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Abstract 19 

While cholesterol is essential for human life, a high level of cholesterol is closely linked with 20 

the risk of cardiovascular diseases. Genome-wide association studies (GWASs) have been 21 

successful to identify genetic variants associated with cholesterol, which have been conducted 22 

mostly in white European populations. Consequently, it remains mostly unknown how genetic 23 

effects on cholesterol vary across ancestries. Here, we estimate cross-ancestry genetic 24 

correlation to address questions on how genetic effects are shared across ancestries for 25 

cholesterol. We find significant genetic heterogeneity between ancestries for total- and LDL-26 

cholesterol. Furthermore, we show that single nucleotide polymorphisms (SNPs), which have 27 

concordant effects across ancestries for cholesterol, are more frequently found in the regulatory 28 

region, compared to the other genomic regions. Indeed, the positive genetic covariance between 29 

ancestries is mostly driven by the effects of the concordant SNPs, whereas the genetic 30 

heterogeneity is attributed to the discordant SNPs. We also show that the predictive ability of 31 

the concordant SNPs is significantly higher than the discordant SNPs in the cross-ancestry 32 

polygenic prediction. The list of concordant SNPs for cholesterol is available in GWAS 33 

Catalog (https://www.ebi.ac.uk/gwas/; details are in web resources section). These findings 34 

have relevance for the understanding of shared genetic architecture across ancestries, 35 

contributing to the development of clinical strategies for polygenic prediction of cholesterol in 36 

cross-ancestral settings 37 

 38 

Introduction 39 

Cholesterol is a type of lipid that is essential for human life, forming an essential structural 40 

component of the cell membrane1-3. While cholesterol is necessary for human body to function, 41 

too much cholesterol can harm the body. High cholesterol is linked with a high risk of 42 

cardiovascular diseases (CVDs), such as coronary heart disease, stroke, and peripheral vascular 43 

disease, which are the leading cause of death worldwide4, accounting for 32% of all deaths in 44 
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20195. Specifically, elevated low-density lipoprotein (LDL) and decreased high-density 45 

lipoprotein (HDL) cholesterols are associated with increased CVD risk6-9. These cholesterol 46 

traits are heritable and known to be polygenic6, 10, 11. Reported heritability estimates for total-, 47 

LDL- and HDL-cholesterols are typically in the range of 20 to 60%12.  48 

 49 

Over the last two decades, genome-wide association studies (GWASs) have successfully 50 

identified several genome-wide significant single nucleotide polymorphisms (SNPs) associated 51 

with cholesterol traits4, 13-15. While these findings have provided important insights into the 52 

genetics of cholesterol, most GWAS for cholesterol to date have been conducted in populations 53 

of white European ancestry16-18. Although the number of GWASs representing non-European 54 

populations are gradually increasing, they still remain greatly underrepresented in the efforts 55 

of gene discovery16, 19. Consequently, how genetic effects on cholesterol vary across ancestries 56 

remain mostly unknown20, 21. It is also not clear to what extent the associated genetic variants 57 

discovered in European populations are relevant for other ancestries (e.g., South Asian and 58 

African ancestries), and if the polygenic risk prediction of cholesterol can be applied across 59 

ancestries22-25.  60 

 61 

The genetic effects on most complex traits are likely to vary at least to some extent across 62 

different ancestry groups26, 27. Cross-ancestry genetic correlation analyses can dissect the 63 

shared genetic architecture between diverse ancestries, also allowing to leverage power from 64 

diverse sources of information28. While common causal variants for cholesterol are likely to be 65 

shared across ancestries, their per-allele effect sizes may depend on allele frequencies that can 66 

differ across ancestries due to different evolutionary force such as selection and genetic drift29. 67 

Moreover, each ancestry has a unique genetic background that may affect the magnitude and 68 

direction of per-allele effect sizes for complex traits such as cholesterol30. It has been reported 69 

that the relationship between allele frequency and per-allele effect size varies across different 70 

ancestries, which should be properly accounted for. otherwise, the estimation of cross-ancestry 71 

genetic correlation can be biased31, 32.    72 

 73 

Cross-ancestry genetic prediction can reduce the potential health disparity for non-European 74 

populations that are still underrepresented in public genomic databases including GWAS and 75 

polygenic risk scores (PRS)33. It is crucial to understand the source of genetic heterogeneity 76 

across ancestries in the genetic prediction. In general, it is not likely that SNP effects estimated 77 

from a single ancestry group are always applicable to other ancestries, which has a practical 78 
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relevance. For example, several studies have reported that the predictive ability of complex 79 

traits including cholesterol was poor for Africans, East-Asians, South-Asians and Latinos, 80 

when using SNP effects estimated in Europeans19, 34, 35.  To obtain more reliable cross-ancestry 81 

genetic prediction, it may be important to restrict to functionally homogenous genes or 82 

common causal variants across ancestries28, 36. We hypothesize that SNPs in strong linkage 83 

disequilibrium (LD) with the functionally homogenous genes have concordant effects, i.e., the 84 

same direction of SNP effects, across ancestries.   85 

 86 

In this study, we estimate cross-ancestry genetic correlation to address the question about how 87 

genetic effects are shared across ancestries for cholesterol traits, accounting for the relationship 88 

between allele frequency and per-allele effect size31. In the estimation of cross-ancestry genetic 89 

correlation, we also investigate the role of concordant SNPs that are derived from comparing 90 

SNP effects between two independent GWAS datasets of UK Biobank and Biobank Japan 91 

(BBJ). We evaluate the transferability of genetic prediction across different ancestry groups 92 

and suggest a list of SNPs that are suitable for the use in polygenic risk prediction in cross-93 

ancestry analyses.   94 

 95 

 96 

Results 97 

Overview of methods  98 

The total numbers of individuals and SNPs for each ancestry after stringent quality control (QC) 99 

(Methods) are shown in Supplementary Table 1. From the quality-controlled data of 288,837 100 

white British people, we randomly selected 30,000 individuals to be used in the analyses of 101 

cross-ancestry genetic correlations. The remaining 258,792 individuals were used as the 102 

discovery dataset in the cross-ancestry genetic risk prediction and in the classification of 103 

concordant SNPs (referred to as UKBB discovery). In the cross-ancestry genetic analysis of 104 

total-, HDL- and LDL-cholesterol, four ancestry groups were included, i.e. the 30,000 white 105 

British ancestry group, 26,457 other European, 6,199 south Asian and 6,179 African ancestry 106 

groups (Supplementary Table 1). We accounted for the relationship between per-allele effect 107 

size and allele frequency31, 37 by using trait-specific and ancestry-specific α that was explicitly 108 

estimated for each trait and each ancestry, using Akaike information criterion (AIC)31, 32. We 109 

used the common SNPs for each pair of ancestries to estimate the cross-ancestry genetic 110 

correlation, using the bivariate GREML approach38, accounting for the relationship between 111 

allele frequency and per-allele effect size31. We further investigated if the set of concordant 112 
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SNPs, which were derived by comparing UKBB and Biobank Japan discovery GWAS 113 

summary statistics for cholesterol, is enriched in the regulatory region, compared to the other 114 

genomic regions. The list of concordant SNPs for total-, HDL- and LDL-cholesterol are now 115 

available in GWAS catalogue. Cross-ancestry genetic covariance was partitioned, based on the 116 

sets of concordant and discordant SNPs, to see how the genetic heterogeneity is attributed to 117 

those SNP sets (see Supplementary Table 4). Finally, cross-ancestry polygenic prediction was 118 

performed based on the sets of concordant and discordant SNPs.  119 

 120 

Determining trait-specific and ancestry-specific scale factor (α) for each ancestry 121 

The scale factor (α) can account for the relationship between allele frequency and per-allele 122 

effect size, that is, per-allele effect sizes vary, proportional to [p (1 − p)] α, where p is the allele 123 

frequency32, 39, 40. It is also reported that the scale factor is not uniformly distributed across 124 

ancestries, and there may be an optimal α value for each specific ancestry group31. Following 125 

the previous approach31, 32, we investigated various α values ranging between -1 and 0.5 to 126 

determine the ancestry specific α value of each ancestry group for total-, LDL- and HDL-127 

cholesterol. To determine optimal α, we compared the Akaike Information Criteria (AIC) 128 

values across different heritability models with various α values for each trait and each ancestry 129 

(Figure 1). Detailed values of log-likelihood and AIC are provided in Supplementary Table 130 

6-9. As expected, optimal α values are not uniformly distributed across traits and across 131 

ancestries (Figure 1). These identified α values are subsequently used in the estimation of cross-132 

ancestry genetic correlations to dissect the shared genetic architecture and investigate genetic 133 

heterogeneity across ancestries for the cholesterol related traits.  134 
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 135 
Figure 1: Determining the optimal ancestry-specific scaling factors (α) for each trait. The 136 

α value reflects the relationship between allele frequency and per-allele effect size and can vary 137 

across ancestries and traits. ΔAIC values are plotted against scaling factors, α, for each ancestry 138 

group. The lowest AIC (i.e., ΔAIC=0) indicates the best model. The sample sizes are 30,000, 139 

26,457, 6,199, and 6,179 for white British, other European, South Asian, and African ancestry 140 

groups, respectively. TC: total-cholesterol, HDL: high-density lipoprotein cholesterol, LDL: 141 

low-density lipoprotein cholesterol. 142 

 143 

Heritability (h2) estimates across ancestries 144 

The estimated SNP-based heritabilities of total-, LDL- and HDL-cholesterol are presented in 145 

Figure 1. The estimates are significantly different particularly between European and African 146 

ancestries. For total-cholesterol, there is a significant difference in SNP-based heritability 147 

estimates between African vs. European (p-value=4.26e-03), and African vs white British (p-148 

value=1.14e-03). Similarly, the estimate of LDL-cholesterol is significantly lower in white 149 

British (p-value= 1.11e-03) and other European (p-value= 5.19e-03) than African ancestry, 150 

which agrees with the previous findings based on twin studies41. We also observed significant 151 
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heterogeneity of SNP-based heritability for the HDL-cholesterol between South Asian and 152 

other Europeans, between South Asian and white British.  153 

 154 

 155 

Figure 2: Estimated SNP-based heritability across ancestries for cholesterol traits. The 156 

main bars indicate SNP-based heritability estimates, and the error bars indicate 95% confidence 157 

intervals. TC= Total-cholesterol, HDL= high-density lipoprotein cholesterol, LDL= low-158 

density lipoprotein cholesterol.  159 

 160 

Estimated cross-ancestry genetic correlations  161 

The estimated cross-ancestry genetic correlations (𝑟𝑔) for cholesterol traits are presented in 162 

Figure 3. For total-cholesterol, we observed a genetic heterogeneity between South Asian vs. 163 

white British (𝑟𝑔= 0.399; SE= 0.143; p-value= 2.65e-05), South Asian vs. other European (𝑟𝑔= 164 

0.353; SE=0.133; p-value= 1.14e-06) and South Asian vs. African ancestry ( 𝑟𝑔 = 0.188; 165 

SE=0.197; p-value= 3.76e-05). There is also a genetic heterogeneity between African vs. white 166 

British (𝑟𝑔= 0.473; SE=0.127; p-value= 3.33e-05) and African vs. other European ancestry (𝑟𝑔= 167 

0.315; SE=0.122; p-value=1.96e-08). In contrast, white British and other European are 168 

genetically homogenous ( 𝑟𝑔 =0.954; SE=0.087; p-value= 5.96e-01) (Figure 3 and 169 

Supplementary Table 10). For LDL-cholesterol, results are similar to total-cholesterol. There 170 

is a significant genetic heterogeneity between South Asian vs. white British (𝑟𝑔 = 0.296; 171 

SE=0.155; p-value=5.57e-06), South Asian vs. other European (𝑟𝑔 = 0.177; SE=0.138; p-172 

value=2.46e-09), South Asian vs. African (𝑟𝑔 = 0.110; SE=0.190; p-value=2.81e-06), and 173 

African vs. other European ancestry (𝑟𝑔= 0.409; SE=0.147; p-value=2.81e-06) (Figure 3 and 174 

Supplementary Table 11). As expected, the cross-ancestry genetic correlation between other 175 

European and white British was close to 1 (𝑟𝑔= 1.084; SE=0.128; p-value=5.12e-01). We did 176 

not observe genetic heterogeneity among the pairs of ancestry groups for HDL-cholesterol 177 

(Figure 3 and Supplementary Table 12). 178 

 179 
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  180 

Figure 3: Estimated cross-ancestry genetic correlations. The main bars indicate estimated 181 

cross-ancestry genetic correlations, and the error bars indicate 95% confidence intervals of the 182 

estimates. WB = White British, OE = Other European, SAS = South Asian, AFR = African. 183 

 184 

Genomic partitioning of cross-ancestry genetic covariance using concordant and 185 

discordant SNPs between two diverse ancestries   186 

Some genes are functionally homogeneous across ancestries while the other genes may not be36, 187 

42, 43. It can be hypothesised that the functionally homogenous genes are enriched in the 188 

regulatory regions, and they contribute more to phenotypic variation within and between 189 

ancestries, compared to the other genes. We obtained a set of concordant SNPs (a proxy of 190 

functionally homogenous genes) for total-, HDL-, and LDL-cholesterols, by comparing the 191 

direction of SNP effects between two diverse ancestries, using the GWAS summary statistics 192 

of UK Biobank and Biobank Japan. For the UK Biobank GWAS, we used 258,792 white 193 

British individuals who are not overlapping with anyone in the 4 ancestry groups used in our 194 

study (white British, other European, South Asian, and African). For the Biobank Japan, we 195 

used GWAS summary statistics that are publicly available. In this concordance/discordance 196 

analysis, we considered the same HapMap3 SNPs used in the genetic correlation analyses 197 
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above. The numbers of concordant and discordant SNPs for each pair of ancestries are 198 

presented in Supplementary Table 4.  199 

 200 

First, we quantified if the concordance SNPs are more frequently found in the regulatory or 201 

genic region, compared to the other genomic regions for total-cholesterol. Figure 4 shows that 202 

the number of concordant SNPs in the regulatory region is significantly higher than the non-203 

regulatory region (OR= 1.09, p-value=2.2e-26 for p-value ≤ 1; OR= 1.21, p-value=9.2e-16 for 204 

p-value ≤ 0.05; OR= 1.18, p-value=1.6e-06 for p-value ≤ 0.01). When selecting SNPs with a 205 

genome-wide association (GWA) p-value > 0.05 or 0.01, the odds ratio increases (Figure 4). 206 

Similarly, the number of concordant SNPs in the genic region is significantly higher than the 207 

non-genic region (OR= 1.03, p-value=1.8e-16 for p-value ≤ 1; OR= 1.17, p-value=1.6e-32 for 208 

p-value ≤ 0.05; OR= 1.18, p-value=1.8e-06 for p-value ≤ 0.01) (Figure 4). Similar results were 209 

observed when using the HDL- and LDL-cholesterol traits (Supplementary Figure 1 and 2). 210 

 211 
Figure 4: A forest plot with odds ratios indicating that concordant SNPs are more 212 

frequently found in the regulatory or genic region. This analysis is for total-cholesterol 213 

phenotypes. Error bar represents 95% confidence intervals. The p-value of odds ratio indicates 214 

that the odds ratio is significantly different from 1. For regulatory or genic region, a genome-215 

wide association (GWA) p-value threshold ≤1, 0.05 or 0.01 was used to select a set of 216 

concordant and discordant SNPs using UK Biobank GWAS summary statistics for total-217 

cholesterol.    218 

 219 

Subsequently, we partitioned genetic covariance components attributed to the two sets of 220 

genomic regions (concordant vs. discordant SNPs). We estimated two genomic relationship 221 

matrixes (GRM), using the sets of concordant and discordant SNPs, which were simultaneously 222 
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fitted in a bivariate multiple random-effects model. When considering the set of concordant 223 

SNPs, the estimated genetic covariances between other European (OE) vs. south Asian (SAS), 224 

white British (WB) vs. African (AFR) and WB vs. OE were significantly higher than the 225 

expectation (the proportion of the concordant SNPs) for total-cholesterol (Figure 5). On the 226 

other hand, the estimated genetic covariances for these pairs of ancestries were significantly 227 

lower than the expectation when using discordant SNPs (Figure 5). For HDL-cholesterol 228 

(Supplementary Figure 3) and LDL-cholesterol (Supplementary Figure 4), a similar result 229 

was observed that the estimated genetic covariances between OE vs. SAS, WB vs. OE and WB 230 

vs. SAS were significantly deviated from the expectation. When using SNPs with genome-231 

wide association p-values < 0.05 or 0.01 (Supplementary Table 4), the estimated genetic 232 

covariances due to concordant and discordant SNPs were more significantly deviated from the 233 

expectation in general (Figure 5, Supplementary Figure 3 and 4). It is also noted that the 234 

estimated genetic covariances for the set of discordant SNPs were not higher than zero (Figure 235 

5), implying that the genetic heterogeneity of cholesterol traits across ancestry might be mostly 236 

due to the set of discordant SNPs. This also shows that the set of concordant SNPs may be 237 

useful in cross-ancestry polygenic risk predictions. The results are similar when genome-wide 238 

association p-values from BBJ are used (Supplementary Figure 5).  239 

 240 

 241 

 242 
Figure 5: Estimated genetic covariances for concordant and discordant SNPs for total-243 

cholesterol. Concordant and discordant SNPs were derived from the comparison of SNP 244 
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effects between two independent GWAS datasets of UK Biobank and BBJ. In this concordant 245 

or discordant analysis, a set of SNPs with genome-wide association (GWA) p-values < 1, 0.05 246 

or 0.01 was used, where the GWA p-values were from UK Biobank GWAS for total-247 

cholesterol. The main bars represent estimated cross-ancestry genetic covariance using the set 248 

of genome-wide SNPs, and the error bars indicate 95% confidence intervals. The horizontal 249 

dashed line indicates the expected genetic covariance, assuming all SNPs contribute equally to 250 

the genetic covariance, i.e., the expected genetic covariance = the estimated total genetic 251 

covariance × the proportion of number of concordant SNPs, where the estimated total genetic 252 

covariance is based on all the SNPs including both concordant and discordant SNPs. The value 253 

with each bar indicates a p-value testing the null hypothesis that the estimated genetic 254 

covariance is not significantly different from the expectation. WB = White British, OE = Other 255 

European, SAS = South Asian, AFR = African. 256 

 257 

We further investigated the impact of concordant SNPs in a cross-ancestry polygenic risk 258 

prediction. We used the UKBB discovery dataset, which is independent from the four target 259 

datasets including white British, other European, South Asian, and African ancestries, to 260 

estimate SNP effects and obtain GWAS summary statistics for cholesterol traits. Using the 261 

GWAS summary statistics, we constructed polygenic risk scores for the individuals in the 262 

target datasets. The predictive ability (𝑅2) of polygenic risk scores for total-cholesterol is 263 

significantly higher when using the set of concordant SNPs than when using the set of 264 

discordant SNPs for both within- and cross-ancestry predictions (Figure 6, Supplementary 265 

Figure 4) (p-values for the difference between concordant and discordant PRS SNPs are 3.8e-266 

33,  2.2e-25, 1.3e-04 and 5.3e-04 for white British, other European, South Asian and African, 267 

respectively). Although not significant, 𝑅2 is slightly higher when using the set of concordant 268 

SNPs, compared to when using the total set of SNPs (Figure 6), suggesting that including 269 

discordant SNPs may have adverse effects on the cross-ancestry risk predictions. When 270 

accounting for the proportion of concordant SNPs, a similar result was observed in that 271 

concordant SNPs performed better that discordant SNPs in within- and cross-ancestry risk 272 

predictions (Supplementary Figure 5). A similar finding was observed when using BBJ 273 

discovery GWAS summary statistics, i.e., the cross-ancestry prediction accuracy of the 274 

concordant SNPs significantly higher than the discordant SNPs (Supplementary Figure 4). 275 

Interestingly, the concordant SNPs performs notably better than the total set of SNPs when 276 

predicting white British, other European and south Asian ancestries (Supplementary Figure 277 

4). Results are invariant when considering LDL- and HDL-cholesterol (Supplementary Figures 278 

6-7).  279 

 280 
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For HDL cholesterol, it is notable that the accuracy of cross-ancestry prediction can be higher 281 

than within-ancestry prediction (e.g., South Asian vs. White British in Supplementary Figure 282 

6). We further confirmed this result with a clump-and-threshold (C + T) based PRS method 283 

(PRSice)44 and compared the significance of difference (Supplementary Figure 8). It shows 284 

that PGS generated from White British GWAS provides a significantly higher predictive 285 

accuracy for South Asian (p-value = 6.67e-16) and African ancestry groups (p-value = 7.35e-286 

04), compared to White British. This may have an important implication in genomic medicine 287 

for underrepresented non-European populations.      288 

 289 

 290 

291 
Figure 6: The predictive ability (𝑹𝟐) of polygenic risk scores for total-cholesterol when 292 

using the set of concordant, discordant, or total SNPs for cross-ancestry risk predictions.  293 

UK Biobank GWAS was used as the discovery dataset (n= 258,792), while target datasets were 294 

other European (n=26,457), south Asian (n=6,199) and African ancestry (n=6,179).   295 
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Left panels: The main bars represent 𝑅2 values and error bars correspond to 95% confidence 296 

interval. 297 

Right panels: Dot points represent the differences between 𝑅2 values, error bars correspond 298 

to 95% confidence intervals of the differences, and p-values indicate that the differences of 𝑅2 299 

are significantly different from zero (null hypothesis). P-values was estimated using an R-300 

package  (r2redux)45 based on Wald’s test statistics. 301 

 302 

Discussion 303 

Cholesterol is an essential structural component of the cell membrane, which is necessary for 304 

the body to function1, 2. However, the risk of CVD is associated with a high level of cholesterol 305 

that can be determined by genetic risk factors4, 46, 47. Although the genetic study of cholesterol 306 

has been conducted, it is not clear how genetic effects on cholesterol vary across different 307 

ancestries. In this study, we explicitly estimated cross-ancestry genetic correlations to 308 

investigate the shared genetic architecture across ancestries for cholesterol. Importantly, we 309 

appropriately accounted for the relationship between allele frequency and per-allele effect size 310 

by modelling the ancestry-specific scale factor for cholesterol, which can provide more reliable 311 

estimates31.  312 

 313 

The reliable estimation of cross-ancestry genetic correlation allows us to understand the shared 314 

genetic architecture across ancestries, providing crucial information when for various 315 

downstream analyses of complex traits such as cross-ancestry GWAS and cross-ancestry 316 

polygenic risk score prediction. Moreover, this may inform best practices for cross-ancestry 317 

meta-analysis, multi-ancestry disease mapping, and the transferability of epidemiological 318 

findings. Our analysis shows that in general, total- and LDL-cholesterol are both genetically 319 

heterogeneous across ancestries, whereas HDL-cholesterol is not48. This finding has important 320 

implications for the power of cross-ancestry GWASs and cross-ancestry polygenic risk score 321 

prediction, which for HDL-cholesterol may be much higher than that for total- and LDL-322 

cholesterols (Supplementary Figure 6).  323 

 324 

To identify genetic variants that contribute to the genetic heterogeneity, we investigated 325 

concordant and discordant SNP sets that were identified by comparing the direction of SNP 326 

effects between UK Biobank and Biobank Japan GWAS summary statistics, noting that the 327 

two datasets are independent from the four target ancestry groups used in this study. The 328 

concordant SNPs may be associated with genes that are functionally homogeneous across 329 

ancestries49, and we show in this study that the concordant SNPs are more often located in the 330 
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regulatory or genic regions, compared to other genomic regions. We also show that such strong 331 

genetic heterogeneity across ancestries for cholesterol can be attributed to the discordant SNPs, 332 

but not to the concordant SNPs. We provide evidence that the set of concordant SNPs can be 333 

useful in the cross-ancestry polygenic risk predictions, which may improve the transferability 334 

of polygenic risk scores to clinical practice16, 50, 51.   335 

 336 

There are a number of limitations in this study. For determining optimal α, we did not consider 337 

the relationship between LD and per-allele effect sizes, i.e., as in LDAK-thin model32 that 338 

requires a substantial reduction of the number of SNPs. We also acknowledge that the 339 

conclusions from cross-ancestry analyses (cross-ancestry correlation and genomic prediction) 340 

in this study are restricted to common variants (MAF ≥ 0.01) and HapMap3 SNPs only; as 341 

these are robust and reliable for dissecting cross-ancestry genetic architecture52, 53. A moderate 342 

sample size (limited power of the data) was used to estimate optimal scale factors (α) for south 343 

Asian and African populations. Therefore, the genetic heterogeneity needs to be explored with 344 

larger sample size. The concordant SNPs were identified by comparing the direction of SNP 345 

effects between white British (UKBB) and East Asian (BBJ) populations, because adequate 346 

data was not available from other ancestries. When public genomic databases have sufficient 347 

resources across ancestries, we can have a finer set of concordant SNPs by comparing SNP 348 

effects across various ancestries.   349 

 350 

In conclusion, there is a significant genetic heterogeneity between ancestries for total- and 351 

LDL-cholesterol, which is mostly driven by the set of discordant SNPs. Interestingly, the 352 

concordant SNPs are more frequently found in the regulatory region as annotated by an 353 

independent study54, and restricting to concordant SNPs can provide better accuracy for cross-354 

ancestry polygenic prediction for cholesterol. Our findings contribute to knowledge about the 355 

genetic architecture of cholesterol that is shared across ancestries. The proposed cross-ancestry 356 

polygenic prediction can be potentially useful in clinical practice. Our analysis protocol can be 357 

extended to a wide range of other complex traits and diseases.   358 

 359 

 360 

Methods 361 

Ethical statement 362 

We used publicly available from the UK Biobank (https://www.ukbiobank.ac.uk/). Science 363 

protocol and operational procedures for the UK Biobank have been reviewed and approved by 364 
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the North-West Multi-Centre Research Ethics Committee (MREC), National Information 365 

Governance Board for Health & Social Care (NIGB), and Community Health Index Advisory 366 

Group (CHIAG). The UK Biobank has obtained consent from all participants. The access of 367 

the UK Biobank data was approved under the reference number 14575 (“Whole genome 368 

approaches for dissecting (shared) genetic architecture and individual risk prediction of 369 

complex traits in human populations”). Publicly available GWAS summary statistics of 370 

Biobank Japan (BBJ) were used, following BBJ’s guidelines (http://jenger.riken.jp/en/). The 371 

research ethics approval of this study has been obtained from the University of South Australia 372 

Human Research Ethics Committee.  373 

 374 

 375 

Participants and stratification of ancestries 376 

Data from the UK Biobank contains 501,748 participants recruited between 2006 and 201055. 377 

The participants were recruited from 22 assessment centres in England, Wales, and Scotland, 378 

ranging in age from 37 to 73 years old56. All the phenotypic data for cholesterol traits under 379 

this study are derived from baseline survey. Principal component analysis was applied to the 380 

UK Biobank individuals to stratify participants57 into four different ancestries following 381 

previous approach31.   382 

 383 

 384 

Genotypic data and quality control 385 

We used the second release of the UK biobank (https://www.ukbiobank.ac.uk/) genotype data 386 

comprising 488,377 individuals and 92,693,895 imputed autosomal SNPs. The individuals 387 

were genotyped by Affymetrix UK BiLEVE Axiom array and Affymetrix UK Biobank 388 

Axiom® array. Combination of UK10K and Haplotype Reference Consortium (HRC) data 389 

were considered as the reference dataset for the imputation of the UK Biobank genotypic 390 

dataset58. In this analysis, to dissect the genetic architecture of disease and complex traits, we 391 

retained only HapMap3 SNPs in this analysis52, which are also considered robust and reliable 392 

for estimating heritability, genetic correlation52, 59. Stringent quality control (QC) procedure 393 

was applied to each ancestry to select high quality individuals and high-quality SNPs. SNPs 394 

QC criteria include, SNPs excluded with an INFO score (used to indicate the quality of 395 

genotype imputation) <0.660-62, call rate <0.95, a MAF <0.01 and a Hardy–Weinberg 396 

equilibrium p-value <10-4. We also exclude population outliers (individuals outside ±6SD) and 397 

related individuals (--rel-cutoff 0.05) using PLINK63. 398 
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 399 

Individual level QC criteria include samples with genotype missing rate >0.05, gender 400 

mismatch (reported gender does not fit with the genetically assigned sex determined from gene 401 

data), poor genotype quality or a sex chromosome aneuploidy was excluded from the main 402 

analyses. For the ease of computation, we reduced the number individuals in white British 403 

ancestry. The total number of individuals and total number of SNPs after QC shown in 404 

Supplementary Table 1. The number of common SNPs across different pairs of ancestries 405 

presented in Supplementary Table 2 and the number of common SNP for each genomic 406 

region (genomic partitioning) between ancestries presented in Supplementary Table 3. 407 

 408 

Functional annotation of the genome 409 

The common SNPs between populations were partitioned into genomic region using genomic 410 

annotation reported by Gusev et. al.54, where they partitioned the genome into coding, UTR, 411 

promoter, intron, DHS and intergenic regions. For the genomic partitioning analysis, we 412 

include promoter, coding, UTR, and DHS regions as regulatory regions64-66, and introns (an 413 

integral part of a gene)67, 68 and the intergenic regions as non-genic regions.  We also partitioned 414 

the whole genome into two predefined functional categories as genic (includes SNPs from 415 

promoter, coding, untranslated, intron and DHS region) and non-genic regions (intergenic 416 

region).  417 

 418 

Concordant and discordant SNP annotation  419 

To identify concordant and discordant SNPs we compared SNP effects between two 420 

independent GWAS datasets of white British from UK Biobank and Biobank Japan (BBJ). The 421 

BBJ summary statistics data are publicly available (http://jenger.riken.jp/en/result). We 422 

excluded SNPs that were ambiguous or had a strand issue. After excluding these SNPs, there 423 

were 4,113,630 SNPs that are common between UKBB and BBJ. To determine concordant and 424 

discordant SNPs, we compared the direction of SNP effects between white British from UKBB 425 

and BBJ. We used only HapMap3 SNPs from 4,113,630 SNPs for concordant and discordant 426 

analysis across different ancestry pairs (Supplementary Table 4). 427 

 428 

There were four possible combinations of direction of SNP effects (beta): 429 

(+beta, +beta) if the SNP effects are positive in both GWAS. 430 

(+beta, -beta) if the SNP effects are positive and negative in the UKBB and BBJ GWAS. 431 

(-beta, +beta) if the SNP effects are negative and positive in the UKBB and BBJ GWAS. 432 
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(-beta, -beta) if the SNP effects are negative in both GWAS. 433 

Each SNP should be in one of four possible combinations and belongs to either concordance 434 

or discordance. SNPs belonged to ((+beta, +beta) ∪ (-beta, -beta) were considered concordant, 435 

otherwise discordant, i.e. (+beta, -beta) ∪ (-beta, +beta).  436 

 437 

 438 

Data analysis 439 

Phenotypic adjustment of main traits 440 

Prior to model fitting, all cholesterol traits were adjusted for demographic variables, the UK 441 

biobank assessment centre (as factor), genotype measurement batch (as factor) and population 442 

structure measured by the first 10 principal components (PCs)64, 69 using linear models in R-443 

software (4.0.3). Demographic variable includes sex, birth year, education, and Townsend 444 

deprivation index (Supplementary Table 5). Information of educational qualifications 445 

converted to education levels (years) for all the UK Biobank individuals70.  446 

 447 

Determining scale factors for GCTA-α model 448 

GCTA model assumes all the SNPs has equal contribution to the genetic variance (has no LD 449 

weights), whereas LDAK-thin model32 explicitly considers LD among SNPs. The previously 450 

recommended and widely used α are -0.50 and -0.125 for GCTA model71 and LDAK-thin 451 

model32, respectively. Here we have used 13 different values of α (between -1 and 0.5) 452 

following GCTA model (termed as GCTA- α model)31. In order to perform a cross-ancestry 453 

genetic correlation analysis of cholesterol traits (total cholesterol, HDL cholesterol, and LDL 454 

cholesterol), we determined and used optimal α based on GCTA models for each trait and 455 

ancestry.  We did not consider another widely used LDAK-thin model as it will reduce number 456 

of common SNPs between ancestry due to LD-pruning.  457 

 458 

Statistical models  459 

Univariate Linear Mixed Model  460 

The univariate Linear Mixed Model (LMM) for can be written as, 461 

𝒚 = 𝑿𝐛 + 𝐙𝐠 +  𝐞           (1) 462 

Where 𝐲 is the vector of phenotypic observation, 𝒃 is the vector of fixed effects, 𝒈 is the vector 463 

of additive genetic value and 𝒆 is the vector of the residuals. The random effects (𝒈 and 𝒆 are 464 

presumed to be distributed normally with mean zero where X and Z are incidence matrices  465 
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 466 

Heritability was estimated using the genetic and residual variances obtained from the univariate 467 

LMM, which can be expressed as 468 

 ℎ2 =
𝜎𝐠

2

𝜎𝐠
2+𝜎𝑒

2   
                (2) 

Here, 𝜎𝐠
2  is the genetic variance and 𝜎𝑒

2  is residual variance. Estimation assumed 469 

environmental homogeneity 470 

 471 

Bivariate Linear Mixed Model  472 

The bivariate Linear Mixed Model (LMM) was used to estimate heritability and cross-ancestry 473 

genetic correlation using individual level genetic data written as, 474 

𝐲𝟏 = 𝐗𝟏𝐛𝟏 + 𝐙𝟏𝐠𝟏 + 𝐞𝟏                                                                               for ancestry 1 (3) 475 

𝐲𝟐 = 𝐗𝟐𝐛𝟐 + 𝐙𝟐𝐠𝟐 + 𝐞𝟐                                                                               for ancestry 2 (4)    476 

Where 𝒚𝟏  and 𝒚𝟐  are vector of phenotypic observation, 𝐛𝟏  and 𝐛𝟐  are the vector of fixed 477 

effects, 𝐠𝟏  and 𝐠𝟐  are vector of additive genetic value and 𝐞𝟏  and 𝐞𝟐  are the vector of 478 

residuals. The random effects (𝐠𝟏, 𝐠𝟐 and 𝐞𝟏, 𝐞𝟐) are presumed to be distributed normally with 479 

mean zero where X and Z are incidence matrices i.e. i.e.  gi ~ N (0,  𝐀𝜎𝐠𝒊
2 ) and ei ~ N (0, 𝐈𝜎𝒆𝒊

2 ). 480 

 481 

The variance covariance matrix of observed phenotypes can be written as    482 

𝐕 = [
𝐙𝟏𝐀𝜎g1

2 𝐙𝟏
′ + 𝐈𝜎𝑒1

2 𝐙𝟏𝐀𝜎g12
2 𝐙𝟐

′

𝐙𝟐𝐀𝜎g21
2 𝐙𝟏

′ 𝐙𝟐𝐀𝜎g2
2 𝐙𝟐

′ + 𝐈𝜎𝑒2
2 ]                                                                         (5) 483 

where,  𝐀  is the genomic relationship matrix (GRM)72-74, which can be estimated based on the 484 

genome-wide SNP information, and 𝐈 is an identity matrix which implicitly assumes across 485 

individuals of environmental effects and measurement error. The terms, 𝜎g1
2 (𝜎g2

2 )  and 486 

𝜎𝑒1
2 (𝜎𝑒2

2 )indicate the genetic and residual variance of the trait for the two-ancestry group, and 487 

𝜎g12
2 (𝜎g21

2 ) is the genetic covariances between the two ancestry groups. It is noted that there is 488 

no parameter to model residual correlation in V because there are no multiple phenotypic 489 

measures for any individual, i.e., the phenotypes of the first (second) trait are available only 490 

for the first (second) ancestry group.  491 

 492 

Cross-ancestry genetic correlation between two random genetic effects can be computed either 493 

directly as genetic covariance standardized by the square root of the product of the genetic 494 
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variances of the two random genetic effects (equation 6) or indirectly by the correlation 495 

coefficient of SNP effect sizes38, 75. 496 

 
𝑟𝐠𝑖𝐠𝑗

=
𝜎𝐠𝑖𝐠𝑗

√𝜎𝐠𝑖
2 . 𝜎𝐠𝑗

2

 
 

                   (6) 

 497 

GREML analysis to estimate heritability and cross-ancestry genetic correlations 498 

Bivariate GREML is the cornerstone method to estimate SNP heritability and cross-ancestry 499 

genetic correlation using common SNPs across ancestries. The SNPs frequency, heritability 500 

model (relationship between heritability and MAF), and the scale factor (α) varied across 501 

ancestries31. We used a recently proposed approach of estimating GRM31 in combined 502 

population, that accounts ancestry specific α and ancestry specific allele frequencies for 503 

estimating heritability and cross-ancestry genetic correlation. Both estimation of GRM and 504 

GREML analysis was implemented in mtg276.  505 

 506 

Genomic prediction  507 

The polygenic score (PGS) is obtained from by aggregating and quantifying single nucleotide 508 

polymorphism (SNP) effects. PGS of an individual (k) can be defined as cumulative effect of 509 

SNP counts with a standard equation as:  510 

𝑃𝐺𝑆 = ∑ 𝛽𝑗𝑥𝑗𝑘

𝑚

𝑗=1

 511 

Here, 𝛽𝑗  is the SNP effect from discovery GWAS, m is the total number of SNPs included in 512 

the predictor, 𝑥𝑗𝑘  is the number of copies (0,1, or 2) of trait associated SNP j in the genotype 513 

of individual k.  514 

 515 

 516 

Web resources and code availability 517 

The genotype and phenotype data of the UK Biobank can be accessed through procedures 518 

described on its webpage (https://www.ukbiobank.ac.uk/) and summary statistics of BMI and 519 

total-, LDL- and HDL-cholesterol from Biobank Japan (BBJ) can be obtained from its website 520 

(http://jenger.riken.jp/en/result) 521 

MTG2, https://sites.google.com/site/honglee0707/mtg2  522 

PLINK2 version can be downloaded from https://www.cog-genomics.org/plink/  523 

r2redux R-package (https://github.com/mommy003/r2redux from GitHub or from CRAN) 524 
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The GWAS summary statistics dataset that is generated in this current study and supports the 525 

findings have been deposited in the NHGRI-EBI GWAS catalogue with the accession codes 526 

GCST90244051, GCST90244052, GCST90244053, GCST90244054, GCST90244055 and 527 

GCST90244056; (https://www.ebi.ac.uk/gwas/). GWAS for all SNPs and concordant SNPs for 528 

total-, HDL- and LDL-cholesterol can be accessed in following links 529 

GWAS of total cholesterol (all SNP) 530 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90244001-531 

GCST90245000/GCST90244051/) 532 

GWAS of total cholesterol (concordant SNP) 533 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90244001-534 

GCST90245000/GCST90244052/) 535 

GWAS of HDL-cholesterol (all SNP) 536 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90244001-537 

GCST90245000/GCST90244053/) 538 

GWAS for HDL-cholesterol (concordant SNP) 539 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90244001-540 

GCST90245000/GCST90244054/) 541 

GWAS for LDL-cholesterol (all SNP) 542 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90244001-543 

GCST90245000/GCST90244055/) 544 

GWAS for LDL-cholesterol (concordant SNP) 545 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90244001-546 

GCST90245000/GCST90244056/) 547 

 548 
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