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Abstract   

Association of DNA hypomethylating agents (DHA) with immune-checkpoint inhibitors (ICI) is a promising 

strategy to improve efficacy of ICI-based therapy. Here we report the five-year clinical outcome and an 

integrated multi-omics analysis of pre- and on-treatment lesions from advanced melanoma patients enrolled 

in the phase Ib NIBIT-M4 study, a dose-escalation trial of the DHA agent guadecitabine combined with 

ipilimumab. With a minimum follow-up of 45 months the median OS was 25.6 months; the 5-year OS rate 

was 28.9% and the median DoR was 20.6 months. Specific genomic features and extent of T and B 

cellmediated immunity discriminated lesions of responding compared to non-responding patients. 

Enrichment for proliferation and EMT-related gene programs, and immune escape mechanisms 

characterized lesions from non-responding patients. Integration of a genetic immunoediting index (GIE) with 

an adaptive immunity signature (ICR) stratified patients/lesions into four distinct subsets and discriminated 

5-year OS and PFS. These results suggest that coupling of immunoediting with activation of adaptive 

immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in 

advanced melanoma patients.       
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Introduction  

Treatment with immune checkpoint inhibitors (ICI) has dramatically improved the clinical outcome of patients 

with tumors of different histotypes1, including melanoma2 and lung cancer3. However, the percentage of 

subjects who benefit from ICI therapy is still low, and novel therapeutic strategies are eagerly awaited to 

fully exploit their clinical potential. Indeed, even in the most responsive tumor types, both intrinsic4 and 

acquired resistance5,6 limit the efficacy of ICI therapy, and the development of more effective ICI-based 

treatments is hindered by incomplete knowledge of the genetic mechanism governing host–tumor 

interaction7,8. Nevertheless, the cellular and molecular characterization of human tumor samples by 

highthroughput and deep phenotyping approaches define the role of the immune microenvironment in 

driving the prognosis of cancer patients and their responsiveness to ICI therapies9,10.    

In this scenario, an active area of biomedical research aims to identify combinatorial approaches that could 

improve even the early phases of developing the anti-tumor response. Mechanistically, these new 

immunotherapy regimens aim at achieving one or more of three main effects thought to be crucial for 

overcoming resistance to immune intervention: fostering the cross-talk between innate and adaptive arms 

of the immune system, promoting the recruitment of functional T cells at the tumor site, and counteracting 
recruitment/function of immunosuppressive cells11.   

Among novel agents that may play a role in ICI combinations are the demethylating agents (DHA) due to 

their immunomodulatory activity on tumor cells12, the ability to activate innate immunity pathways13,14 and 

the pre-clinical evidence for enhanced anti-tumor effects when combined with ICI15. In this scenario, our 

Italian Network for Tumor Biotherapy (NIBIT) Foundation Phase Ib NIBIT-M4 trial based on the association 

of ipilimumab with the DNA hypomethylating agent (DHA) guadecitabine in advanced melanoma patients13, 

showed significant tumor immunomodulatory effects and preliminary evidence of promising clinical activity. 

More recently, by comparing transcriptional programs elicited by different classes of epigenetic drugs in 

melanoma cells, we found that the main biological activity of guadecitabine is the promotion of gene 

expression and activation of master factors belonging to innate immunity pathways, including Type I-III IFN, 

NF-kB and TLR12. These results corroborated the notion that rescue of adaptive immunity by ICI may 

cooperate with the promotion of innate immunity by the DHA guadecitabine, thus potentially explaining the 

clinical activity of the combination. Two additional recent trials, combining guadecitabine with 

pembrolizumab in solid tumors16,17 have indeed confirmed the significant anti-tumor activity of this 

combination in terms of clinical benefit rate (31.4%) or of progression-free survival rate >24 weeks (37%). 

Crucially, in both studies, relevant immune effects were described regarding the upregulation of innate and 

adaptive immunity pathways in post-treatment samples.  
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Despite these initial promising clinical applications of the DHA guadecitabine combined with ICI, the further 

development of these combinatorial approaches opens the question of understanding the biology of 

response and resistance to this specific type of epigenetic immunomodulation. To this end, we developed 

an advanced integrative systems biology approach aiming at characterizing baseline and on-treatment 

tumor tissues from NIBIT-M4 patients. The results of this multi-omics profiling revealed that long-term clinical 

benefit might be predicted by a combinatorial index integrating transcriptional information on the 

development of adaptive immunity with an index of genetic immunoediting.    

Previous studies have shown that genetic evidence of neoantigen depletion is preferentially observed in 

lesions with high Immunoscore and that immunoedited tumor clones do not recur, while progressing clones 

tend to be immune privileged, despite the presence of tumor-infiltrating lymphocytes18. We quantify the 

amount of genetic immunoediting (GIE) as the ratio between observed and predicted tumor neoantigens. 

The presence of an adaptive immune response within tumors is accounted for by the Immunological 

Constant of Rejection (ICR) 19,20. This signature predicts survival and response to ICI in different tumors 

such as Breast21, Bladder, Stomach, Head and Neck20, Sarcoma22, and Melanoma9. The stratification 

induced by the ICR/GIE classification predicts response in our cohort and larger ICI studies. Our data can 

serve as a guide for improved patient stratification and selection strategies.   

  

    
Results  
Long-term outcomes in the NIBIT-M4 trial     

At data cut-off, July 1st 2022, with a minimum follow-up of 45 months, 6 (31%) of the 19 patients enrolled in 

the NIBIT-M4 study were alive. The median OS was 25.6 months (95% CI, 0.0-52.9), while the median PFS 

was 5.2 months (95% CI, 4.0-6.4); the 5-year OS rate was 28.9% with a 5-year PFS rate of 5.3%; median 

DoR was 20.6 months (95% CI, 12.4-28.8). Three patients were in CR and off study therapy, while 13/19 

(68%) had received subsequent line(s) of therapy; among those, 5 patients who had achieved a DCR had 

a median time to subsequent treatment of 18.9 months (range 10.3-39.0) (Figure 1).  

  

Genomics landscape: mutational profile differences in baseline and on-treatment lesions in R vs. NR 

patients.  

Longitudinal multi-omics profiling, including Whole Exome Sequencing (WES), RNA Sequencing (RNASeq), 

and Reduced-representation bisulfite sequencing (RRBS), were performed on tumor biopsies collected at 

baseline (week 0) and week 4 and week 12 on therapy from 14 patients (Supplementary Figure 1). 

Matched normal tissue collected at baseline was available for 8 patients. The exome sequencing profiling 
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of our cohort, performed using stringent filtering, showed a high consistency of the somatic calls/mutations 

during treatment (Figure 2, Supplementary Table 1). Although tumor mutational burden (TMB) was not  

significantly different in R vs NR patients (16.9 vs. 15.3, p-value 0.6), several significant differences were 

found at the single gene level. BRAF was slightly enriched in NR (p-value 0.02). In contrast, NRAS mutation 

was significantly more frequent in R vs. NR (50% vs. 0%, p-value 5.4e-5). ADAMDEC1, encoding a 

disintegrin metalloproteinase associated with dendritic cell function, was altered only in lesions from R 

patients. Mutations in genes belonging to the epithelial to mesenchymal transition (EMT) pathway were 

enriched in NR (p-value 0.01), in agreement with EMT being associated with a less favorable outcome in 

patients with cancer23. Three neuronal-related genes (PCLO, PLXNA4, and EPHA7), and the gene encoding 

the leptin receptor (LEPR), all reported as mutated in melanoma at a variable frequency (37%, 11%, 16% 

and 8% of samples in TCGA cohort, respectively), were altered more frequently in R compared to NR 

patients. The CDKN2A gene, frequently mutated in melanoma (35% of patients in TCGA cohort), was more 

frequently altered in NR patients. The DNMT1 gene, encoding one of the guadecitabine targets, was mutated 

in two NR patients, and one of the mutations was a truncating event suggesting loss of function of the 

DNMT1 gene product. Finally, the male germline-specific gene PLCZ1 was mutated only in lesions from R 

patients.  

   
Transcriptional landscape of baseline and on-treatment tumor lesions: distinct and evolving transcriptional 

programs distinguish R from NR patients.  

RNA-sequencing data from the NIBIT-M4 were used to carry out differential gene expression analysis 

between R and NR patients at different time points of treatment (Supplementary Table 2). This analysis 

showed a progressive enrichment from baseline to week 12 in Gene Ontology Biological Processes (GO:BP) 

categories related to immune processes in R compared to NR patients (Figure 3A and Supplementary 
Table 3).  

In contrast, in lesions from NR patients, a progressive increase from baseline to week 12 was found for GO 

terms related to adhesion, cell cycle, metabolism, and skin developmental processes. By testing  several 

state-of-the-art predictive signatures of response to ICI, we found that the MIRACLE (Mediators of Immune 

Response Against Cancer in soLid microEnvironments) score9 and ICR (Immunologic Constant of 

Rejection)24 signature reached statistical significance (p-value < 0.05, Figure 3B and Supplementary Table  
4), but not the IMPRES25 and TIDE26,27.  None of these four scores discriminated against R from NR patients 

when considering only baseline samples (Supplementary Figure 2A).   
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We analyzed the differential expression between R and NR patients in selected gene sets (Figure 4A).  In 

agreement with the GO analysis, lesions from R patients showed a progressive increase of expression, from 

baseline to week12, of genes encoding for molecules controlling T cell activation, inhibitory receptors and 

ligands, chemokines, HLA class II antigens and components of the immunoproteasome.  Several of the 

genes in the ICR signature20,24 showed a progressive expression increase in R patients during therapy, 

compared to NR patients.  

By contrast, lesions from NR patients showed significantly higher expression of cell cycle-, EMT- and skin 

development-related genes. Several of the EMT-related genes with higher expression in NR patients 

encoded for molecules controlling adhesion (ITGB3, VCAM1, collagens, and others), interaction with 

extracellular matrix (VEGFA, MMP14, WNT5A, LAMA1, and others), and melanoma de-differentiation 

(KRT9, KRT10, EGFR, and others). Lesions from NR patients also showed significantly higher expression, 

compared to R patients, in several key genes controlling cell proliferation including cyclin-dependent kinases 

1 and 4, cyclins B1 and B2, mitotic checkpoint serine/threonine kinase B, and other transcription factors 

controlling cell cycle such as E2F1 and E2F2.  

By a custom-designed NanoString assay we then explored differential expression in R vs NR lesions of 20 

published immune-related signatures (Figure 4B) providing information on B cell content and  

differentiation28,29, tertiary lymphoid structures (TLS) formation30,31, follicular T helper cells28,29, T-cell 

exhaustion (TEX) subsets32, tumor-associated endothelial cells33, ICB response34,35, and the recently 

identified guadecitabine-specific signature genes induced by this demethylating agent in melanoma cell 

lines12.  

The large majority of these signatures were selectively enriched, considering all time points, in tumor 

biopsies from R compared to NR patients. These results were consistent with preferential development in R 

lesions of a coordinated T- and B-cell mediated immune response involving TLS and TFH cells, with 

enhanced expression of IFN-ɣ-induced genes crucial for ICB response and with increased presence of CD8+ 

T cells at different stages of exhaustion. In agreement with this interpretation, unsupervised clustering of all 

lesions for the level of expression of these 20 signatures showed that all lesions belonging to the 

“20signature high profile” clustered together with the “High-ICR” profile (Supplementary Figure 2B).  

Interestingly, progressive increase in expression of guadecitabine-specific signature genes12 in R vs NR 

patients was observed by both the NanoString assay (Figure 4B) and by differential expression analysis at 

each time point based on RNA-seq data (Supplementary Figure 2C).  

The composition of the tumor microenvironment of our cohort was deconvolved from transcriptome profiling 

data using eight immune- and two stromal-cell signatures with MCPcounter36 (Figure 5A). We found a 
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significantly higher abundance in R vs NR patients of the following immune sub-populations: T cells (p-value 

0.01), CD8+ T cells (p-value 0.009), cytotoxic lymphocytes (p-value 0.005) and Natural Killer (NK) cells 

(pvalue 0.04). Interestingly, the specific immune subtypes that discriminated against R from NR lesions also 

showed a progressive increase over time of treatment in R subjects (Figure 5A).  

The estimated increased abundance of CD8+ T cells in R lesions was in agreement with available 

quantitative immunohistochemistry (IHC) data (R = 0.79, p-value 1e-07, N = 11) for this immune subset 

(Figure 5B) and with enhanced CD8+ intratumoral T cells in R lesions (p-value 0.002) (Figure 5C). We then 

used the clonality of V(D)J rearrangements within the TCR Beta locus (TRB) as a proxy for estimating T cell 

expansion during therapy. TRB clonality was significantly and highly correlated with the estimated 

abundances of CD8+ T cells (R = 0.838, p-value < 0.001) and NK (R = 0.713, p-value < 0.001) cells in R 

rather than NR patients (Figure 5D).   

Taken together, the gene expression landscape of NIBIT-M4 lesions indicated that distinct and evolving 

transcriptional profiles characterized baseline and on-treatment tumor biopsies from R compared to NR 

patients. Lesions from R patients showed progressive enrichment for signatures and gene sets revealing  

activation of adaptive immunity and effective immunomodulation by guadecitabine with  a preferential and 

clonal activation of T cell subpopulation and NK cell in the tumor microenvironment. Lesions from NR 

patients revealed lack/defective promotion of immunity in a tumor transcriptional background dominated by 

proliferation and EMT processes.  

  

Integrative analysis of methylation and transcriptomic profiles during treatment  

A rank aggregation analysis of gene expression and gene methylation in NIBIT-M4 tumor biopsies 

demonstrated the interdependent changes between gene body methylation levels and gene expression 

induced by guadecitabine. This analysis for epigenetically regulated pathways confirmed the remarkable 

promotion of T cell mediated and humoral immunity in lesions from R patients, but not in NR patients, during 

treatment and enrichment for cell cycle-related and development pathways in NR patients (Figure 6A). By 

exploiting further the expected inverse relationship between gene expression and promoter methylation, we 

then identified modules of hypomethylated, immune-related genes up-regulated during treatment in R vs NR 

patients (shown in the upper right quadrant in each plot of Figure 6B).  Interestingly the number of these 

genes increased during treatment, consistent with the expected mechanism of action of guadecitabine.  
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The ICR/GIE classification contributes to explain response, resistance through immune escape and long 

term clinical outcome  

TMB and estimated neoantigen loads were highly correlated (R=0.77, p-value 5e-09) in the lesions of the 

NIBIT-M4 trial, however none of these two parameters discriminated against R from NR patients.   

We then tested the hypothesis that a combined index, the genetic immunoediting (GIE) score37,38, could 

instead show an association with clinical response. GIE index integrates both TMB and neoantigen load 

information in a single measure of the extent of immunoediting.  

The GIE value was calculated as the ratio between the observed vs. expected number of neoantigens in 

each tumor sample (Supplementary Table 5) The expected number of neoantigens was estimated by 

training a linear model having TMB as the independent variable and neoantigen load as the outcome 

variable. Tumors with a number of neoantigens lower than expected (i.e., lower GIE values) are thought to 

display evidence of immunoediting, whereas a higher frequency of neoantigens than expected indicates a 

lack of immunoediting (Non-GIE).  

In agreement with our hypothesis, when taking into account all available lesions, R patients had a 

significantly lower GIE score than NR patients.  

However, the difference was not significant at the baseline, possibly due to the low number of cases 

(Supplementary Figure 3A). We then correlated the ICR signature score 19,20 with GIE index values, but 

no clear correlation was observed. We then stratified tumor lesions from patients enrolled in the NIBIT-M4 

study based on GIE score greater or lower than one and ICR score greater or lower than zero, yielding four 

groups: High-ICR/GIE, High-ICR/Non-GIE, Low-ICR/GIE, Low-ICR/Non-GIE (Figure 7A). The tumor 

samples belonging to R patients were highly enriched in the High-ICR/GIE group (61%, p-value 1.4e-04). 

The ICR/GIE classification was significant even when limiting the analysis on baseline lesions (67%, p-value 

2.1e-02) with four of the five lesions in the High-ICR/GIE group (Supplementary Figure 3B). To shed light 

on the mechanism that differentiates GIE in the presence of adaptive immunity captured by ICR, we then 

performed a supervised transcriptome analysis comparing the High-ICR/GIE vs. the High-ICR/Non-GIE 

groups (Figure 7B). This analysis showed that the group High-ICR/GIE was characterized by enhanced 

representation of several GO:BP categories related to immune response including antigen processing and 

differentiation. This suggested to us that the “High-ICR/Non-GIE” could be defective for expression of 

antigen processing and presentation genes in a way that could explain the lack of immunoediting. In 

agreement, lesions from the High-ICR/Non-GIE group showed loss of expression of HLA class I antigens 

on tumor cells despite the presence of CD8+ T cells infiltrating the tumor core (Figure 8 and Supplementary 

Figure 4A). Comprehensive assessment of all available lesions from 11 patients for the ICR, GIE, CD8+ and 
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HLA Class I scores (Supplementary Figure 5A) indicated that the overall profile for these four parameters 

was consistent with the observed clinical response in all but one patient (#11). Patient #11, had a low 

ICR/non GIE score, but was classified in the responder subset due to stable disease in target lesions. 

Eventually the patient underwent disease progression in target lesions and developed several new lesions 

(Supplementary Figure S5B). Collectively, these findings provided a mechanistic explanation for the 

genesis of the High-ICR/Non-GIE subset. In fact, lesions with defective expression of HLA class I molecules 

may retain evidence for development of adaptive immunity (High-ICR) and also for CD8+ T cell infiltration, 

but downmodulation of MHC class I molecules on tumor cells prevents recognition of HLA/neoantigen 

complexes by T cells, thus suppressing the possibility of immunoediting (therefore the lesions are identified 

as Non-GIE).   

We then asked whether the patients groups defined by the ICR/GIE classification also experienced different 

long term clinical outcomes. By stratifying patients according to the ICR/GIE classification of week 12 

biopsies we found a significant difference (p-value 0.035) in overall survival (OS) and in PFS between the 

High ICR/GIE and the High ICR/Non-GIE group (Figure 7C and Supplementary Figure 4B, left hand 

panel). Both OS and PFS were significantly discriminated by the ICR/GIE stratification even when taking 

into consideration all four subsets. In contrast, patients’ classification by response groups was not 

associated with OS, although it was associated with PFS (Figure 7C and Supplementary Figure 4B, right 

hand panel).  

To validate the ICR/GIE stratification, we assembled a cohort of 83 melanoma cases treated with ICI, either 

anti-CTLA4 or -PD1, from previous published studies4,39,40 for which TMB, neoantigen load and gene 

expression were available. This analysis confirmed the stratification of patients into 4 subsets as seen in the 

NIBIT-M4 cohort (Figure 9A). Significant survival differences between lesions characterized as 

HighICR/GIE vs. those coded as High-ICR/non-GIE were observed even in this validation cohort (Figure 
9B). Interestingly, differential GO:BP pathway analysis in the High-ICR/GIE vs High-ICR/non-GIE subsets 

identified the GO:BP category “antigen processing and differentiation” as selectively enriched in the 

HighICR/GIE subsets as we found in the NIBIT-M4 cohort (Figure 9C). These results suggest that the same 

mechanism uncovered in the NIBIT-M4 cohort could explain the High ICR/Non-GIE subset even in the 

validation cohort: a defective antigen processing and presentation pathway may contribute to suppress 

immunoediting even when lesions have a high ICR profile, and this may be a general phenomenon 

irrespective of the type of immunotherapy that is being used.  

Collectively, these results suggest that effective coupling of tumor immunoediting with activation of adaptive 

immunity can promote response and improved clinical outcome in the NIBIT-M4 epigenetic 

immunomodulation trial. In contrast, defective development of adaptive immunity or lack of immunoediting, 
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associated with immune escape mechanisms, may favor resistance and less favorable long term clinical 

outcome.  
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Discussion  
The NIBIT-M4 trial has been the first Phase Ib epigenetic immunomodulation study testing the association 

of the DHA guadecitabine with ICI in solid malignancies. Treatment of metastatic melanoma patients with 

guadecitabine combined with ipilimumab was found to be safe, feasible and tolerable, with initial signs of 

clinical and immunologic activity13. The 5-year survival rate, duration of response, and time to subsequent 

treatment in patients who achieved a disease control we report here are intriguing and clinically meaningful. 

These findings compare favorably with the efficacy of CTLA-4 monotherapy in metastatic melanoma 

patients41, though with the limitations of interstudy comparisons that need to be interpreted with caution and 

to be placed in context. Nevertheless, the long-term follow-up of the NIBIT-M4 trial, seems to support the 

clinical potential of guadecitabine combined with CTLA-4 therapy, though the relative contribution of each 

agent and the potential of guadecitabine maintenance therapy in the clinical results we observed could not 

be fully dissected in this trial. In this scenario, our ongoing randomized phase II NIBIT-ML1 study 

(NCT04250246) in PD-1 resistant melanoma patients will help to address the clinical and immunobiologic 

contribution of the addition of the DHA ASTX727 to ICI therapy. However, further support the notion that 

guadecitabine is a promising way forward to improve the efficacy of ICI therapy in solid tumors derives from 

two most recently published trials in platinum-resistant ovarian cancer16, and in different tumor types17. 

Indeed, the combination of guadecitabine with the anti-PD-1 pembrolizumab led to encouraging response 

rates, immunomodulation in the tumor tissue and/or in periphery, evidence of demethylation in on-treatment 

lesions, with manageable toxicity16-17.   

Our aim here was to exploit the complete longitudinal multi-omics profiling of the whole NIBIT-M4 cohort in 

conjunction with the five years follow-up to shed light on the effect of the combination during treatment and 

to identify early biomarkers of response. To this end, we have first individually interrogated the available 

omics platforms taking advantage of the accurate longitudinal sampling. Then we developed innovative 

computational multi-omics integration approaches to evaluate the effect of the adopted demethylation agent 

on boosting the adaptive and innate immune-mediated cancer rejection. The five-year follow-up showed that 

our multi-omics classification is a better prognostic factor than BOR. Therefore, the analysis reported here 

can serve as a guide for improved patient stratification and selection strategies in combination therapies 

involving ICI and immuno-modulatory agents, including DHA.  

Longitudinal Whole Exome Sequencing42 and transcriptomic analysis contributed to shed light on molecular 

factors impacting on clinical response and on long term outcome after guadecitabine plus ipilimumab. At the 

mutational profile level, strong consistency across biopsies obtained at three time points in a 12-week time 

frame allowed us to identify significant associations of somatic mutations with response/resistance even with 

the small number of patients enrolled in the NIBIT-M4 trial.   
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Mutations in genes belonging to the Epithelial to Mesenchymal Transition (EMT) were enriched in NR 

patients. EMT is associated with a less favorable outcome in patients with cancer 23; it stimulates 

angiogenesis and is a tumor-intrinsic mechanism enhancing immunosuppression43,44. Recent studies 

reporting the genomics and transcriptomics features associated with ICI in melanoma have shown higher 

expression of several EMT genes in non-responder subjects45. Our analysis indicates that genomic 

alterations can drive these differences. We also observed that two NR patients harbored mutations in the 

gene DNMT1, which is the direct target of guadecitabine. One such mutation is a truncating event giving 

rise to the hypothesis that the loss of function of DNMT1 hampers the immuno-modulatory effect of 

guadecitabine. Another defect in chromatin organization, gene SETD2, was observed in the NR group of 

treated patients. These two novel findings represent a first selection strategy to increase the success of 

similar studies16,17.  

Interrogating the longitudinal gene expression data was also useful in evaluating how the immune context 

evolves during therapy. The differential activity of these pathways tends to increase during therapy, 

suggesting that immune surveillance promoted by ICI represses cell cycle genes together with differentiation 

pathways. One of the most interesting messages of our data is that the most evident difference between 

patients is the dynamic increase of the level of NK-cells and CD8 T-cells in patients that respond to therapy, 

rather than the tumor microenvironment composition at the baseline. When transcription-based signatures 

for response to ICI prediction such as TIDE27, IMPRES25, ICR20, and MIRACLE9 were interrogated, the only 

scores that significantly differentiated R and NR patients were ICR and MIRACLE signatures. However, this 

difference was not significant when just the baseline lesions were used. This suggests that additional factors 

contribute to clinical response, beyond the process of development of adaptive immunity, captured by these 

signatures. We reasoned that an immune-based stratification approach taking into account: a) the evidence 

of expression of genes associated with immunological constant of rejection (ICR) and; b) the amount of 

immuno-editing measured as the ratio of observed versus expected neo-antigens (GIE) could improve our 

ability to understand response and resistance to treatment. The presence of an adaptive immune response 

within tumors is accounted by the ICR19,20, a signature  that  predicts survival and response to ICI therapy in 

different tumors such as breast21, bladder, stomach, head and neck20, sarcoma22 and melanoma9. The 

importance of immuno-editing, and its association with survival and resistance has been extensively 

demonstrated in human primary tumors38 and in immune selection pressure on metastatic evolution18. The 

GIE score is a measure of the extent of immunoediting occurring in a tumor and it is obtained through 

comparison of “predicted neoantigens” (i.e., genes encoding putative HLA-class I-binding neoantigenic 

peptides, identified through integrative analysis of WES data and of HLA genotype of the patient) with 

“observed neoantigens” (i.e. actual expression of genes encoding neoantigens as obtained through 
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transcriptomic data analysis). Patients whose tumors have a GIE score <1 indicate previous immunoediting 

(i.e., they have a number of expressed/observed neoantigens lower than the number of predicted 

neoantigens). The observation that the GIE score and the ICR were uncorrelated suggested that they are 

capturing complementary, yet distinct, attributes of anti-tumoral immunity. Therefore, their combination could 

be an effective means to achieve a more accurate quantification of effective cancer immune surveillance 

and of response to immunotherapy. Indeed, the ICR/GIE classification could stratify NIBIT-M4 patients into 

four subsets, and those with high ICR scores (>0) and a low (<1) GIE score showed the longest OS. In other 

words, the coupling of adaptive immunity with effective immunoediting is a relevant requisite for achieving 

long term clinical benefit from treatment. The prognostic significance of the ICR/GIE index was confirmed 

by the analysis of independent datasets from ICI-treated patients, suggesting that this is a robust classifier 

that captures crucial immunological processes acting in the context of different immunotherapy regimens. 

The activation of T cell-mediated immunity is dependent upon the recognition of tumor antigens on major 

histocompatibility complexes (MHC) of antigen-presenting cells46. Tumor antigen presentation by MHC class 

I is mediated by the coordinated expression of multiple genes. The differences between the High-ICR/GIE 

and High-ICR/Non-GIE, observed in our cohort and other independent cohorts, confirm that even in the 

presence of an adaptive immune response, tumor cells that develop defects in antigen processing or 

presentation can escape immune surveillance37,42.  

The low number of analyzed cases, even with longitudinal multi-omics profiling, represents a limitation in our 

study, though its results help to guide further development of DHA/ICI combinations in solid tumors. 

Furthermore, the application of the ICR/GIE to multiple contexts at a pan-cancer level is needed to further 

validate the clinical relevance of our approach and findings. Collectively, though limited by the still scarce 

number of completed trials and enrolled patients, the available clinical results suggest and support further 

development of combinatorial approaches of DHA with ICI in cancer therapy in randomized clinical trials 

with extensive translational endpoints.  
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Materials and Methods  
Study design, patient population, procedures, and outcomes  

We conducted a milestone, 5-year follow-up analysis of patients enrolled in the NIBIT-M4 study; the study 

design, patient eligibility criteria, and treatment regimen have already been described (REF 12?). Briefly, the 

phase Ib, dose-escalation, single-center NIBIT-M4 study, enrolled pre-treated or untreated patients with 

unresectable Stage III or IV melanoma, to receive guadecitabine 30, 45, or 60 mg/m2/day s.c. on days 1-5 

at week 0, 3, 6, 9, and ipilimumab 3 mg/kg i.v. on day 1 at week 1, 4, 7, 10, for 4 cycles. For this follow-up 

analysis, median OS, PFS, 5-year OS and PFS rate, and median DoR were assessed. Patients were 

classified as R or NR based on Disease Control. Tumor biopsies for correlative analyses were performed at 

baseline and at week 4 and week 12 on-treatment.  

  

Data collection, Library preparation, and sequencing   

Isolation of total DNA/RNA and library preparation for RNA Sequencing and Reduced Representation 

Bisulfite Sequencing (RRBS) were performed as previously described13 at different time points of treatments 

(week0, week4, week12) for N=14 patients, including eight additional patients not available in the previous 

study. For Whole exome sequencing (WES), Nextera Flex for Enrichment solution (Illumina, San Diego, CA) 

in combination with SureSelect Human All Exon V7 probes (Agilent, Santa Clara, CA) was used for library 

preparation and generated libraries were sequenced on NovaSeq 6000 (Illumina, San Diego, CA) in 150 

pair-end mode for biopsies of patients from 1 to 8; TruSeq Rapid Exome (Illumina, San Diego, CA, USA) 

was used for library preparation and generated libraries were sequenced on HiSeq 3000/4000 (Illumina, 

San Diego, CA) in 150 pair-end mode for biopsies of patients from 9 to 14.  

Data processing  

Whole Exome Sequencing  
Quality control of Whole exome sequencing (WES) was performed on raw data using fastQC (v. 0.11.8) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

Sequencing reads were aligned to Human reference genome (UCSC genome assembly GRCh37/hg19) 

using Burrows-Wheeler Aligner47, and then processed by GATK348 for discarding low mapping quality reads 

and performing indel realignment.  

Somatic single-nucleotide variants (SNVs) and indels calling were performed using Sentieon Genomic Tool 

v. 20191149. A virtual normal panel from 1000 Genomes Project50 was used to call SNVs and indels for 

tumor samples without a matched normal sample.  
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Putative false positive calls have been removed considering as filters: i) the variant-supporting read count 

greater than 2; ii) variant allele frequency greater than 0.05; iii) average variant position in variant-supporting 

reads (relative to read length) greater than 0.1 and lower than 0.9; iv) average distance to effective 3′ end 

of variant position in variant-supporting reads (relative to read length) greater than 0.2; v) fraction of 

variantsupporting reads from each strand greater than 0.01; vi) average mismatch quality difference (variant 

− reference) lower than 50; vii) average mapping quality difference (reference − variant) lower than 50. 

Annotation of SNVs and indels was performed using AnnoVar51 and SnpEff52. The functional effect of 

missense SNVs and in-frame indels was computed using Polyphen2 53, SIFT 54 and PROVEAN 55 algorithms 

and variants predicted as damaging at least two of them were classified as pathogenic mutations. Somatic 

copy number was estimated from WES reads by CNVkit56 and GISTIC57 was applied for identifying genomic 

regions recurrently amplified or deleted. The nonsynonymous tumor mutational burden (TMB) was 

computed as the number of non-synonymous somatic mutations (single nucleotide variants and small 

insertions/deletions) per megabase in coding regions.  

  

RNA Sequencing  

Fastq  quality  was  assessed  using  fastQC  (v.  0.11.8)  

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and low quality reads were discarded. 

Sequence reads were aligned to Human reference genome (UCSC genome assembly GRCh38/hg38) using 

STAR (v. 2.7.0b)58, and the expression was quantified at gene level using featureCounts (v. 1.6.3), a 

countbased estimation algorithm59. Downstream analysis was performed in the R statistical environment as 

described below. Raw data were normalized according to sample-specific GC- content differences as 

described in EDAseq R package (v. 2.22.0)60. Differential expression analysis was performed using EdgeR 

R package (v. 3.30.3)61. Genes sorted according to log2 fold-change (log2FC) were used for performing 

Gene Set Enrichment Analysis (GSEA) of Gene Ontology (GO) Biological Processes (BP)62, as implemented 

in the clusterProfiler R package (v. 3.3.6)63.  

RRB Sequencing  

Reduced Representation Bisulfite Sequencing (RRBS) raw reads were trimmed for adaptor sequences using 

trim galore (v. 0.6.5) (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and filtered for low-

quality sequences using fastQC (v. 0.11.8)  

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). High quality trimmed reads were mapped to 

the Human reference genome (UCSC genome assembly GRCh38/hg38) using Bismark (v. 0.22.3) 64 with 

default parameters. Methylation data as β values were retrieved from bismark coverage outputs using R 
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package RnBeads 2.0 (v. 2.6.0)65 with default parameters. Then, human GRCh38 annotated genes and 

promoters exhibiting differential DNA methylation between predefined groups of patient samples were 

identified using R package limma (v. 3.44.3)66.  

  

Prediction of immune response and tumor microenvironment deconvolution  

ICR scores were computed for each sample using a single sample GSEA (ssGSEA) based on the Mann– 

Whitney–Wilcoxon Gene Set Test (MWW-GST)67 and the ICR signature (IFNG, IRF1, STAT1,IL12B, TBX21, 

CD8A, CD8B, CXCL9, CXCL10, CCL5, GZMB, GNLY, PRF1, GZMH, GZMA, CD274/PD-L1, PDCD1, 

CTLA4, FOXP3, and IDO1)24.  

MIRACLE scores were computed using the MIRACLE R package as described in Turan et al. (2021)9. TIDE 

score was computed using TIDE command-line interface (https://github.com/jingxinfu/TIDEpy)26,27. IMPRES 

score was computed using calc_impres R function (https://github.com/Benjamin-Vincent-Lab/binfotron/)68.  

Estimation of immune and stromal subpopulation abundances was computed using MCP-counter36.  

  

TCR repertoire analysis from RNA Sequencing data  

The docker implementation of MiXCR software (v. 3.0.13)69 was used to retrieve the VDJ repertoire from  

RNA Sequencing data. For the T cell receptor Beta locus (TRB), the clonality was calculated as   

𝐶𝑙𝑜𝑛𝑎𝑙𝑖𝑡𝑦!"# = 1	 − $
%&'!(

𝐻(𝑥)	 		

where 𝐻(𝑥)	is the Entropy computed as standard Shannon entropy as follow: 

𝐻(𝑥) = 	−(
!

"#$

𝑃(𝑥")	𝑙𝑜𝑔%	𝑃(𝑥")	

For a productive (in-frame) sequence 𝑥) , 𝑃(𝑥)), is the ratio between the sequence count and total productive 

count and 𝑁 is the number of productive unique in-frame sequences. 

  

Integrative analysis of RNASeq and RRBS data  

Integration of gene expression and methylation data was performed as follows, according to the type of 

region level methylation data.  

1. Gene level methylation. For each matched RNAseq-RRBS profiling sample, gene expression and 

methylation ranks were aggregated using robust rank aggregation (RRA) method implemented in 

the R package RobustRankAggreg (v. 1.2)70. A Single sample GSEA (ssGSEA) was computed using 

the Mann–Whitney–Wilcoxon Gene Set Test (MWW-GST) as previously described in Frattini et al., 

2018 67, starting from the expression-methylation aggregated rank and a manually curated collection 
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of signatures downloaded from MSigDB 71 , including GO BP, REACTOME-, BIOCARTA- and 

HALLMARK-pathways. Molecular pathway changes that occurred at different treatment time points  

in R and NR groups and were simultaneously mediated by expression and methylation were 

summarized as heatmap using R package complexHeatmap (v. 2.11.1)72. For visualization 

purposes, the resulting heatmap was obtained using the scaled Normalized Enrichment Score (NES) 

averaged in each time-response subgroup of the top differentially enriched and most statistically 

significant (FDR <0.01) signatures in R vs. NR patient comparison.  

2. Promoter level methylation. R package SMITE (v. 1.16.0)73 was applied to identify functionally related 

genes with altered DNA methylation on promoters. Briefly, each differentially expressed gene (R vs. 

NR patients at each treatment time point week0, week4 and week12) previously computed using the 

EdgeR R package (v. 3.30.3)61 was associated with a promoter region [TSS − 1 kb, TSS + 500 bp] 

using UCSC GRCh38/hg38 refSeq transcripts coordinates. Each promoter was then associated with 

a set of overlapping regions from the differential methylation analysis previously computed on the 

same comparison using R package limma (v. 3.44.3)66. To identify genes whose expression is 

inversely correlated with promoter methylation, a score based on a weighted significance value (0.5 

for expression and 0.3 for promoter methylation) was computed. Hypomethylated/up-regulated and 

hypermethylated/down-regulated genes for each comparison were then visualized as scatterplot 

using R package ggplot2 (v. 3.3.6). These modules of expression/methylation concordat genes were 

functionally analyzed through a GO BP pathway enrichment analysis within the R package SMITE.  

Significant categories (p-value < 0.05) were visualized as barplot using R package ggplot2.  

  

HLA typing and neoantigen prediction  

HLA typing was performed from WES data using the docker implementation of Polysolver (v. 4)74. The 

neoantigen prediction tool pVACseq from pVACtools75 was run using the following predictors: MHCnuggetsI, 

NNalign, NetMHC, SMM, SMMPMBEC, and SMMalign.  

Mutant-specific binders, relevant to the restricted HLA-I allele, are referred to as neoantigens, as previously 

described76. To infer neoantigens with high confidence, we considered only the mutated epitopes with a 

median IC50 binding affinity across all prediction algorithms used < 500 nM, with a corresponding wildtype 

epitope with a median IC50 binding affinity > 500 nM.  

  

Genetic ImmunoEditing (GIE) score  

The Genetic ImmunoEditing (GIE) score was computed by taking the ratio between the number of observed 

(O) in a patient versus the number of expected (E) for that patient:  
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𝐺𝐼𝐸	 = 	
𝑂
𝐸
	

The observed number of neoantigens O was obtained from the output of pVACtools75, filtered according to 

the criteria described above.  

The expected number of neoantigens E was computed as a function of the number of nonsynonymous 

mutations by fitting a linear regression model using the lm function of R package stats (v. 4.0.2) trained with 

the data of our cohort, using the number of neoantigens as dependent variable. We assumed that samples 

that show a frequency of neoantigens lower than expected (i.e., lower GIE values) have evidence of 

immunoediting.   

Based on GIE and ICR scores, we classified samples as “High-ICR/GIE” (ICR > 0 and GIE < 1), 

“HighICR/Non-GIE” (ICR > 0 and GIE > 1), “Low-ICR/GIE” (ICR < 0 and GIE < 1), “Low-ICR/Non-GIE” (ICR 

< 0 and GIE > 1).  

  

Survival analysis  

Survival curves were estimated using the survival R package (v. 3.2-10) and plotted using the Kaplan-Meier 

method, implemented in the survminer (v. 0.4.9) R package. Log-rank tests were used to compare curves 

between groups using.  

  

IHC analysis  

Serial 3 µm formalin-fixed paraffin-embedded tissue sections were stained using an AutostainerPlus (Dako). 

Antigen retrieval and deparaffinization were carried out on a PT-Link (Dako) using the EnVision FLEX Target 

Retrieval Solutions (Dako). Endogenous peroxidase and non-specific staining were blocked with H202 3% 

(Gifrer, 10603051) and Protein Block (Dako, X0909) respectively. The antibodies used are: anti-CD8 clone 

C8/144B (M7103, Dako) and anti-HLA Class I, clone EMR8-5 (ab70328, abcam). The HRP labeled polymer 

conjugated EnVision+ Single Reagent (Dako, K4001) was used as a secondary antibody. Peroxidase activity 

was detected using 3-amino-9-ethylcarbazole substrate (Vector Laboratories, SK-4200). All stained slides 

were digitalized with a NanoZoomer scanner (Hamamatsu).   

  

NanoString  

Expression of genes belonging to several immune-related signatures was assessed by a custom-designed 

NanoString nCounter multiplex CodeSet enabling determination of 364 genes. The gene signatures were 

selected for providing information on B cell content and differentiation, TLS formation, follicular T helper 

cells, TEX subsets, tumor-associated endothelial cells, ICB response and guadecitabine-specific gene 

upregulation. For NanoString experiments, panel probes (capture and report) and 200 ng of RNA were 
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hybridized overnight at 65 °C for 16 h. Samples were scanned at maximum scan resolution capabilities (555 

FOV) using the nCounter Digital Analyzer. Quality control of samples, data normalization and data analysis 

were performed using nSolver software 4.0 (NanoString Technologies).  

  

ICR/GIE validation in independent cohorts  

Molecular and clinical data for three independent immunogenomic datasets of melanoma patients treated 

with ICI4,39,40 were obtained from cBioportal77. A total of 83 patients for which all required data were available 

(gene expression, mutation/neoantigen loads, treatment response and overall survival) were selected and 

grouped in responder (CR: complete response, PR: partial response, SD: stable disease, LB: long-term 

benefits) and non-responder (PD: progression disease, NB: minimal or no-benefits) according to the 

treatment outcome as described in the corresponding original studies. Integrated gene expression matrix 

was batch corrected using the removeBatchEffect function implemented in R package limma (v. 3.44.3)66. 

ICR and Genetic Immunoediting scores were computed as previously described. Differential expression 

analysis was performed between “High ICR/GIE” and “High ICR/Non-GIE” classes using a wilcoxon test. 

Genes sorted according to log2 fold-change (log2FC) were used for performing Gene Set Enrichment 

Analysis (GSEA) of Gene Ontology (GO) Biological Processes (BP)62, as implemented in the clusterProfiler 

R package (v. 3.3.6)63. Selected enriched GO:BP categories (FDR < 0.01) were visualized as a barplot.  

Survival analysis was performed as previously described.  

  

Data Availability  

The processed NanoString dare are available via the GEO accession number: GSE211645 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE211645; token mjghgimevhmpbkx]. Raw data of 

Whole Exome Sequencing, RNA-Sequencing and Reduced Representation Bisulfite Sequencing are 

available on the European Genome-phenome Archive under accession number EGAS00001006736.  
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Figures  

Figure 1. Swimmer plot analysis of NIBIT-M4 patients.   

  
Swimmer plot showing by study Cohort patients who at the time of data cut-off were alive and off study 

therapy without having received subsequent treatment (n=3), patient who died without receiving subsequent 

treatment (n=3), and all patients who had received subsequent treatment at the time of data cut-off, 

regardless of whether alive or dead (n=13). Subsequent treatments included: anti-PD1 as monotherapy or 

in combination, BRAFi+MEKi, ICOS agonist, chemotherapy.  
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Figure 2.  Genomics Landscape of the NIBIT-M4 trial   

  
Oncoplot of frequent somatic nonsynonymous and copy number alterations of NIBIT-M4 trial organized by 

response (columns) and pathways (rows). Tumor Mutation Burden (TMB), dose (30, 45 and 60 mg/m2/day) 

and time (week0, week4, week12) of treatments are indicated. Proportion of alterations in non-responder 

(NR) and responder (R) groups is visualized for each gene (p-value of Pearson's chi-squared test statistic, 

*: p <0.05, **: p < 0.01, ***: p < 0.001).  
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Figure 3. Transcriptional Landscape of the NIBIT-M4 trial (1)  

  
Supervised differential analysis between responders and non-responders before treatment (week0) and 

after four (week4) and twelve (week12) weeks. Enriched GO terms are visualized as dotplot, grouped in 

categories and divided between responders (top) and non-responders (bottom). Axes show the Normalized 

Enrichment Score (NES) and -log10 of p-value (-log10(p-value)) from GSEA, respectively. Dot size is 

proportional to the size of the leading-edge subset, i.e. the gene core that accounts for the gene set 

enrichment signal (A).  ICI response prediction scores between responder and non-responder samples 

(pvalue of Student's t-Test) (B).   
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Figure 4. Transcriptional Landscape of NIBIT-M4 trial (2).  

  
Heatmap of expression z-scores (from RNASeq profiling) computed for genes belonging to selected 

pathways between responder and non-responders grouped for treatment timepoints. Significance values on 

the left correspond to the difference at the baseline (week 0), whereas significance levels on the right of the 

heatmap correspond to all weeks together (p-value from edgeR differential expression analysis, ·: p <0.1, *: 

p <0.05, **: p < 0.01, ***: p < 0.001) (A). Heatmap of enrichment z-scores (from NANOSTRING gene 

expression assay) computed for selected pathways between responder and non-responders grouped for 

treatment timepoints. Significance values on the right correspond to the difference correspond to all weeks 

together (p-value from Student's t-Test, ·: p <0.1, *: p <0.05, **: p < 0.01) (B).   

$

%
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Figure 5. Immune Contexture.   

  
Deconvolution of immune cell fractions stratified by time point and response (x axis) (A). IHC validation (x 
axis) of the deconvolution of CD8 T-cell proportion estimated from RNAseq (y axis) (spearman correlation 
coefficients rho (R) and associated p-values are provided for responder and non-responder groups) (B). 
Density of CD8 T-cells by location from IHC (p-value of Student's t-Test between responder and 
nonresponder groups) (C). Scatterplot between the T-cell receptor clonality (B locus) and CD8 T-cell 
abundance (left) and NK cell abundance (right) (spearman correlation coefficients rho (R) and associated 
p-values are provided for R and NR groups) (D).    
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Figure 6. Epigenetic regulation of functional pathways.  

  
Normalized Enrichment Score (NES) of epigenetically regulated pathways differentiating responders and 

non-responders obtained by the integration of the gene expression and gene methylation ranks (A). 

Starburst plot of promoter hyper-methylated and down-regulated genes (lower-left quadrant), and promoter 

hypo-methylated and up-regulated genes (upper-right quadrant) between responders and non-responders 

at different weeks of treatment (left). Heatmap of enrichment scores as -log10(p-value) from GO:BP 

Overrepresentation analysis for hypo-methylated and up-regulated genes between responders and 

nonresponders at different weeks of treatment (right) (B).  
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Figure 7. Biomarkers of Immuno-Editing (1).   

  
Scatterplot of ICR score by Genetic Immunoediting (GIE) score for responder and non-responder samples 

(left) and their proportion (right) after classification as ICR/GIE classes in responder and non-responder 

groups (p-value from Pearson's chi-squared test statistic) (A). Barplot of most significantly (FDR < 0.01) 

enriched GO:BP categories from GSEA analysis of High ICR/GIE vs. High ICR/Non-GIE comparison (B). 

Kaplan Meier for OS by patients classified as High ICR/GIE or High ICR/Non-GIE at week12 (left) and 

responder or non-responder (right). Time is indicated in months and censor points are indicated by vertical 

lines (C)   
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Figure 8. Biomarkers of Immuno-Editing (2).  

  
Microphotographs of HLA class I and CD8 immunohistochemistry for representative patients in each  

ICR/GIE class (left) and ICR and GIE sample scores for each time points (right) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.23285227doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.09.23285227
http://creativecommons.org/licenses/by-nc-nd/4.0/


27  

 

Figure 9. Validation of the ICR/GIE score in three independent cohorts.   

  
Scatterplot of ICR score by Genetic Immunoediting (GIE) score for responder and non-responder samples 

(N=83) (left) and their proportion (right) after classification as ICR/GIE classes in responder and 

nonresponder groups (p-value from Pearson's chi-squared test statistic) (A). Kaplan Meier for OS by patients 

classified as High ICR/GIE or High ICR/Non-GIE. Time is indicated in months and censor points are 

indicated by vertical lines (B). Barplot of most significantly (FDR < 0.01) enriched GO:BP categories from 

GSEA analysis of High ICR/GIE vs. High ICR/Non-GIE comparison (C).   
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Supplementary Information  

Figures  
Figure S1. NIBIT-M4 cohort.  

Overview of sample profiling and clinical information for N=14 patients of NIBIT-M4 trial.   

Figure S2.   

ICI response prediction scores between responder and non-responder samples at baseline (p-value of 

Student's t-Test) (A). Heatmap of expression z-scores (from NANOSTRING gene expression assay) 

computed for selected pathways for all patient samples.  ICR classification in “High ICR” (ICR enrichment 

NES > 0) and “Low ICR” (ICR enrichment NES < 0) is reported (B). Volcano plot of differentially expressed 

genes between responders and non-responders at baseline (week0), four (week4) and twelve (week12) 

weeks after treatments. Guadecitabine target genes are labeled (C).   

Figure S3.   
Boxplot of GIE score at baseline (left) and all time points (right) between responder and non-responder 

samples (p-value of Student's t-Test) (A). Scatterplot of ICR score by for responder and non-responder 

samples at baseline (left) and their proportion (right) after classification as ICR/GIE classes in responder 

and non-responder groups (p-value from Pearson's chi-squared test statistic) (B).   

Figure S4.   
Barplot of frequencies of HLA-I score (calculated by multiplying the score for staining intensity with the 

percentage of positive cells from IHC staining and then grouped into negative (=0), low (< median) and high 

(>=median)) for samples classified as High ICR/GIE or High ICR/Non-GIE at week12 (p-value from 

Pearson's chi-squared test statistic) (A). Kaplan Meier for PFS by patients classified as High ICR/GIE or 

High ICR/Non-GIE at week12 (top-left) and responder or non-responder (top-right). Kaplan Meier for OS by 

patients classified according to ICR/GIE subtypes (bottom-left) and for PFS by patients classified as 

responder or non-responder (bottom-right). Time is indicated in months and censor points are indicated by 

vertical lines (B).    

Figure S5. Characterization of baseline (Week 0), Week 4 and Week 12 tumor biopsies for ICR and GIE 

scores, for CD8+ density in the tumor core and for level of expression of HLA Class I by    

immunohistochemistry (A). Localization and evolution of neoplastic lesions in patient #11 (B)
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Tables  
Table S1.  Somatic mutations of NIBIT-M4 cohort.  

Table S2. Differentially expressed genes between R vs. NR at baseline, week4 and week12 after treatment  
Table S3. Gene Set Enrichment analysis results from R vs. NR comparison at baseline, week4 and week12 

after treatment  

Table S4. Predictive scores of response to ICI for NIBIT-M4 samples  

Table S5. GIE scores for NIBIT-M4 samples  
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