Financial Impact of SDF, Curodont, and GI sealants for Managing Initial Caries Lesions: Clinic and Payor Perspective

Authors:

Savyasachi V Shah, PhD1*
Laura Skaret, BS, RDH2*
Lisa J. Heaton, PhD3
Courtney Desrosiers, BS2
John Wittenborn, PhD1
Mariya Filipova, MBA3
Kirill Zaydenman, MSFS2
Jeremy Horst Keeper, DDS, MS, PhD2,4,5

* These authors contributed equally to this work

Affiliations:

1 National Opinion Research Center at the University of Chicago
2 CareQuest Innovation Partners
3 CareQuest Institute for Oral Health
4 daxwčayəbus Dental Therapy at Skagit Valley College
5 University of Washington Department of Oral Health Sciences

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflict of Interests

All authors were funded by CareQuest Innovation Partners to conduct this evaluation. CareQuest Innovation Partners has a financial relationship with vVARDIS to assess and support the U.S. deployment of Curodont Repair Fluoride Plus (CRFP). The goal of the partnership is to ensure access for historically marginalized populations (e.g., Medicaid beneficiaries). Dr. Keeper has been paid honoraria for teaching continuing education courses on various noninvasive caries therapies by Elevate Oral Care and GC America, and practices pediatric dentistry.

Acknowledgements

Special thanks to the clinical innovation, operations, and data analytics teams of Advantage Dental+. Thanks to Dr. Leah Price for guiding the beginnings of this work. Thanks to our colleagues of CareQuest Institute for Oral Health for support and critical feedback, particularly Kelly Schroeder and Caroline McLeod. Thanks to Jean-Francois Blouvac of vVARDIS and to Steve Pardue of Elevate Oral Care for insightful conversations on the dynamics of costs and benefits in oral health product innovation.
Abstract

Introduction: Evidence-based noninvasive caries therapies for initial caries lesions recently became available in the United States. Fundamental differences between noninvasive therapies and the traditional surgical dental approach warrant study of the financial scalability.

Methods: The financial costs and benefits to fee-for-service clinicians and payors were compared across eleven scenarios simulating the treatment of 1,000 initial lesions over a three-year period. The scenarios included varying combinations of noninvasive therapies (silver diamine fluoride (SDF), Curodont Repair Fluoride Plus, and glass ionomer sealants), no treatment, and various rates of one to three surface restorations to an estimated current practice model. We used a decision tree microsimulation model for deterministic and probabilistic sensitivity analyses. We derived assumptions from an initial lesion and noninvasive therapy-focused cohort study with operations data from 16 sites accepting Medicaid in Alabama as a case study and clinical data from all 92 sites.

Results: In comparison to the current practice model, scenarios that produce mutually beneficial results for payors in terms of cost savings and clinics in terms of net profit and profit margin include: Curodont, SDF on non-cosmetic surfaces, and a mix of three noninvasive therapies. When considering the limited resources of chair and clinician time, the same scenarios as well as SDF with restorations emerged with substantially higher profit margins.

Conclusion: Scenarios that include noninvasive therapies and minimize restorations achieve the balance of improving outcomes for all parties.

Practical implications: Payors should appropriately reimburse and clinics should adopt noninvasive caries therapies to improve oral health for all.

Key Words: Cost-benefit analysis, Nonrestorative dentistry, Initial caries lesions, Dental caries; Silver diamine fluoride, Curodont Repair; Glass ionomer cement.
Introduction

Initial caries lesions are the first noticeable stage of dental caries, where demineralization reaches as deep as the outer third of the dentin without cavitation. 1 International consensus and United States (US) guidelines state consistently that drilling and restoring are not indicated for initial lesions, 2,3,4 yet 94% of U.S. dentists self-report performing restorations when radiographic demineralization is still within the range of initial lesions. 5 The same guidelines mentioned above indicate noninvasive treatments for initial lesions. 2,3 Tooth-specific noninvasive caries therapies include silver diamine fluoride (SDF), Curodont Repair Fluoride Plus (Curodont), and glass ionomer sealants, among others. 3,6,7 Noninvasive therapies have similar clinical outcomes to more invasive treatments without irreversibly removing tooth structures, are completed quickly and painlessly, and are often reimbursed by payors (e.g., Medicaid). However, to our knowledge, the profitability of noninvasive therapies for dental teams and cost-savings for payors compared to predominant current practice have not yet been studied. 4,5

SDF is a brush-on therapy that prevents and arrests caries lesions at any stage excluding irreversible pulpitis. SDF-treated lesions turn black, while healthy enamel stays white. 8,9 There are not sufficient clinical trials to determine the exact effect of SDF on initial lesions. 10 However, numerous clinical trials 3,10 support the American Dental Association (ADA)’s recommendation to arrest cavitated caries lesions on coronal surfaces using SDF. As initial lesions are able to be arrested with less-potent agents (e.g., fluoride varnish), it is presumed that SDF, a more potent agent, will readily arrest initial lesions. 3,10

Curodont is a biomimetic self-assembling peptide professionally applied as a brush-on liquid. Curodont regenerates hydroxyapatite within the porous enamel of an initial lesion by absorbing into the lesion, self-assembling into scaffolds that span throughout the demineralized volume, and templating calcium and phosphate from the saliva into new hydroxyapatite. 11 Curodont has clinically important effects on arresting caries and shrinking initial lesions 6,7 while being safe. 12 In January 2019, Curodont
was added to the US Food and Drug Administration’s National Drug Codes Directory under the Over the Counter Anticaries Drug Monograph (NDC: 72247-101).

The ADA recommends the use of glass ionomer sealants in both preventing caries and arresting initial lesions in pits and fissures.13,3,14 Glass ionomer can be professionally applied to create a physical barrier and strengthening the tooth with fluoride and metal ions (e.g., remineralization), which makes the tooth less dissolvable by acid and less colonizable by bacteria.15,16,17 Due to the incorporation of fluoride and metal ions, caries prevention and arrest are maintained even if the bulk of the sealant falls out.18

SDF, Curodont, and sealants are evidence-based, non-invasive alternatives to no treatment or restorative approaches that could be profitable for clinics and cost-saving for payors while benefiting patients’ dental treatment experience. This study analyzes the financial costs and benefits for both fee-for-service clinics and payors of using these noninvasive therapies (SDF, Curodont, sealants) to treat initial lesions compared to other restoration approaches and no treatment.
Methods

Study Overview

Clinic and payor perspectives were modeled for eleven scenarios of different combinations for the three noninvasive therapies (SDF, Curodont, sealants) and restorations in 1,000 permanent teeth with initial caries lesions. We used data from clinics in the state of Alabama who accepted Medicaid as representative of a US region with high disease burden and limited dental and financial resources. We used a model of estimated current practice to which we compared other models in which 40% of teeth with initial lesions received restorative treatment while 60% received no treatment (see current practice model rationale below).

All scenarios were modeled for this purpose with cost and benefit assumptions derived from the Early Lesion Management Observational (ELMO) study as described below. The decision tree microsimulation model was built in Microsoft Excel (Redmond, WA) as per guidelines from the International Society for Pharmacoepidemiology and Outcomes Research. This model was used for deterministic and probabilistic sensitivity analysis across the scenarios over three years to compare the costs, net profit, and profit margin (all in US dollars) to fee-for-service clinics and the cost savings for fee-for-service payors. We did not adjust for inflation as the primary objective was to compare treatment approaches.

Data Source

ELMO is a change management study focusing on diagnosis and non-invasive management of initial lesions across ninety-two Advantage Dental+ clinics in eight states (WCG IRB#: 1295572; clinicaltrials.gov ID: NCT04933331). Sixteen of these clinics are located in Alabama. Enrollment in the full ELMO study includes >100,000 initial lesions diagnosed in >40,000 patients, with up to 4 years of follow up. All data for the current study come from the full ELMO data set, except where otherwise noted. Details of the model variables involving current practice, clinician cost and time, material costs, clinic reimbursement/payor costs, and treatment failure/patient benefits can be found in Appendix A.
Simulation Model of Initial Caries Management

We developed 11 scenarios to reflect several different approaches to initial lesions management (see Appendix B), and a formal model was built to reflect the 11 scenarios with 1000 teeth each (see Figure 1). In the model, initial lesion diagnosis and management occur at baseline, and the survival or failure to re-/restoration is calculated at the end of each year for three years. The costs and financial benefits to clinician and payor for each scenario, including failure and repeat failure, are calculated using standard formulas such as those for net profit (revenue – cost of treatment) and profit margin (net profit divided by revenue).

Sensitivity analysis

A Probabilistic Sensitivity Analysis (PSA) was carried out with ten thousand iterations to create more accurate estimates and to assess the reliability of results. Hourly wage ranges of the 10th to 90th percentile for dentists, hygienists, and dental assistants were used with an assumption of a triangle (linear) distribution as the input parameters of salary for the three clinician types vary based on years of experience and location. The failure ranges for each treatment or non-treatment were derived with 0.5 and 99.5 percentiles of an assumed beta distribution of the baseline cavitation proportion, considering the actual failure numerator, denominator, and sample sizes. We modeled a uniform range of reimbursement for repeat application of SDF in the 2nd and 3rd years, and for the reimbursement of Curodont. As the price of Curodont may change because it is a new product, we have used a range of $27 to $33 for V2 (1-3 teeth) and $40 to $50 for V3 (4-6 teeth). In the PSA, random values were picked for each variable within the given range and the costs and benefits for each scenario were calculated. This was repeated 10,000 times, and mean values with range between 2.5 and 97.5 percentile are reported.
Results

Assumptions

Assumptions derived from the ELMO study are presented in Table 1, which lists labor salaries, overhead costs, material costs, reimbursements, procedure times, and ranges thereof. Curodont reimbursement was estimated at $37.50 per tooth with a range of $31.63 to $43.38 (Figure 2).

Survival

Survival of restorations without receiving re-restoration after baseline treatment across three years is shown in Table 2. Deterministic clinical survival for initial lesions managed with each intervention (not the scenarios per se) at three years was in the following order: sealants (971 teeth surviving), SDF (956), 1-3 surface restorations (950), Curodont (942), and NoTx (680). Outcomes of the 11 scenarios are as follows (abbreviations defined in Appendix A and Figure 1): SDF+Restore (954 teeth surviving (2.5-97.5 percentile range=950-958 teeth)), Seal+Restore (953 (948-957)), NCTmix (952 (943-960)), Curodont (935 (907-957)), 80%Restore (895 (888-903)), 75%SDF (886 (876-897)), 60%Restore (841 (825-856)), 40%Restore (786 (762-809)), 24%Seal (746 (716-776)), 20%Restore (731 (700-762)), and NoTx (677 (638-716)).

Savings and net profits

Cumulative costs and financial benefits to payors and clinics from the deterministic analysis are shown broken out by year in Supplemental Figure 1 (numerical values in Supplemental Table 2), and in summary of all three years in Figure 3 (numerical values in Supplemental Table 3). All scenarios involving fewer restorations than the 40%Restore current practice model result in cost savings for payors, in order from greatest savings to least: NoTx, 24%Seal, 75%SDF, NCTmix, 20%Restore, and Curodont. SDF+Restore is highly similar in payor cost. Scenarios involving more restorations than the current practice model (60%Restore, Seal+Restore, and 80%Restore) result in greater costs for payors.
Clinic costs follow the same pattern as payor savings, with all scenarios involving fewer restorations than the 40% current practice model resulting in greater cost savings for clinics, and those involving more restorations than the current practice model resulting in greater costs for clinics. All scenarios involving treatment of more teeth than the current practice model (SDF+Restore, NCTmix, Seal+Restore, 75% SDF, Curodont, 80%Restore, and 60% Restore) result in higher net profits for clinics. All deterministic outcomes fall within the ranges observed in the probabilistic outcomes, as seen layered together in Figure 3.

All scenarios including Curodont and/or SDF without restorations meet all three success parameters of being cost saving for payors, cost saving for clinics, and more profitable for clinics: Curodont, 75%SDF, and NCTmix. SDF+Restore meets the clinic benefit criteria but has a similar cost to payors.

Immediate net profit per patient visit

At a per-patient visit level, the profitability of noninvasive therapies is minimal or absent for one tooth but becomes substantial with multiple teeth treated (Supplemental Figure 2). Profits for noninvasive therapies follow an economy of scale by number of teeth, due to the trivial additional time and marginal increase in material costs for application to additional teeth (Supplemental Figure 2). Distribution of restorations across the mouth make a large impact on restorative dentistry due to the increased dentist and assistant time (e.g., time for local anesthesia, use rubber dam isolation; Table 1). In comparison, distribution across the mouth makes trivial impact on noninvasive therapy profitability.

Net profit per hour

Clinic net profit per chair time is higher than the current practice model for all scenarios except NoTx and 20%Restore (Figure 4). Treating the most teeth at baseline with the least invasive procedures corresponds to the highest net profit per chair hour, with the top four being NCTmix ($328/hour), Curodont ($256/hour), 75%SDF ($232/hour), and SDF+Restore ($190/hour; Figure 4A). The use of time for all personnel for each scenario is plotted against the corresponding clinic net profit in Figure 4B.
Using hygienist time for SDF and/or Curodont scenarios saves considerable dentist and assistant time while increasing clinic net profits compared to traditional restorations.

Financial and patient benefits

Financial benefits and patient benefits (in the form of greater treatment survival, preventing the need for additional restorative treatments after baseline) are simultaneously improved for scenarios including Curodont and/or SDF without restorations, as the savings for payors and clinics increase along with the number of surviving treatments (Figure 5; NCTmix, 75%SDF, and Curodont). Some scenarios that are cost saving for payors produce fewer surviving treatments (NoTx, 20%Restore, and 24%Seal). Meanwhile, other scenarios that have more surviving treatments also cost more to payors (SDF+Restore, 60%Restore, 80%Restore, and Seal+Restore). Non-SDF and non-Curodont scenarios that treat fewer teeth at baseline than the current practice model produce fewer surviving treatments and can have lower clinic profit margin (24%Seal, 20% Restore, and NoTx). Scenarios involving more restorations have marginally higher clinic profit margin (60%Restore, 80%Restore, and Seal+Restore). The scenarios with the highest clinic profit margin in order are, Curodont, SDF+Restore, 75%SDF, and NCTmix.

Assessment of drill-free survival of teeth without any restoration shows that all non-restorative NCT scenarios emerge as superior to all others in improving financial and patient benefits (Supplemental Figure 3).
Discussion

Our study findings suggest that shifting from the current practice model (40%Restore) to non-restoratively treating initial caries lesions with SDF or Curodont (or a mix thereof) results in cost savings for payors, higher net profit and profit margin for clinics, and superior outcomes for patients. Additionally, all scenarios that treated more teeth at baseline than the current practice model resulted in more treatments surviving after 3 years. Longer-term cost savings may be even greater than our modeling shows, as costs to payors and clinics accumulate over time due to progression of initial lesions to cavitation and restoration.

When considering the chair and clinician time needed to achieve a net profit, the noninvasive approaches NCTmix, Curodont, 75%SDF, and SDF+Restore demonstrate clear superiority. The NCTmix net profit per chair time is six times that of the current practice model. Curodont and 75%SDF resulted in a net profit per chair time over four times the current practice model. When only considering financial expenditures needed to achieve clinic net profit and profit margin, four scenarios emerge as superior: SDF+Restore, NCTmix, 75%SDF, and Curodont. By utilizing noninvasive therapies, dental assistants and hygienists can work to the highest level of their scope of practice, freeing up dentists to deliver care that requires advanced training. More complex procedures tend to have higher net profit per time, creating opportunities for higher profits. Shifting production from managing initial lesions with restorations to performing higher profit margin procedures amplifies the financial benefits of managing initial lesions with SDF and Curodont.

Noninvasive therapies offer a new way to achieve improved treatment outcomes for patients while financially incentivizing payors and clinics. They follow an economy of scale by teeth treated per patient visit, so that two or more teeth treated per patient visit becomes increasingly more profitable. When considering chair time, the mix of noninvasive therapies provides the highest net profit for clinics, with Curodont and SDF emerging as much more profitable than other scenarios. The drivers of payor cost savings and clinic net profit for SDF and/or Curodont scenarios are minimal treatment times, combined
lower cost of material and clinician labor (compared to traditional restorations), and the applicability to most or all tooth surfaces.

Treatment of initial lesions with traditional restorations is extremely common, as 94% of US dentists report restoring initial lesions\(^5\) while only 11%-12% of control group initial lesions progress.\(^6,21\) This disconnect may be due to the ubiquitous misunderstanding that radiographic appearance of demineralization reaching the dentin necessarily indicates cavitation.\(^5,22,23\) However, international guidelines recommend against restoring initial lesions as these lesions can be healed, or arrested, through remineralization.\(^2,3,4\) Although restorations have failure rates similar to noninvasive therapies, when noninvasive therapies fail the negative result is a restoration, whereas failed restorations require deeper and more invasive procedures. Noninvasive therapies provide a treatment option that empowers dental teams to heal the first signs of disease.

Sealants are a highly efficient and successful method of treating initial lesions and contribute to the superiority of the NCTmix in the current analysis. The ADA recommends sealants for the management of initial lesions.\(^13,3,14\) Additionally, the World Health Organization (WHO) recently added glass ionomer, modeled here as the sealant material, to their Lists of Essential Medicines for Children and for Adults in recognition of its preventive and therapeutic value.\(^24,25,26\) The optimal result of the NCTmix scenario demonstrates that use of sealants to manage initial lesions needs to be supplemented with other noninvasive therapies (e.g., SDF or Curodont), rather than being used with other restorations or alone.

In the short time since it has been used in the US for caries arrest, SDF has already been impactful, for example by lowering the use of general anesthesia in young children by 70% in a large Medicaid-focused network of community clinics.\(^27\) SDF is the focus of the ADA evidence-based guideline on NonRestorative Caries Treatment.\(^3\) The WHO acknowledged SDF’s potential to equitably decrease suffering from caries by adding it to its Lists of Essential Medicines (for both children and adults).\(^3,24,26\) The simplicity of applying SDF was also recently recognized by the creation of a medical procedure...
However, current evidence primarily focuses on use for moderate to advanced caries lesions rather than initial lesions. The results of this study provide evidence of the cost-effectiveness of SDF for treatment of initial lesions.

Curodont is a relatively new drug that provides a therapeutic effect to rebuild enamel hydroxyapatite. Unlike SDF, its lack of staining and neutral flavor positions it to be used throughout the mouth, and particularly for permanent anterior teeth. It is not used to seal in caries, and therefore may be more accepted by dentists than sealants. For dental clinics, the profit margin for Curodont is superior, because it takes less clinician time to perform the application than to place restorative fillings.

While not a direct focus of this analysis, noninvasive therapies are likely to be more beneficial for, and favored by, patients over traditional dental treatments for initial lesions. Dental fear and anxiety are well documented barriers to receiving regular oral health care, and these should be greatly reduced given that noninvasive therapies are pain, needle, and drill free. Since noninvasive therapies can be easily delivered by non-dentist professionals within and outside traditional dental care settings (e.g., schools, communities), they should improve patient access to oral health care. Finally, since noninvasive therapies stop and reverse disease progression, they help patients keep their teeth longer and avoid expensive restorative care resulting from recurrent caries lesions.

This study includes some limitations. The clinical outcome data on which the analysis depends cannot be representative of all populations, and likely represent less disease progression than in the population. This case study of Alabama Medicaid may not represent challenging dynamics in other geographic areas, though any can be similarly modeled. The scenarios are meant to demonstrate practical options in clinical practice but cannot represent all constellations of mixes. Real life challenges will inevitably deviate from the outcomes of this theoretical model, particularly during the change from a restorative to a non-invasive paradigm; however, these data predict strong financial benefits after a transition time.
Conclusion

The key component of the economic success of noninvasive therapies is to empower non-dentist clinicians to treat dental caries. Accordingly, the success of this noninvasive paradigm requires 1) policymakers to support non-dentist clinicians to manage initial lesions; 2) payors to invest in creating value-based reimbursements, and 3) clinics to adopt new procedures with consistent change management. The use of noninvasive therapies for initial lesions is cost saving for payors, efficient and profitable for clinics, and beneficial for patients. This is a technique whose time has come.
Figure Legends

Figure 1. Initial caries lesion management cost-benefit model. The 11 modeled scenarios (vertical bars) are simulated by applying the relevant fraction of teeth into each year 1 management category (green and black at left). The current practice scenario model is highlighted in brown. Costs to payors and costs and revenue to clinics are incorporated for the initial treatments (green) and any progression of caries lesions reaching cavitation and therefore indicating a restoration (orange) or re-restoration (crimson). Restoration from treatment failure within one year is reimbursed with the initial treatment fee removed (-$); restoration thereafter is reimbursed fully. Teeth without restoration in a given year are considered stable (grey) and have no costs.

Figure 2. Modeling Curodont reimbursement to balance payor and clinic financial interests. Payor savings (yellow) and clinic profit (orange) with respect to the current practice model of 40% restorations are shown for a range of per-tooth reimbursement amounts for Curodont treatment. There is a $11.75 range ($31.63 - $43.38) in which shifting from the current practice model to treating all teeth with Curodont is cost-saving for payors and profit-increasing for clinics. The midpoint represents a balanced reimbursement to incentivize both stakeholders to switch.

Supplemental Figure 1: Deterministic financial costs and benefits. The clinic net profit (green), clinic cost (orange), and payor cost (total) at the end of each year for 1,000 initial caries lesions by each management scenario. Payor savings (yellow and brown dashed line) occurs when the year 3 total bar height is less than that of the current practice model (brown outline). Increased clinic net profit (dashed green and brown line) occurs when the year 3 green bar is higher than that of the current practice model (brown outline). All options that include SDF and/or Curodont are more profitable for clinics while also cost saving for payors.

Figure 3. Financial costs and benefits. The net profit (green) and costs (orange) to clinics at the end of 3 years are shown for each scenario, from deterministic (bars) and probabilistic (dots and 95% distributions) approaches. All deterministic data are within the range observed in the corresponding simulations. Costs to payors are shown as the combined bar height and is written at bottom. From a payor financial perspective, all seven scenarios with lower costs are improvements on the current practice scenario (shown as brown bar). From a clinical financial perspective, scenarios ending in box “a” and not extending into box “b” are optimal. Basing clinical decisions purely on net profit would lead to further overtreatment; taking into account costs identifies four scenarios as improvements (black outline) from current practice.

Supplemental Figure 2. Per patient visit immediate clinic net profit by number of teeth and anatomical areas, with immediate costs only. Distribution of the teeth across anatomic areas (A) of the mouth (e.g., quadrants) is much less impactful on noninvasive caries therapy net profit versus restoration net profit because there is no need for local anesthesia or rubber dams. Treating more teeth (T) per patient in one visit is more profitable for noninvasive caries therapies regardless of anatomic distribution; all caries lesions can be managed in one visit.

Figure 4A and Figure 4B. Clinic net profit per hour. Left | A) Clinic profit divided by the chair time throughout 3 years is shown for each scenario. Higher net profit per chair time occurs when the corresponding bar height is higher than that of the current practice model (green box). All scenarios with non-invasive caries therapies are more profitable per chair time than all restorative-only scenarios. Right | B) Clinic net profit mapped against use of time from each clinician type: hygienist (purple), dentist (lilac), and assistant (blue). Times for each scenario are connected by a grey line. Bolded scenarios use the least amount of clinician time (often the most limited resource) while maximizing profit.

medRxiv preprint doi: https://doi.org/10.1101/2023.01.27.23285118; this version posted January 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Figure 5A and Figure 5B. Comparison of payor savings and clinic profit margin to expected patient outcome. **Left | A)** Payor savings and **Right | B)** Clinic profit margin for each initial caries lesion management scenario is plotted against teeth surviving without caries progression to cavitation at the end of 3 years. Bolded scenarios improve patient health, payor savings, and clinic ROI. All nonrestorative scenarios with SDF and/or Curodont are superior for all stakeholders.
Appendix A. Details of the model variables involving current practice, clinician cost and time, material costs, clinic reimbursement/payor costs, and treatment failure/patient benefits.

Current Practice Model

To determine a base case of current practice for comparison, we estimated the expected rate of restoration for initial lesions. Dental health records typically include treatment codes rather than diagnostic codes. Therefore, we consulted with national experts and estimated that 40% of initial lesions are treated with 1-3 surface restorations. We considered that shallower (less severe) lesions are most prevalent and least often drilled, while deeper initial lesions are nearly always drilled but are less prevalent. We verified this expected initial lesions restoration rate by cross-referencing the incidence of initial lesions and 1-3 surface restorations in the ELMO study data. This may be a very low estimate since the data is taken from clinics that actively diagnose and treat initial lesions with noninvasive therapies.

Clinician Costs and Time

We estimated the clinician and chair overhead time required to perform each treatment per patient from experience in consultation with individuals in Clinic Management from the ELMO study. We then projected this estimate to reflect the quantity of teeth treated and their distribution within the four quadrants of the mouth. We modeled hygienists as providers for noninvasive therapies and dentists with an assistant for restorations. Provider time for the first procedure per initial lesions lesion was estimated for SDF (3 minutes), Curodont (5), sealants (5), restoration (20), or re-restoration (22.5 minutes), with 5 minutes of additional assistant time for re-/restorations for set up and clean up (Table 1). Additional time was added for initial lesions in other anatomical areas (e.g., quadrants): 1.5, 2.5, 2.5, 15, or 15 minutes, respectively. No additional time was calculated per tooth in the same quadrant for SDF, Curodont, or sealants. Each additional initial lesion in a quadrant was given 5 or 7.5 minutes per tooth for restoration or re-restoration, respectively. Chair time for a procedure was estimated as either assistant (restoration) or hygienist (noninvasive therapies) time. The median hourly wages for Alabama dentists, hygienists, and dental assistants were obtained from Salary.com (accessed November 25th, 2022) and 33% in indirect costs was added for payroll taxes and benefits. The probability of the number of teeth and distribution across four anatomical areas were factored into the model to account for economies of scale in labor and material cost (Supplemental Table 1).

Material Costs

Material costs were estimated based on unit or dose cost and the number of teeth that can be treated by each (Table 1). Cost for a planned more efficient Curodont product for 4+ teeth was estimated by the manufacturer. A 6.1% sales tax was added to material costs, as the average of those in the Alabama ELMO clinic locations. The total treatment costs for each intervention were estimated by considering the labor, overhead, and material costs, and treatment time, based on the number of teeth treated and their anatomic distributions observed in the ELMO study.

Clinic Reimbursement / Payor Costs

Fees were taken from the 2022 Alabama Medicaid fee schedule for each procedure code in the existing Current Dental Terminology (CDT) and are listed in Table 1. SDF was modeled with annual application, whereas Curodont and GI sealants were modeled with a single application. The annual SDF application was modeled with attrition for compliance: in year two 50% of survived teeth originally treated with SDF are retreated, and in year three, 25% of survived teeth originally treated with SDF are retreated.

The weighted average reimbursement for restorations was calculated based on the relative incidence in ELMO patients for each of the nine CDT procedure codes for 1-3 surface restorations and similarly for re-restoring any overlapping surface. The reimbursement for restoration within one year of any noninvasive therapy was calculated by subtracting the reimbursement given for the prior treatment from the reimbursement for the restoration. No compensation is given for re-restoration within one year in
Alabama. To account for multiple failures in the same tooth in sequential post-treatment years, separated by more than 12 months, 50% of such repeat failures were reimbursed in the second and third years.

To establish a reimbursement rate and range for Curodont, a full deterministic analysis was run for the current practice model and for Curodont with a range from $20 to $50 per tooth. The break even for clinic net profit and payor cost with respect to the current practice model defined the minimum and maximum of the range, and the midpoint was used in further analysis in attempt to balance payor and clinic interests.

Treatment failure / patient benefit

Treatment failure is defined as any tooth/surface receiving restoration after baseline. The benefit to the patient is thus defined as greater treatment survival, preventing the need for additional restorative visits after baseline treatment. Treatment failures were modeled at the end of each of 3 years. Failure rates were derived from claims-level records from the ELMO study for the proportion of teeth with operative treatment (restoration, endodontics, extraction, or crown lengthening) performed on an overlapping surface of an initial lesion previously treated with noninvasive therapies or 1-3 surface restorations. However, treating failures costs were only modeled as the average of minor restorations. Clinical effectiveness with no treatment was calculated as the weighted mean of control outcomes in two systematic reviews of noninvasive therapies. The time and costs for treating failures are considered for one tooth in one anatomic area, regardless of the number of initial lesions per patient (the efficiencies of multiple lesions treated in one patient do not apply).
Appendix B. Description of 11 scenarios modeled to reflect several different approaches to initial lesions management

We developed 11 scenarios to reflect several different approaches to initial lesions management (see Figure 1). In addition to one condition that involved no treatment of initial lesions (“NoTx”), we included four scenarios in which differing percentages of initial lesions were treated with traditional restorations while the remaining percentages were left untreated. For example, in the scenario labeled “20%Restore,” 20% of the initial lesions received traditional restorations while the remaining 80% of initial lesions remained untreated. Similar scenarios were created in which 40% (the current practice model), 60%, and 80% of initial lesions received traditional restorations while the remaining initial lesions remained untreated (for four scenarios in total). We created two scenarios with SDF applied on 75% of initial lesions, corresponding to the fraction of initial lesions occurring anywhere on permanent teeth except the facial surfaces of anterior and premolar teeth in the ELMO study: in the “75%SDF” scenario, 75% of initial lesions were treated with SDF and 25% were left untreated; in the “SDF+Restore” scenario, 75% of initial lesions were treated with SDF and 25% were treated using traditional restorations. As sealants can only be applied to pits and fissures, similarly, we created two scenarios with sealants applied to 24% of initial lesions, corresponding to the fraction of initial lesions of permanent teeth occurring in pits and fissures in the ELMO study: in the “24%Seal” scenario, 24% of initial lesions were treated with sealants and 76% were left untreated; in the “Seal+Restore” scenario, 24% of initial lesions were treated with sealants and 76% were treated using traditional restorations. There is no contraindication to applying Curodont to initial lesions on all surfaces, therefore one scenario estimated treatment of all (100%) initial lesions using Curodont. Finally, we created one scenario (“NCTmix”) in which initial lesions were treated with the ideal noninvasive therapy with respect to the surface/location of the initial lesions in the mouth. The 24% of initial lesions occurring in pit and fissure surfaces in ELMO are treated with sealants; the 26% of initial lesions in facial surfaces of anterior teeth and premolars (cosmetic surfaces), where the SDF stain may not be acceptable to dental teams and patients, are treated with Curodont; and the remaining 50% of initial lesions are treated with SDF.
References:

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-category</th>
<th>Amount</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median salary / hour*</td>
<td>Dentist</td>
<td>$85.00</td>
<td>$63 to $110</td>
</tr>
<tr>
<td></td>
<td>Dental Hygienist</td>
<td>$36.00</td>
<td>$27 to $45</td>
</tr>
<tr>
<td></td>
<td>Dental Assistant</td>
<td>$19.00</td>
<td>$15 to $23</td>
</tr>
<tr>
<td>Overhead cost / hour</td>
<td>Without management</td>
<td>$11.65</td>
<td></td>
</tr>
<tr>
<td>Material Costs#</td>
<td>Curodont V2 for 1-3 teeth</td>
<td>$30</td>
<td>$27 to $33</td>
</tr>
<tr>
<td></td>
<td>Curodont V3 for more than 3 teeth</td>
<td>$45</td>
<td>$40 to $50</td>
</tr>
<tr>
<td></td>
<td>SDF up to 4 teeth</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GI Sealant up to 2 teeth</td>
<td>$3.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite Resin first tooth</td>
<td>$12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite Resin each additional tooth</td>
<td>$4</td>
<td></td>
</tr>
<tr>
<td>Reimbursements per tooth@</td>
<td>Curodont</td>
<td>$36.50</td>
<td>$31.5 to $41.5</td>
</tr>
<tr>
<td></td>
<td>SDF</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GI Sealant</td>
<td>$26.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restoration</td>
<td>$76.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Re-restoration</td>
<td>$93.72</td>
<td></td>
</tr>
<tr>
<td>Procedure time</td>
<td>SDF – one anatomical area</td>
<td>3 min</td>
<td>Hygienist</td>
</tr>
<tr>
<td></td>
<td>SDF – each additional area</td>
<td>1.5 min</td>
<td>Hygienist</td>
</tr>
<tr>
<td></td>
<td>Curodont – one anatomical area</td>
<td>5 min</td>
<td>Hygienist</td>
</tr>
<tr>
<td></td>
<td>Curodont – each additional area</td>
<td>2.5 min</td>
<td>Hygienist</td>
</tr>
<tr>
<td></td>
<td>GI Sealant – one anatomical area</td>
<td>5 min</td>
<td>Hygienist</td>
</tr>
<tr>
<td></td>
<td>GI Sealant – each additional area</td>
<td>2.5 min</td>
<td>Hygienist</td>
</tr>
<tr>
<td></td>
<td>Restoration – first tooth</td>
<td>25 min</td>
<td>Assistant</td>
</tr>
<tr>
<td></td>
<td>Restoration – additional tooth in same area</td>
<td>5 min</td>
<td>Assistant</td>
</tr>
<tr>
<td></td>
<td>Restoration – additional anatomic area</td>
<td>15 min</td>
<td>Assistant</td>
</tr>
<tr>
<td></td>
<td>Re-restoration – first tooth</td>
<td>27.5 min</td>
<td>Assistant</td>
</tr>
<tr>
<td></td>
<td>Re-restoration – additional tooth in same area</td>
<td>7.5 min</td>
<td>Dentist</td>
</tr>
<tr>
<td></td>
<td>Re-restoration – additional anatomic area</td>
<td>15 min</td>
<td>Assistant</td>
</tr>
<tr>
<td></td>
<td>Applicable portion of initial caries lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDF</td>
<td>75.10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curodont</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GI Sealants</td>
<td>24.30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restoration</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDF-treated teeth likely to receive additional treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd year</td>
<td>50%</td>
<td>35-70%</td>
</tr>
<tr>
<td></td>
<td>3rd year</td>
<td>25%</td>
<td>15-50%</td>
</tr>
<tr>
<td>Materials</td>
<td>Failures</td>
<td>Observations</td>
<td>Survival proportion</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Year 1 (from 6-12 month observations)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curodont</td>
<td>16</td>
<td>902</td>
<td>98.2%</td>
</tr>
<tr>
<td>Sealant</td>
<td>2</td>
<td>299</td>
<td>99.3%</td>
</tr>
<tr>
<td>SDF</td>
<td>121</td>
<td>10,061</td>
<td>98.8%</td>
</tr>
<tr>
<td>Untreated†</td>
<td>57</td>
<td>473</td>
<td>88.0%</td>
</tr>
<tr>
<td>1-3 surface restoration</td>
<td>1,557</td>
<td>103,933</td>
<td>98.5%</td>
</tr>
<tr>
<td>Year 2 (from 12-24 month observations)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curodont</td>
<td>6</td>
<td>291</td>
<td>97.9%</td>
</tr>
<tr>
<td>Sealant</td>
<td>4</td>
<td>358</td>
<td>98.9%</td>
</tr>
<tr>
<td>SDF</td>
<td>138</td>
<td>9,142</td>
<td>98.5%</td>
</tr>
<tr>
<td>Untreated†*</td>
<td>57</td>
<td>473</td>
<td>88.0%</td>
</tr>
<tr>
<td>1-3 surface restoration</td>
<td>2,614</td>
<td>157,923</td>
<td>98.3%</td>
</tr>
<tr>
<td>Year 3 (from 24-36 month observations)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curodont*</td>
<td>6</td>
<td>291</td>
<td>97.9%</td>
</tr>
<tr>
<td>Sealant*</td>
<td>4</td>
<td>358</td>
<td>98.9%</td>
</tr>
<tr>
<td>SDF</td>
<td>55</td>
<td>3,195</td>
<td>98.3%</td>
</tr>
<tr>
<td>Untreated†*</td>
<td>57</td>
<td>473</td>
<td>88.0%</td>
</tr>
<tr>
<td>1-3 surface restoration</td>
<td>2,148</td>
<td>111,684</td>
<td>98.1%</td>
</tr>
</tbody>
</table>
Clinic Cost

a. Higher clinic net profits

Clinic Net Profit

Deterministic Clinic Net Profit
Simulation Mean Clinic Net Profit

Deterministic Clinic Cost

b. Higher clinic costs

Deterministic Payor Cost

Payor cost
$25k $36k $27k $47k $58k $69k $42k $34k $67k $36k $47k

- Deterministic Clinic Net Profit
- Simulation Mean Clinic Net Profit
- Deterministic Clinic Cost
- Simulation Mean Clinic Cost
- Deterministic Payor Cost