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Abstract 1 

Background Accurate infarct volume measurement requires manual segmentation in 2 

diffusion weighted image (DWI) which is time-consuming and prone to variability. We 3 

compared two DWI infarct segmentation programs based on deep learning and the apparent 4 

diffusion coefficient threshold (JBS-01K and RAPID DWI, respectively) in a comprehensive 5 

stroke center. 6 

Method We included 414 patients whose DWI were evaluated using RAPID DWI and JBS-7 

01K. We used the Bland-Altman plot to compare estimated and manually segmented infarct 8 

volumes. We compared R-squared, root mean squared error, Akaike information criterion, 9 

and log likelihood after linear regression of manually segmented infarct volumes. 10 

Results The mean age of included patients was 70,0±12.4 years, and 60.9% were male. The 11 

median time between the last known well and a DWI was 12.4 hours. JBS-01K segmented 12 

infarct volumes were more comparable to manually segmented volumes compared to RAPID 13 

DWI. JBS-01K had a lower root mean squared error (6.9 vs. 10.8) and log likelihood 14 

(p<0.001) compared to RAPID DWI. In addition, compared to RAPID DWI, JBS-01K more 15 

correctly classified patients according to the infarct volume threshold used in endovascular 16 

treatment trials (overall accuracy 98.1% vs. 94.0%; p = 0.002). In 35 patients who received 17 

DWI prior to endovascular treatment, JBS-01K infarct volume segmentation was more 18 

closely related to manual infarct volume segmentation. 19 

Conclusion We demonstrated that a deep learning method segmented infarct on DWI more 20 

accurately than one based on the apparent diffusion coefficient threshold.  21 
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Introduction 1 

Diffusion weighted image (DWI) is a crucial magnetic resonance imaging (MRI) for the 2 

ischemic stroke diagnosis due to its high sensitivity to the acute lesion.1 Stroke infarct 3 

volume on DWI predicts patient outcome and has utility for clinical trial outcomes.2-5  4 

Although CT perfusion or CT angiography-based decisions may shorten door-to-puncture 5 

time, MRI-based decisions can provide a plethora of information, such as infarct core 6 

evaluation, hemorrhagic transformation, and the existence of an old infarct.6 In addition, the 7 

development of a fast multimodal MRI protocol7 and image resolution upscaling technique8 8 

may gradually permit the use of MRI-based selection for endovascular treatment.  9 

In practical practice, DWI can be assessed rapidly and easily. Yet, due to artifacts, it should 10 

be compared with ADC.9 Accurate infarct volume measurement requires manual 11 

segmentation of stroke boundaries in DWI which is time-consuming and prone to variability. 12 

Currently available automatic quantification tools operate in a semi-automated manner10, 11 or 13 

only show a glimpse for large vessel occlusion detection in acute settings.12 A study 14 

comparing established software applications in terms of apparent diffusion coefficient (ADC) 15 

lesion volume revealed that volume segmentation in different software products may lead to 16 

significantly different results in the individual patient,13 which raises concerns regarding the 17 

use of software estimating infarct core using ADC for endovascular treatment candidates. 18 

Accrued literature has shown promising results of deep learning algorithm in segmentation of 19 

infarct volume on DWI.14, 15 A recent study demonstrated that deep learning algorithm 20 

outperformed RAPID (Rapid Processing of Perfusion and Diffusion, iSchema View Inc.) in 21 

infarct segmentation on DWI.15 However, no study has evaluated their performance in a daily 22 

clinical practice. In the study, we compared two commercial DWI infarct segmentation 23 

programs (JBS-01K and RAPID DWI) in a comprehensive stroke center.  24 

 25 

 26 

Method 27 

Study subjects 28 
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This study was a retrospective analysis of a prospective, web-based stroke registry that was a 1 

component of the Clinical Research Collaboration for Stroke in Korea registry. From August 2 

2020 to April 2021, we screened all ischemic stroke patients hospitalized within 7 days to a 3 

stroke center (N = 673). Among them, we excluded 249 patients who did not perform DWI (n 4 

= 5) or their infarct volume was not measured by RAPID DWI (n = 244). Further we 5 

excluded 10 patients whose DWI acquisition time occurred before their documented stroke 6 

onset. 7 

 8 

Ethics Statements 9 

The institutional review boards of Chonnam National University Hospital authorized the 10 

collection of clinical information and imaging data in the Clinical Research Collaboration for 11 

Stroke in Korea registry with the objective of enhancing the quality of stroke care. The 12 

requirement for written informed consent from study participants was waived due to the 13 

anonymity of the individuals and the minimal risk to them.  14 

 15 

Data and Image Collection 16 

Baseline data, including NIHSS scores, were collected from all patients, and the stroke 17 

subtypes were stratified according to the TOAST criteria after complete diagnostic 18 

profiling.16 Cranial DICOM images were collected and segmented by two experience 19 

vascular neurologists (JTK and WSR) and large vessel occlusion (LVO) was determined 20 

using MR angiography. We defined LVO as the occlusion of internal carotid artery or middle 21 

cerebral artery (M1 or M2). The location of an infarct was classified as supratentorial if 22 

ischemic lesions were present in the cerebral hemispheres and as infratentorial if the lesions 23 

were located in the brainstem and cerebellum. Using tertile, the infarct size was classified as 24 

small (0 - 0.87 mL), medium (0.88 - 6.13 mL), and large (6.14 - 393.4 mL). 25 

 26 

Infarct Segmentation Programs 27 

Two commercially available programs were used to process the DWI. RAPID DWI is an 28 

automatic infarct segmentation program based on threshold ADC value. JBS-01K (JLK Inc.) 29 
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is an automatic ischemic lesion software using 3D U-net deep learning algorithm.15 See the 1 

supplementary material for more details. Briefly, RAPID uses the ADC threshold (620 2 

×�10−6 mm2/s) to estimate infarcted area. The JBS-01K employs deep learning algorithm 3 

trained with approximately 8,000 DWIs in which infarct areas were manually segmented by 4 

experts.   5 

 6 

Statistical Analysis 7 

Comparing baseline characteristics between included and excluded subjects using the t test, 8 

rank-sum test, or chi-squares test, as appropriate. We examined the relationship between 9 

estimated infarct volumes and manually segmented infarct volumes using Pearson's 10 

correlation analysis. We used Dice similarity coefficient to evaluate the inter-rater agreement 11 

of lesion segmentation in 20 cases randomly selected. Dice similarity coefficient was 12 

calculated as follows.  13 
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 To assess the segmentation performance of JBS-01K, the dice similarity coefficient between 14 

JBS-01K and manually segmented infarct areas was determined. We used the Bland-Altman 15 

plot of automatically segmented infarct volumes by software vs manually segmented infarct 16 

volumes. In the Bland-Altman plot the percent difference was calculated as follows.  17 
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In addition, we assessed and compared R-squared, root mean squared error, Akaike 18 

information criteria, and log likelihood following linear regression analysis of automatically 19 

and manually segmented infarct volumes. We reanalyzed infarct volumes after stratification 20 

according to large vessel occlusion, infarct volume, infarct location, and time from LKW to 21 

imaging. To evaluate the accuracy of patient classification according to endovascular 22 

treatment clinical trial criteria, we categorized patients using time from LKW to image and 23 

manually segmented infarct volume and compared the frequency of correct classification 24 

between RAPID and JBS-01K using the chi-square test. In addition, for participants who 25 

received DWI prior to endovascular therapy (n = 35), we compared estimated infarct volumes 26 
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by RAPID and JBS-01K to manually segmented infarct volumes using the Bland-Altman plot 1 

and parameters derived from a linear regression analysis. A two-sided p value of less than 2 

0.05 was considered statistically significant. 3 

 4 

 5 

Results 6 

Baseline Characteristics 7 

Among 673 patients admitted from August 2020 to April 2021, 414 patients were included 8 

for the analysis (Supplementary Figure 1). Among included patients, mean age was 70.1±12.4 9 

years and 60.9% were men. The included patients were older, had more severe strokes, and 10 

had atrial fibrillation and cardioembolic strokes more frequently compared with excluded 11 

patients (Table 1). In addition, included patients underwent DWI earlier than excluded 12 

patients (median 12.4 hours vs. 17.7 hours; p < 0.001). Inter-rater dice similarity coefficient 13 

was 0.68 ± 0.16 and mean volume difference was 2.82 ± 4.36.  14 

 15 

Infarct segmentation performance by deep learning algorithm versus RAPID 16 

Both RAPID DWI and JBS-01K calculating infarct volume were significantly associated 17 

with manual segmentation infarct volume using Pearson's correlation analysis (both rho = 18 

0.98). Dice similarity coefficient between JBS-01K and manual segmentation was 0.74. Dice 19 

similarity coefficient tended to increase as infarct volume increases (Supplementary Figure 2). 20 

The segmented infarct volume dot plot revealed that volumes segmented by JBS-01K were 21 

more closely related to volumes segmented manually compared with RAPID DWI (Figure 1). 22 

RAPID DWI tended to underestimate the true infarct volume in infarct volumes less than 10 23 

mL when compared to JBS-01K. (the inlet in Figure 1). In addition, RAPID DWI and JBS-24 

01K were unable to detect and segment infarct in 254 (61.6%) and 8 (1.9%; p < 0.001) of 412 25 

patients with apparent infarct on DWI, respectively. The Bland-Altman plot also indicated 26 

that JBS-01K assessed infarct volume more accurately than RAPID DWI, regardless of 27 

infarct volume. In all patients, the mean percent difference between JBS-01K and the ground 28 

truth was 20.3% (95% confidence interval [CI], -77.4 to 118.1%), while the mean percent 29 
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difference between RAPID DWI and the ground truth was 110.5% (95% CI, -113.6 to 1 

334.6%). 2 

 3 

Infarct segmentation performance by deep learning algorithm versus RAPID stratified 4 

by large vessel occlusion, infarct volume, time from last known well to imaging, and 5 

infarct location 6 

In all patients, JBS-01K demonstrated a lower root mean squared error (Table 2; 10.76 versus 7 

6.90) and log likelihood (p < 0.001) than RAPID DWI. After stratification by large vessel 8 

occlusion, JBS-01K predicted infarct volume more accurately than RAPID DWI in both 9 

groups with and without large artery occlusion. In the group with small infarcts (< 0.87 mL), 10 

RAPID DWI was unable of estimating infarct volume. In both the medium (0.89 – 6.13 mL) 11 

and large (6.21 – 393.4 mL) infarct groups, JSB-01K produced lower root mean squared error 12 

and log likelihood than RAPID DWI. In supratentorial or mixed and infratentorial infarcts, 13 

JSB-01K predicted infarct volume compared to manually segmented infarct volume 14 

demonstrated lower root mean square errors and log likelihood than RAPID DWI. In the < 6 15 

hours group, infarct volume segmented by JBS-01K tended to underestimate infarct volume, 16 

whereas RAPID DWI overestimated or was unable to identify infarct (Figure 2A). In patients 17 

undergoing DWI between 6 – 24 hours from LKW, infarct volume segmented by JBS-01K 18 

differs markedly less from manual segmentation than RAPID DWI (Figure 2B). In the > 24 19 

hours group, JBS-01K segmenting infarct volume was much more correlated to manual 20 

segmenting infarct volume than RAPID DWI. 21 

 22 

Infarct estimation with respect to endovascular treatment decision 23 

Accuracy of patient classification in the context of DEFUSE-3 (Endovascular Therapy 24 

Following Imaging Evaluation for Ischemic Stroke), DAWN (DWI or CTP Assessment With 25 

Clinical Mismatch in the Triage of Wake-Up and Late Presenting Strokes Undergoing 26 

Neurointervention With Trevo), or EXTEND-IA (Extending the Time for Thrombolysis in 27 

Emergency Neurological Deficits With Intra-Arterial Therapy) was elaborated in 28 

supplementary table 1. Overall classification accuracy of JBS-01K was superior to RAPID 29 
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DWI (p = 0.002 by chi-square). When applying DWAN threshold, the classification accuracy 1 

of JBS-01K was higher than RAPID (p = 0.007 by chi-square).  2 

 3 

Infarct segmentation performance by deep learning algorithm versus RAPID in patients 4 

undergoing endovascular treatment 5 

Among 35 patients who underwent DWI before endovascular treatment, RAPID DWI was 6 

unable to predict infarct volume in 7 (20%) patients; whereas JBS-01K was unable to 7 

estimated infarct volume in 2 (5.7%). RAPID DWI tended to overestimate infarct volume 8 

whereas JBS-01K underestimated infarct volume (Figure 3). However, JBS-01K segmenting 9 

infarct volume was more closely related to manual segmenting infarct volume. Moreover, in 10 

patients with smaller infarct volume (< 10 mL by manual segmentation), JBS-01K markedly 11 

outperformed RAPID DWI (the inlet in Figure 3A). Simple liner regression against manual 12 

segmenting infarct volume also showed that JBS-01K had smaller rood mean squared error 13 

and log likelihood (p < 0.001) compared with RAPID DWI (Supplementary Table 2). The 14 

Bland-Altman plot revealed that the mean percent difference was lower in RAPID than in 15 

JBS-01K; however, the 95% CI was wider in RAPID than in JBS-01K, indicating estimation 16 

inconsistency. 17 

 18 

 19 

Discussion 20 

In acute ischemic stroke patients, we demonstrated that automated ischemic lesion 21 

segmentation on DWI by a deep learning algorithm (JBS-01K) outperformed RAPID DWI. 22 

After stratification by LKW to imaging, infarct volume, and infarct location, the deep 23 

learning method segmented infarct volume consistently better than RAPID DWI. In addition, 24 

in patients who received endovascular treatment, the deep learning algorithm segmented the 25 

infarct area more effectively than RAPID DWI. These results indicate that segmentation of 26 

lesions on DWI using a deep learning algorithm can be applied effectively in clinical practice. 27 

In the present study, JBS-01K estimated infarct volume on DWI more accurately than RAPID 28 

DWI (Supplementary Fig 3). Notably, RAPID DWI underestimated or even failed to detect 29 
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small ischemic lesion when compared to JBS-01K. In line with a recent study, it is possible 1 

that the deep learning model outperforms simple ADC thresholding by identifying ischemic 2 

lesion with subtle ADC decrease.17 Varying stroke pathophysiological mechanisms and stroke 3 

work flow, such as stroke subtypes, time from LKW to imaging, and age, due to different 4 

study populations across studies utilizing RAPID and ours could also account for the results. 5 

Clinical trials on endovascular treatment for patients with large vessel occlusion have 6 

extended the intervention window for stroke,4, 5 increasing more patients eligible. Like a 7 

history of intravenous thrombolysis,18 current efforts have focused to expand the candidate 8 

pool for endovascular treatment to include distal or M2 middle cerebral artery occlusion19, 20 9 

and basilar artery occlusion.21 As the effort continues, more precise infarct segmentation 10 

solutions that can segment both small and posterior circulation infarcts will be required. In 11 

the current study, the deep learning solution outperformed RAPID DWI in small infarct core 12 

and infratentorial stroke, indicating that, at least for MRI-guided revascularization decisions, 13 

the deep learning solution is superior to the ADC threshold-based solution.  14 

In clinical trials and the real world, computed tomography (CT) perfusion or angiography is 15 

the mainstay due to its faster scan time.4, 5, 22, 23 It has been hypothesized that CT-based 16 

decision making improves clinical outcome compared to MRI-based decision making since 17 

the time between stroke onset and reperfusion is the most crucial factor in determining stroke 18 

patients' outcomes.24 Nonetheless, accumulating evidence from real-world data has 19 

demonstrated that decisions based on MRI are not inferior to those based on CT,22, 23, 25 20 

despite not having been demonstrated in randomized clinical trials. In addition, precise infarct 21 

segmentation without inter- or intra-rater variability enables investigations on serial DWIs, 22 

infarct progression prediction, and infarct–functional anatomy connection. Hence, we 23 

anticipated that a precise infarct segmentation method based on deep learning may be 24 

employed in the future to further our understanding of stroke pathophysiology utilizing DWI. 25 

Infarct volumes on DWI correlate with functional outcome26 and early neurological 26 

deterioration.27 In addition, recent research has demonstrated that the pattern of infarct on 27 

DWI is predictive of recurrent stroke.28, 29 To validate and expand our understanding of DWI, 28 

a large dataset with precise infarct segmentation is required. Nevertheless, manual or semi-29 

automated lesion segmentation is time-consuming and expensive. The technique for 30 
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automated infarct segmentation demonstrated in this study may fulfill unmet needs in clinical 1 

and research fields of stroke. 2 

Our study has a few of limitations. Patients were obtained from a single comprehensive 3 

stroke center, so it is possible that they do not accurately represent patients with suspected 4 

stroke admitted to smaller community hospitals. In the study population, a short time interval 5 

between LKW and imaging may underestimate the performance of RAPID DWI that 6 

utilized the apparent diffusion coefficient threshold. In addition, because the included patients 7 

had more severe strokes and a shorter time between LWK and imaging acquisition, the results 8 

should be interpreted with caution in the broader population of stroke patients. 9 

In a real-world stroke cohort from a single comprehensive center, we proved that a deep 10 

learning method segmented infarct on DWI more accurately than one based on the apparent 11 

diffusion coefficient threshold. In the rapidly evolving clinical and research fields of stroke, 12 

infarct segmentation using deep learning could be a useful tool for rescuing more patients 13 

with recanalization therapy and advancing our understanding of stroke imaging.14 
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Table 1. Baseline characteristics comparison between included and excluded patients 

 Included  

(n = 414) 

Excluded 

(n = 259) 

P value 

Age, years 70.1±12.4 68.1±12.4 0.04 

Sex, men 252 (60.9%) 158 (61.0%) 0.97 

Admission NIHSS scores, median (IQR) 3 (1 – 7) 1 (0 – 4) <0.001a 

Previous stroke 70 (16.9%) 53 (20.5%) 0.25 

Hypertension 236 (57.0%) 153 (59.1%) 0.60 

Diabetes 136 (32.9%) 75 (29.0%) 0.29 

Hyperlipidemia 61 (14.7%) 41 (15.8%) 0.70 

Current smoking 101 (24.4%) 69 (26.6%) 0.51 

Coronary artery disease 52 (12.6%) 30 (11.6%) 0.71 

Atrial fibrillation 109 (26.3%) 45 (17.4%) 0.007 

Subtype   0.003 

  Lage artery atherosclerosis 125 (30.2%) 107 (41.3%)  

  Small vessel occlusion  57 (13.8%) 27 (10.4%)  

  Cardioembolism 89 (21.5%) 32 (12.4%)  

  Undetermined 138 (33.3%) 87 (33.6%)  

  Other-determined 5 (1.2%) 6 (2.3%)  

Time from LKW to admission, hours, median (IQR) 8.8 (3.0 – 20.5) 12.6 (3.4 – 44.8) 0.001a 

Time from LKW to image, hours, median (IQR) 12.4 (5.2 – 28.3) 17.7 (7.9 – 56.4)b <0.001a 

Intravenous thrombolysis 52 (12.6%) 22 (8.5%) 0.10 

Endovascular treatment 40 (9.7%) 20 (7.7%) 0.39 

Data were presented as mean±SD, median (interquartile range), or number (percentage).  

aRank-sum test was used.  

bData were missing in 15 patients.  

NIHSS=National Institute Health Stroke Scale; IQR=interquartile range; LKW=last known well
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Table 2. Comparison between JBS-01K and RAPID stratified by large vessel occlusion, infarct volume, and location using linear regression 

  R-squared Root mean squared error Akaike information criterion Log 

likelihood 

P valuea 

All patients  JBS-01K 0.97 6.90 2905.47 -1450.74 < 0.001 

 RAPID 0.97 10.76 3144.36 -1570.18  

Acute LVO       

    No (n = 374) JBS-01K 0.97 6.84 2668.66 -1332.33 < 0.001 

 RAPID 0.97 10.04 2848.26 -1422.13  

    Yes (n = 40) JBS-01K 0.94 7.32 299.86 -147.93 < 0.001 

 RAPID 0.88 15.00 348.65 -172.32  

Infarct volume       

    Small (n = 141, 0 – 0.87mL) JBS-01K 0.50 0.20 -45.82 24.91 NA 

 RAPIDb NA NA NA NA  

    Medium (n = 141, 0.89 – 6.13mL) JBS-01K 0.60 0.86 360.00 -178.00 < 0.001 

 RAPID 0.14 3.78 777.13 -386.56  

    Large (n = 142, 6.21 – 393.4mL) JBS-01K 0.96 11.91 1150.08 -573.04 < 0.001 

 RAPID 0.95 17.98 1225.58 -610.79  

Infarct location       

    Supratentorial or mixed (n = 346) JBS-01K 0.97 8.76 2485.54 -1240.77 < 0.001 

 RAPID 0.97 11.66 2683.57 -1339.79  

    Infratentorial (n = 78) JBS-01K 0.99 1.92 325.44 -160.72 < 0.001 

 RAPID 0.98 3.98 438.84 -217.4  

aP value for likelihood difference 
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bUnable to do regression analysis on patients with a small infarct volume since RAPID evaluated the infarct volume to be 0. 

NA=not available 
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