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Abstract 19 

Background: The diagnosis of rare genetic diseases is often challenging due to the 20 

complexity of the genetic underpinnings of these conditions and the limited availability 21 

of diagnostic tools. Machine learning (ML) algorithms have the potential to improve the 22 

accuracy and speed of diagnosis by analyzing large amounts of genomic data and 23 

identifying complex multiallelic patterns that may be associated with specific diseases. 24 

In this systematic review, we aimed to identify the methodological trends and the ML 25 

application areas in rare genetic diseases. 26 

Methods: We performed a systematic review of the literature following the PRISMA 27 

guidelines to search studies that used ML approaches to enhance the diagnosis of rare 28 

genetic diseases. Studies that used DNA-based sequencing data and a variety of ML 29 

algorithms were included, summarized, and analyzed using bibliometric methods, 30 

visualization tools, and a feature co-occurrence analysis. 31 

Findings: Our search identified 22 studies that met the inclusion criteria. We found that 32 

exome sequencing was the most frequently used sequencing technology (59%), and rare 33 

neoplastic diseases were the most prevalent disease scenario (59%). In rare neoplasms, 34 

the most frequent applications of ML models were the differential diagnosis or 35 

stratification of patients (38.5%) and the identification of somatic mutations (30.8%). In 36 

other rare diseases, the most frequent goals were the prioritization of rare variants or 37 

genes (55.5%) and the identification of biallelic or digenic inheritance (33.3%). The 38 

most employed method was the random forest algorithm (54.5%). In addition, the 39 

features of the datasets needed for training these algorithms were distinctive depending 40 

on the goal pursued, including the mutational load in each gene for the differential 41 

diagnosis of patients, or the combination of genotype features and sequence-derived 42 

features (such as GC-content) for the identification of somatic mutations. 43 
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Conclusions: ML algorithms based on sequencing data are mainly used for the 44 

diagnosis of rare neoplastic diseases, with random forest being the most common 45 

approach. We identified key features in the datasets used for training these ML models 46 

according to the objective pursued. These features can support the development of 47 

future ML models in the diagnosis of rare genetic diseases. 48 

Keywords: artificial intelligence, rare diseases, precision medicine, rare variants, DNA-49 

sequencing, genomics   50 
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1. Introduction 51 

Rare diseases (RDs) continue to be a challenge to the healthcare system due to the 52 

difficulty of reaching an accurate diagnosis. Although there is no uniform international 53 

criteria, RDs are usually defined as those affecting fewer than 4-5 cases out of 10,000 54 

individuals1. Considering them as a whole, RDs can be regarded as a common event, 55 

with 7,241 different RDs (http://www.orphadata.org/data/xml/en_product7.xml, 56 

updated on June 14, 2022) with an estimated accumulated prevalence of 3.5–5.9% and 57 

affecting more than 400 million people worldwide2,3. 58 

Most RDs appear to be caused or modified by genetic factors; up to 80% of them are 59 

thought to have a genetic etiology4. Our current knowledge on this aspect is limited, 60 

existing 3,886 RDs (53.7%) linked to, at least, a gene that cause or modify the disease 61 

phenotype (http://www.orphadata.org/data/xml/en_product6.xml, updated on 14 Jun 62 

22)2. The improved performance and the price reduction of Next-generation sequencing 63 

(NGS) technologies in recent years have made them more attractive for clinical 64 

applications in RDs, increasing rapidly the number of phenotype-genotype 65 

associations5. This has resulted in an accurate molecular diagnosis in many patients 66 

suffering from monogenic RDs, which has occasionally led to personalized treatments 67 

and improved disease management. Nevertheless, other patients with more complex 68 

disorders receive an inconclusive genetic diagnosis, placing the diagnostic yield of 69 

DNA-based NGS technologies in most studies at 40-50%6,7. This is mainly caused by 70 

the absence of pathogenic or likely pathogenic variants in known disease-causing genes, 71 

finding instead variants of unknown significance (VUS) or variants in novel genes not 72 

previously associated with the disease. 73 
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In this scenario of rare and complex genetic disorders where a diagnosis is not reached 74 

or a prognosis is not accurate enough, more sophisticated methods should be applied to 75 

analyze large-scale genomic data. The use of artificial intelligence (AI) and, 76 

particularly, machine learning (ML) algorithms has raised great interest in recent years 77 

due to its potential to uncover complex patterns in genomic data8. These ML algorithms 78 

have shown the capacity to learn from and act on large, heterogeneous datasets to 79 

extract new biological insights, improving the accuracy of the diagnosis of RDs9–12.  80 

Compared to previous reviews in the field of ML and RDs, such as Schaefer et al.9 or 81 

Brasil et al.13, in this systematic review we used a different approach, investigating the 82 

role of AI/ML algorithms in the diagnosis and prognosis of RDs using genomic data. 83 

The range of options when it comes to choosing a learning algorithm or a DNA-based 84 

NGS technique to address RDs is highly variable. On the one hand, ML methods are 85 

usually divided into two main categories: supervised and unsupervised learning. 86 

Supervised ML algorithms require labeled data to solve mainly regression and 87 

classification tasks, whereas unsupervised ML algorithms address classification tasks 88 

based on unlabeled data by seeking common patterns. The review from Libbrecht et al. 89 

describes these algorithms in more detail and provides examples applied to genomic 90 

data14. On the other hand, regarding NGS techniques, there are mainly two strategies: a) 91 

to sequence the entirety of the DNA sequence (whole genome sequencing, WGS), or b) 92 

to just sequence some regions of the DNA, such as coding regions (exome sequencing, 93 

ES), or certain disease-causing genes (gene panel). Nevertheless, the raw data generated 94 

in these experiments can be processed in many ways, with different workflows 95 

depending on the aim of the study.  96 

This systematic review presents a thorough overview of the existing evidence on the 97 

application of AI/ML algorithms to the diagnosis of RDs using DNA-based sequencing 98 
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data. We conducted a comprehensive search of the literature and included studies that 99 

used a variety of ML approaches and sequencing data sources in different research 100 

settings. Our analysis focused on the evaluation of trends in the field, the ability of these 101 

approaches to identify genetic variations associated with RDs, and the potential of 102 

AI/ML to improve their diagnosis.  103 
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2. Methods 104 

2.1. Systematic literature search and data sources 105 

We performed a literature search using PubMed, Web of Science, and Scopus to 106 

identify relevant publications on the use of AI/ML for the diagnosis and prognosis of 107 

RDs using genomic data. We also used citation and hand searching to ensure that 108 

potentially relevant studies were retrieved. The Preferred Reporting Items for 109 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to design 110 

and perform this systematic review15, and its protocol was registered in PROSPERO 111 

(registration number CRD42022360247).  112 

A search in the selected databases using the search terms ‘rare AND ("artificial 113 

intelligence" OR "machine learning" OR "deep learning") AND ((exome OR genome 114 

OR panel) AND sequencing)’ and considering publications from 2012 onward resulted 115 

in 296 abstracts. The citation and hand searching resulted in 10 additional records. The 116 

date of the last search was September 29, 2022.  117 

The list of abstracts was screened for inclusion using the following inclusion criteria: (i) 118 

an application of AI/ML methods; (ii) a diagnostic or prognosis application using a 119 

DNA-based NGS technique (panel, exome, or genome sequencing); and (iii) an 120 

application to a RD within the orpha.net database. Non-English articles, review articles, 121 

duplicate records, and studies not relevant to any RD or AI/ML were excluded. To 122 

narrow our focus to clinical applications, we excluded animal studies as well as 123 

publications that only reported methodological aspects of AI/ML without presenting 124 

clinical data from the study population. For all articles considered relevant, the full text 125 

was reviewed using the same screening procedure as in the first stage.126 
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2.2. Data extraction 127 

All the selected articles were evaluated to gather data on five main aspects: i) study 128 

characteristics and study population (subjects included, RDs studied, study design, use 129 

of secondary data), ii) characteristics of the applied AI/ML techniques (selected ML 130 

model, programming languages used, input data, associated features, feature selection 131 

methods, model evaluation), iii) information about the DNA-based NGS technology 132 

used (type, sample collected, DNA sequencing kit, sequencing platform, read length, 133 

mean coverage), iv) the variant discovery approach (alignment method, used 134 

SNV/Indel/CNVs callers, variant annotation software, variant filtering criteria), and v) 135 

authors (number of authors and institutions involved, authors’ countries) and journal 136 

details (name, category, journal impact factor, journal citation indicator). 137 

2.3. Data analysis 138 

The data collected from selected articles were summarized and analyzed using a variety 139 

of approaches. Journal Impact Factor (JIF) scores were obtained from the Journal 140 

Citation Report (JCR) database. Bibliometric networks, including data from authors and 141 

abstracts, were constructed and visualized using VOSviewer16. Similarly, full-text 142 

articles were analyzed using WordStat 9.0 (Provalis Research, Montreal, Quebec, 143 

Canada) to extract main topics and keywords.  144 

Selected articles were divided into “rare neoplastic diseases” and “other rare diseases” 145 

to enable comparisons. AI/ML models were categorized into three categories: 146 

supervised, unsupervised, and deep learning models. Input variables that the model uses 147 

to make predictions (features) were classified in 1) “clinical features”, which include 148 

information about patients’ clinical characteristics; 2) “phenotype-related features”, 149 

including data about the association between genes and phenotypes (e.g., Human 150 
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Phenotype Ontology); 3) “read alignment features”, which include the properties related 151 

to read mapping and sequencing quality; 4) “genotype-related features”, including 152 

details of variants found in patients (e.g., variant allele frequency, count of variants in a 153 

certain gene, length of indel); 5) “sequence region and structural features”, including 154 

information about the region where the variant is located (e.g., gene size, GC content); 155 

6) “network features”, which include details about the pathways in which a particular 156 

gene is involved (e.g., number of pathway, network neighbors); 7) 157 

“evolutionary/pathogenicity features”, which include pathogenicity and evolutionary 158 

conservation scores of variants (e.g., CADD, PolyPhen-2); 8) “gene expression 159 

features”, including data on gene expression; 9) “tissue-specific features”, including 160 

features which are specific for certain types of tissues; and 10) “disease-specific 161 

features”, including features which are specific for certain types of diseases. The co-162 

occurrence of these features in the datasets used for training AI/ML models was 163 

examined and plotted using UpSetR17.   164 
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3. Results 165 

3.1. Included studies 166 

The literature search in databases identified 494 studies, with 296 remaining after 167 

removing duplicates (Supplementary Table 1). Among them, 93 studies were selected 168 

for full-text review, and 14 were included in the final analysis. In addition, 11 studies 169 

were identified through hand and citation searching. After screening, 8 further studies 170 

met the selection criteria of this systematic review. Thus, 22 studies were included in 171 

the final analysis (Supplementary Table 2). Figure 1 shows the PRISMA flow 172 

diagram for article selection, including the reasons for excluding records. 173 

3.2. Temporal trends and bibliometrics 174 

To assess the temporal trends in the use of AI/ML methods for the diagnosis and 175 

prognosis of RDs using sequencing data, meta-data from included articles was retrieved 176 

(Supplementary Table 3). In recent years, we noticed a relative rise in the number of 177 

studies that address this challenge using AI/ML (Figure 2A). Most of these articles 178 

were published in journals belonging to the first quartile (90.9%) and within the 179 

“Genetics & Hereditary” JCR category (31.8%) (Supplementary Figure 1). It should 180 

be noted that the count for 2022 is based on studies published up to September 29, 181 

2022. 182 

A total of 318 authors contributed to the selected articles. The bibliometric analysis 183 

showed a low level of collaboration between authors of different articles, creating 19 184 

clusters where only 3 authors participated in 2 or more articles (Supplementary Figure 185 

2A). The term co-occurrence analysis of abstracts found 100 relevant terms divided into 186 

3 clusters that summarize the main topics of this research field. These clusters group 187 

together terms mainly associated with genetics (cluster 1), cancer (cluster 2), and 188 

methodology terms (cluster 3) (Figure 2B). The most frequently occurring terms in 189 
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these abstracts were “genetics” (18 occurrences), “machine learning” (15 occurrences) 190 

and “whole-exome sequencing” (10 occurrences). These key terms were also among the 191 

most frequently used terms in the analysis of full-text articles, where terms such as 192 

“random forest” (59.1% of studies), “somatic mutations” (54.5% of studies), or “rare 193 

variants” (54.5% of studies) were also in a significant proportion of studies 194 

(Supplementary Figure 2B). 195 

3.3. Application areas for AI/ML techniques 196 

The most common disease scenario was rare neoplastic diseases (59%). The remaining 197 

studies investigated different kinds of RDs, such as developmental, neurological, or 198 

circulatory diseases (Figure 3A). Exome sequencing was the most used NGS method in 199 

both rare neoplastic diseases (61.5%) and other RDs (55.5%) (Figure 3B). Of note, 200 

63.6% (14/22) of the studies employed sequencing data stored in external databases, 201 

primarily The Cancer Genome Atlas (TCGA), but also the Myocardial Genetics 202 

Consortium (MIGEN), or the Undiagnosed Diseases Network (UDN). These studies 203 

showed larger sample sizes than those using their own cohorts (Supplementary Figure 204 

3), but they also showed higher intra-method variability, as seen by the mixed sample 205 

processing methods they employed (Supplementary Figure 4). Supplementary Table 206 

4 summarizes the NGS-related and sequencing data processing methods in detail. 207 

Supervised machine learning methods were chosen in 86.3% of the studies, with 208 

Random Forest (RF) being the most employed algorithm within this group (54.5%) 209 

(Figure 3C). One study discarded the genetic features after the feature selection 210 

process, and three studies did not describe the selected features in detail, one of which 211 

was due to a commercial interest (Supplementary Table 5). 212 

3.4. AI/ML in the study of rare genetic diseases 213 
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The objectives of AI/ML approaches in the different studies were investigated. It was 214 

found that the primary goal of using AI/ML in rare neoplastic diseases was the 215 

differential diagnosis of patients (5/13), followed by the identification of somatic 216 

mutations when a matched normal tissue was not available (4/13). In contrast, the major 217 

goals in other RDs were to prioritize variants and candidate genes (5/9) and to identify 218 

biallelic or digenic inheritance (3/9). To date, the use of AI/ML for the differential 219 

diagnosis of patients with non-neoplastic diseases is uncommon (1/9) (Figure 4A).  220 

Looking at the types of instances (labels) and features (attributes) of datasets used for 221 

training these AI/ML models, we found that they were distinctive and different 222 

depending on the goal pursued (Table 1 and Figure 4B). For the differential diagnosis 223 

of patients, most datasets included only features related to the genotype of patients. 224 

These features primarily contained mutational load data for each gene or genomic 225 

window using collapsing methods. Models trained to predict the prognosis of RDs 226 

included clinical features (e.g., sex, age, exposure to certain substances) in addition to 227 

genotype features. The four AI/ML models aimed at finding possible pathogenic 228 

combinations of genes (digenic) or variants (biallelic) shared the usage of features 229 

related to biological networks or pathways (e.g., the associated pathway of each gene in 230 

KEGG or Reactome, network neighbors). Datasets focused on training models for 231 

variant or gene prioritization were distinguished by using features linked to predictors 232 

of variant pathogenicity at protein level and conservation across the genome of different 233 

species. Finally, for the identification of somatic mutations without a matched normal 234 

sample, the AI/ML models combined genotype features (e.g., variant allele frequency) 235 

with characteristics of the genome region where the variant is located (e.g., GC-content) 236 

or sequencing and mapping quality scores (e.g., coverage). Supplementary Table 6 237 

contains further information regarding the types of features mentioned above. 238 
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3.5. Data and code access for reproducibility 239 

When it comes to studies that define ML models, reproducibility is a key factor. Of the 240 

selected articles, 16 studies (72.7%) provided access to the data used during the 241 

analysis; 3 studies did so only upon data request; and 3 did not explicitly declare in the 242 

text that data were available, one of which was due to commercial confidentiality. In 243 

terms of the code of AI/ML models, 16 studies (72.7%) had made it publicly available. 244 

With respect to the variant discovery approaches, all studies specified the software used 245 

for sequence alignment; 21 studies (95.5%) included information about the variant 246 

calling step; 17 studies (77.3%) did not mention the use of copy number variations 247 

(CNVs) during the analysis, and 3 studies did not state how the variants were annotated. 248 

Supplementary Table 7 summarizes data availability and reproducibility information. 249 
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4. Discussion 250 

AI/ML involve the use of algorithms to process and gain insights from data with the aim 251 

of making predictions or decisions that can be applied to a wide range of fields, 252 

including healthcare and genetics. In this systematic review, we have evaluated the 253 

latest developments in AI/ML when it comes to rare genetic conditions and examined 254 

the ways in which the use of DNA sequencing data can improve their diagnosis. In 255 

addition, we have identified some challenges and opportunities for future research in 256 

this area. 257 

4.1. Exome sequencing and rare neoplastic diseases as main topics 258 

Although to a lesser extent than in other types of diagnostic methods, such as medical 259 

imaging, AI/ML are increasingly being used in the field of RDs9,18,19. This trend was 260 

also found when focusing only on those studies that use DNA sequencing data to 261 

improve the diagnostic process. Through the bibliometric study carried out in this 262 

review, and the subsequent manual analyses, we found that exome sequencing was the 263 

most prevalent sequencing approach in the field, and that rare neoplastic diseases were 264 

the most prevalent clinical scenario. Exome sequencing continues to be a good starting 265 

point for the genetic diagnosis of RDs, as it provides a cost-effective and efficient way 266 

to identify disease-causing variants20. However, depending on the specific rare disease 267 

context, genome sequencing may be necessary to provide a complete diagnosis, 268 

including the analysis of non-coding variations, CNVs, or chromosomal 269 

rearrangements21,22. 270 

Rare neoplastic diseases generally have a worse diagnosis and higher funding 271 

opportunities than other RDs, making them the type of rare disease in which AI/ML are 272 

used the most19,23. This is also due to the existence of public databases such as TCGA, 273 
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which allow researchers to access a large amount of genomic data and use AI/ML 274 

techniques to identify patterns and make predictions24. When we analyzed the data on 275 

which these AI/ML models were trained, we saw that many of them (63.6%) were based 276 

on sequencing data from external sources, such as TCGA. These studies showed larger 277 

sample sizes, but also a greater diversity in sequencing technology characteristics such 278 

as read depth, different length of reads or different sequencing kits and platforms. 279 

Mixing sequencing data from different technologies, qualities, and batches can have 280 

several biases that can influence the variant calling results, affecting in turn the results 281 

of downstream analyses, and making difficult to draw accurate conclusions from the 282 

data25. The precision when taking clinical decisions must be maximized, so these 283 

studies must have control over these factors26. Different studies have shown how to 284 

approach this process25,27. 285 

4.2. AI/ML algorithms and feature selection in genetic studies 286 

Most of the methods utilized in the selected studies fall into the category of supervised 287 

learning (86.7%), with RF being the most common algorithm among them (73.7%). RF 288 

algorithm offers a combination of properties that makes it one of the most widely used 289 

and suitable algorithms for the study of genetic variants28,29. RF combines multiple 290 

decision trees (forest) that can handle high-dimensional data, capturing interactions and 291 

complex relationships between features by creating random subsets of both, data and 292 

features, at each tree. In addition, RF also allows to compute feature importances, which 293 

can be used to identify the most relevant features for the prediction task, providing 294 

interpretable models30. All this makes RF well suited for complex genetic problems and 295 

explains its popularity among the genetic studies. 296 
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The structure of the dataset is a fundamental and key aspect of any AI/ML model, as it 297 

is the data that the model uses to learn and make predictions. The processes of feature 298 

selection and feature engineering can have a substantial effect on the performance of the 299 

model; hence, it is essential that the final features possess relevance to the problem at 300 

hand31. In this systematic review, we have identified the features used by each of the 301 

selected studies and found that these features were specific to each of the objectives 302 

pursued. This insight can be valuable in understanding the current state of research in 303 

the field, and it can serve as a starting point for creating new datasets in future studies. 304 

The results suggested that collapsing or burden methods seem to be crucial for setting 305 

up the features of datasets used to train models for the stratification or differential 306 

diagnosis of patients. These methods divide the genome into portions (bins or genes) 307 

and summarize the information contained in these segments into a burden value, which 308 

can be calculated in different ways32,33. This approach has shown its usefulness in 309 

finding candidate genes in different complex RDs with both genome and exome 310 

sequencing data34–36. Thus, applied to AI/ML tasks, this process helps to decrease the 311 

dimensionality of datasets based on genetic variants by grouping them into one value 312 

per gene or bin, which helps to reduce the curse of dimensionality and improve 313 

interpretability37. 314 

 On the other hand, models focused on predicting patient prognosis integrate clinical 315 

and genomic data to obtain a more complete picture of the patient and assess the risk of 316 

disease progression. Previous studies, particularly in cancer, have shown how this 317 

integration of data provides a more comprehensive and accurate assessment of patient 318 

outcome 38,39. Alternatively, models aimed at predicting possible pathogenic 319 

combinations of genes use features that summarize the association of these genes with 320 

the biological pathways in which they participate. The use of these features is supported 321 
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by the fact that digenic diseases are usually caused by variants in genes that are 322 

functionally related and have a common pathway40,41. 323 

4.3. Future challenges 324 

From the results of this review, we identified some challenges that need to be addressed 325 

in future studies. When we analyzed the type of genomic data used to train the AI/ML 326 

models reviewed, we realized that most of them (77.3%) were based exclusively on 327 

single nucleotide variants or short indels, not including the analysis of CNVs. CNVs are 328 

a significant source of genetic diversity in humans that has remained understudied due 329 

to the difficulty of detection. However, today there are different algorithms for CNV 330 

detection that simplify the task considerably, as well as guidelines that help us to 331 

interpret them42,43. This allows the possibility of evaluating its effect on the 332 

pathogenesis and outcome of RD. On the other hand, when we examine the goals 333 

pursued in the analysis of neoplastic RDs, we can see that the differential diagnosis or 334 

stratification of patients stands out above the other objectives. This is totally different in 335 

other RDs, where, in fact, this objective is the least pursued of the 3 objectives 336 

identified, and, therefore, a field where the contribution of genetic variation to the 337 

phenotype is not well understood. The use of AI/ML algorithms on rare disease 338 

sequencing data can support the identification of novel genetic interactions, uncovering 339 

patterns and relationships that may not be immediately apparent and providing a better 340 

understanding of the regulatory mechanisms mediated by these variants in the 341 

phenotype. The use of unsupervised methods would be a possible first approach to 342 

achieve the objective of identifying clusters of patients according to their genetic 343 

background44. 344 

4.4. Limitations 345 
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Our review is limited by the design of the systematic search and the exclusion of purely 346 

methodological articles, focusing only on those studies with clinical applications. 347 

Because of the limited number of studies available on the topic, and although it has 348 

been studied, articles have not been discarded because of the quality of the journal in 349 

which they were published (i.e., JIF), and this may have influenced, in some way, the 350 

results of this review. In addition, to reduce variability in study methodology and 351 

facilitate the analysis, we have only focused on those studies using DNA-based 352 

sequencing, not including other NGS methodologies such as RNA-seq, which are 353 

widely used in conjunction with AI/ML methodologies45–47. 354 

5. Conclusions 355 

We have conducted a systematic review of ML algorithms to the diagnosis of RDs 356 

using DNA-based sequencing data, providing an overview of the current state of the 357 

field and the potential of these methods to improve diagnostic accuracy. Exome 358 

sequencing is the most widely used sequencing technology and rare neoplastic diseases 359 

are the most common disease scenario. On the other hand, the goals of AI/ML 360 

algorithms in RDs using sequencing data are broad, ranging from patient stratification 361 

to the identification of possible pathogenic combinations of variants. However, we 362 

found common patterns in these goals when configuring the datasets with which these 363 

models are trained, identifying key features for each of the objectives. Finally, we 364 

identified possible future challenges, such as the use of CNV to train the AI/ML 365 

models, or the application of AI/ML for the stratification of patients with non-neoplastic 366 

RDs. Thus, this systematic review can be used as a reference for further studies, 367 

supporting the development of future ML models in the diagnosis of rare genetic 368 

diseases 369 
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Figures 562 

Figure 1: PRISMA flow diagram for the identification, screening and selection of 563 

genetic studies using AI/ML for the diagnosis of rare diseases. 564 

Figure 2: Visualization of temporal trends and bibliometrics. Panel A) shows the 565 

selected studies distributed per year and divided into deciles (D) according to journal 566 

impact factors (JIF). Panel B) displays a keyword co-occurrence network using abstracts 567 

of selected studies. 568 

Figure 3: Methods and areas of application. Panel A) displays the distribution of rare 569 

disease identified in selected studies. Panel B) shows the next-generation sequencing 570 

(NGS) methods used in studies targeting rare neoplastic diseases and other rare 571 

diseases. Panel C) summarizes the types of machine learning algorithms applied in 572 

selected studies. 573 

Footer: KNN: K-Nearest Neighbors; LDA: Linear Discriminant Analysis; FNN: 574 

Feedforward neural network; CNN: Convolutional Neural Networks. 575 

Figure 4: Objectives and settings of AI/ML models. Panel A) displays the goals of 576 

AI/ML models in rare neoplastic diseases (blue) and other rare diseases (orange). Panel 577 

B) contains an upset plot showing the different combinations of features in the training 578 

datasets of AI/ML models depending on the objective pursued.  579 
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Table 580 

Table 1: Distinctive features identified in the datasets used for training the ML models of included studies, based on the specific goal being 581 

pursued. 582 

CADD: Combined Annotation Dependent Depletion; VAF: Variant allelic frequency 583 

Objective AI/ML algorithm Type of instances Distinctive dataset feature/s Example of feature Use cases 
(ref) 

Stratification/Differential diagnosis Patients Genotype features Burden value [48–52] 

Prognosis of patients Patients Genotype + Clinical features Burden value + age [53,54] 

Variant/Gene prioritization Genes/variants Pathogenicity features CADD score [55–58] 

Identification of digenic/biallelic combinations Pair of genes/variants Network features Number of pathways shared [59–61] 

Identification of somatic mutations Variants Genotype + Sequence features VAF + GC-content [62–64] 
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