start for 

the RSV epidemic year (for example, all children born between the 1st of June 2007-31st of 

May 2008 were grouped for RSV epidemic year 2018). In calibration metrics, dashed lines 

indicate perfect calibration. Random-effect meta-analysis is the meta-analysed metric from 

all shown epidemic years. 

 

Calibration-in-the-large in the complete pooled external validation data was -0.06 (95% CI -

0.05 to -0.08), and the calibration slope was 0.94 (95% CI 0.92 - 0.95), likely explained by 

the slightly lower outcome rate in Sweden. 
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7 Discrimination and calibration according to the outcome 

prevalence 

 

 

 
 

 

Supplementary figure 7 The model performance metrics (C-statistic for discrimination and 

calibration-in-the-large for calibration) shown according to the prevalence of the outcome, 

i.e. the percentage of infants hospitalised in Sweden during RSV epidemics 2007-2020. 

Each dot represents an RSV epidemic year, i.e. children born between june-may. X-axis 

shows the percentage of the children having the outcome, i.e. severe RSV-LRTI requiring 

hospitalisation. Y-axis shows the respective performance metric. Dashed line in right panel is 

the reference for perfect calibration-in-the-large.   
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8 The calibration plots 

 
 

Supplementary figure 8 The calibration plots, i.e. the predicted vs the observed 

probabilities in equally sized deciles divided according to the predicted probability, 

separately for the three epidemic years of this comparison. Each dot represents a decile, 

and axes show respectively their mean predicted probability and the mean observed 

outcome rate 

 

In Panel A, The data for RSV epidemics 2007-2017, corresponding to the Finnish training 

data, are shown individually for each year. We used the 1st of June as a start for the RSV 

epidemic year (for example, all children born between the 1st of June 2007-31st of May 

2008 were grouped for RSV epidemic year 2018). The dashed lines indicate perfect 

calibration.The Finnish results are obtained from leave-out cross validation, where each 

epidemic year is kept as a testing data in turn, the model is trained in all other data and 

tested in the test fold. The Swedish metrics are from the external validation data, and no 

model training is done in the Swedish data. 
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B) Calibration in pooled data from epidemics 2007−2020



 

In Panel B, calibration data is shown for pooled data covering epidemic years 2007-2020 in 

both countries. To obtain these pooled results in Finland, we combined the development and 

validation data and used the final prediction model to assign predicted probabilities to each 

individual. Similarly to panel A, the Swedish results are from external validation data.   



9 Comparison of XGboost and clinical prediction model 

 
Supplementary image 9 The discrimination and calibration of the XGboost model shown 

separately for children predisposed to individual RSV epidemic. The year numbers in the 

image indicate the RSV epidemics. We used the 1st of June as a start for the RSV epidemic 

year (for example, all children born between the 1st of June 2018-31st of May 2019 were 

categorised for RSV epidemic year 2019). To summarise the results of the uppermost 3 

panels, the respective metrics from each RSV epidemic are combined with random effect 

meta-analysis. Also the results obtained from testing the model in the complete held-out test 

set (all 3 epidemics pooled) are shown for comparison. The 2 lowest panels show the 
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calibration curve, with the test data divided into 10 bins and plotting those bins’ mean 

predicted probability and mean hospitalisation rate against each other. Reference lines show 

perfect calibration. Note the biennial pattern in the measures, too low predicted probabilities 

occurring during strong epidemics and lower predicted probabilities in milder epidemics.  



10 SHAP values of XGboost model 

 
Supplementary image 10 Variable importance in the XGBoost model for the 20 most 

important variables, based on the SHapley Additive exPlanation (SHAP) values.17 Higher 

SHAP value indicates higher predictor importance for the XGboost model. 

  



11 Fairness analysis 

 
Supplementary figure 11 The fairness analysis. Panel a) shows the comparison of the C-

statistic between parental income quintiles. For descriptive purposes, also the RSV 

hospitalisation rates for each quintile are shown in panel b). X axis labels show the median 

income in each quintile and the error bars show 95% confidence intervals of the c-statistic 

and RSV hospitalisation rate. The results are from Finnish held-out validation data, covering 

children born between June 2018 and 5/2020. 5962 children (4.8%) In the Finnish internal 

validation set had missing parental income. In this population, the C-statistic was 0.746 (95% 

CI 0.710 - 0.781), slightly worse than in all of the quintiles. The C-statistic in the lowest 

quintile was 0.777 (95% CI 0.760-0.794), compared to 0.753 (0.731-0.775) in the highest 

quintile (supplementary figure 11) suggesting that the model performed slightly better in, and 

thus does not harmfully discriminate against children from lower income families. 
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