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Abstract: 

Importance: 

Advanced stage non-small cell lung cancer (NSCLC) patients with no driver mutations are typically treated 

with immune checkpoint inhibitor (ICI)-based therapy, either in the form of monotherapy or concurrently 

with chemotherapy, while treatment modality selection is based mainly on programmed death ligand 1 

(PD-L1) expression levels in the tumor. However, PD-L1 assays are only moderately predictive of 

therapeutic benefit.  

Objective: 

To develop a novel decision-making tool for physicians treating NSCLC patients on whether to administer 

immune checkpoint inhibitor (ICI) therapy alone or in combination with chemotherapy. 

Design, setting, and participants: 

This multicenter observational study includes patients from an ongoing clinical trial (PROPHETIC; 

NCT04056247). Patients were recruited from 13 different centers (total n=425; 58 patients were excluded) 

from June 2016 and June 2021. Plasma samples were obtained prior to treatment initiation, and deep 

proteomic profiling was conducted. PROphet® computational model for predicting clinical benefit (CB) 

probability at 12 months was developed based on the plasma proteomic profile. The model performance 

was validated in a blinded manner. Following validation, training and prediction was performed over the 

entire cohort using cross-validation methodology. The patients were divided into four groups based on 

their PD-L1 expression level combined with their CB probability, and the survival outcome was examined 

for each group. The data were analyzed from July to October 2022. 

Main outcome and measures: Clinical benefit from ICI-based treatment, overall survival (OS) and 

progression-free survival (PFS). 

Results: The model displayed strong predictive capability with an AUC of 0.78 (p-value = 5.00e-05), 

outperforming a PD-L1-based predictive model (AUC = 0.62; p-value 2.76e-01), and exhibited a significant 

difference in OS and PFS between patients with low and high CB probabilities. When combining CB 

probability with PD-L1 expression levels, four patient subgroups were identified; (i) patients with PD-

L1≥50% and a negative PROphet result who significantly benefit from ICI-chemotherapy combination 

therapy compared to ICI monotherapy; (ii) patients with PD-L1≥50% and a positive PROphet result who 

benefit similarly from either treatment modalities; (iii) patients with PD-L1<50% and a negative PROphet 

result who do not benefit from either treatment modalities; (iv) patients with PD-L1<50% and a positive 

PROphet score who benefit from combination therapy. 

Conclusions and relevance: The PROphet® model displayed good performance for prediction of CB at 12 

months based on a plasma sample obtained prior to treatment. Our findings further demonstrate a 

potential clinical utility for informing treatment decisions for NSCLC patients treated with ICIs by adding 

resolution to the PD-L1 biomarker currently used to guide treatment selection, thereby enabling to select 

the most suitable treatment modality for each patient. 

 



Introduction 

ICI-based therapies are standard of care for NSCLC patients1-3. According to current guidelines for driver 

mutation-negative NSCLC, patients with PD-L1 expression ≥50% are treated with first-line immune 

checkpoint inhibitor (ICI) monotherapy or combination ICI-chemotherapy. For patients with PD-L1 

expression <50%, combination ICI-chemotherapy is the preferred choice4. However, clinical evidence 

demonstrates limitations of the PD-L1 biomarker in predicting benefit from ICI-based therapy5-7. 

Predictive biomarkers with greater accuracy are therefore needed for guiding treatment choices.  

Here, we developed PROphet®, a novel and robust machine learning (ML)-based model that 

analyzes proteomic profiles in pre-treatment blood plasma to predict benefit from ICI-based therapy and 

optimize treatment selection. 

 

Methods 

Patient cohort 

Blood plasma samples and clinical data were collected from advanced stage NSCLC patients within the 

framework of the PROPHETIC clinical study (NCT04056247). All clinical sites received IRB approval for the 

study protocol and all patients provided written informed consent. Samples analyzed in this study were 

collected from 425 patients at 13 medical centers in Israel, Germany and USA between June 2016 and 

June 2021. Of the 425 enrolled patients, 58 were excluded due to technical or clinical reasons, resulting 

in 367 patients in the analyzed cohort (eFigure 1). Clinical data were collected for each patient. Patients 

displaying progression-free survival (PFS) before 12-months time point were classified as ‘no clinical 

benefit’ (NCB) patients. All other patients were classified as ‘clinical benefit’ (CB) patients. 

Proteomic-based computational model 

Proteomic profiling of plasma samples was performed using the SomaScan® Assay v4.1 (SomaLogic, 

Boulder, CO). The PROphet® model was developed on the development set (n=254) and was tested in a 

blinded manner on the independent validation set (n=85), while the rest of the samples were left out from 

the prediction analysis as they were included in a previous round of training and validation. The division 

was done randomly while maintaining an equal distribution of main clinical features between the two sets 

(eMethods and eTable 1 in the Supplement). A set of 388 proteins that displayed differential plasma level 

distributions in CB and NCB populations was identified using Kolmogorov-Smirnov statistical test following 

80 iterations of training and test sets selection (eMethods and eFigure2 in the Supplement). Such proteins, 

termed resistance associated proteins (RAPs), serve as potential indicators of CB in the following manner: 

for a given patient, a machine learning-based model infers a CB or NCB prediction for each one of the 388 

RAPs based on XGBoost algorithm; the sum of all predictions in a given patient, called RAP score, reflects 

the patient’s likelihood of benefiting from treatment (patients displaying numerous CB predictions are 

more likely to benefit, and vice versa). To generate the output of the PROphet® model, termed as the 

clinical benefit probability (CB probability), RAP scores were linearly scaled to values between 0 and 1. 

 



Results 

Patient clinical parameters are presented in Table 1. The median age was 65 years with a predominance 

of male patients (approximately 2:1). The majority of the patients (78%) had non-squamous cell 

carcinoma, in agreement with expected proportions. Most of the patients had ECOG performance status 

of 0-1 (95%). Patients were either treated with ICI-chemotherapy combinations (56%) or ICI monotherapy 

(44%). There was an approximately equal distribution of patients with PD-L1<1%, PD-L1 1-49% and PD-

L1≥50% tumors. Twenty five percent of the patients achieved CB at 12 months. 

As PD-L1 expression is a companion diagnostic test that guides treatment decision in NSCLC 

patients without driver mutations, we began by evaluating the predictive performance of a model based 

on the PD-L1 biomarker. The PD-L1 based model displayed area under the curve (AUC) of the receiver 

operating characteristic (ROC) plot of 0.55 (Figure 1A) and hazard ratio (HR) of 0.95 (Figure 1B). Next, we 

developed a clinical model based on PD-L1 and additional parameters previously shown to associate with 

clinical benefit, namely ECOG8, sex9 and line of treatment10. The clinical model displayed a minor 

improvement over the PD-L1-based model, with an AUC of 0.62 (Figure 1A-B). Aiming to develop a more 

robust predictive model, we developed an ML-based model, termed PROphet®. The output (CB 

probability) is based on the sum of predictions from a large collection of proteomic biomarkers associated 

with therapeutic benefit (eMethods in the supplement). The PROphet® model displayed superior 

predictive performance in comparison to the PD-L1-based and clinical models (AUC=0.78; Figure 1A). In 

addition, a log-rank test demonstrated that patients with high CB probability achieved significantly longer 

PFS and OS than patients with low CB probability (Fig. 1B-D, HR = 0.41 and 0.38, respectively), further 

outperforming PD-L1 based predictions. Lastly, linear regression analysis demonstrated a high goodness 

of fit between predicted CB probability and observed CB rate (R2 = 0.94; Fig. 1E). Notably, actual NCB 

patients clustered at the lower range of predicted CB probabilities, indicating that the model has a high 

predictive power (Fig. 2F). This finding was further strengthened by an enrichment analysis (2D 

enrichment test; False discovery rate < 0.05; eFigure 3). 

Next, we tested the ability of the PROphet® model to forecast survival outcomes in PD-L1≥50% 

patients receiving ICI monotherapy or combination ICI-chemotherapy. Patients were classified into 

PROphet® negative and positive groups using the median CB probability as a threshold. In the PROphet®-

positive group, patients receiving ICI monotherapy or combination therapy fared similarly well (Figure 2A 

and eFigure 4A in the supplement). This implies that such patients are suitable candidates for 

monotherapy and may be spared the more toxic ICI-chemotherapy combination. In contrast, in the 

PROphet®-negative group, OS and PFS were significantly longer in patients receiving ICI-chemotherapy in 

comparison to ICI monotherapy (Fig. 2B and eFigure 4A in the supplement). Median OS was not reached 

versus 11.20 months (combination vs monotherapy; HR=0.22; p=0.002) and median PFS was 14.29 vs. 

5.52 months (combination vs. monotherapy; HR=0.44; p=0.019). This suggests that PD-L1≥50% patients 

with a PROphet®-negative score should consider combination ICI-chemotherapy despite high PD-L1 levels.  

Finally, we asked whether the model could provide insights for managing patients with PD-L1 

<50%. In this analysis, patients in the PROphet®-positive group displayed an OS benefit when treated with 

ICI-chemotherapy combination in comparison to patients receiving monotherapy, although statistical 



significance was not reached (Figure 2C). Median OS was 27.83 months for ICI-chemotherapy vs 13.04 

months for ICI monotherapy. This result is in line with current guidelines recommending ICI-chemotherapy 

for patients with PD-L1<50%. In contrast, PROphet®-negative patients displayed poor outcomes when 

treated with either of the two treatment modalities, with a median OS of 9.32 and 12.32 months for 

monotherapy and ICI-chemotherapy, respectively (Fig. 2D). These findings suggest that treatment types 

other than the standard of care may be considered for these patients. 

 

Discussion 

Here we describe a novel a tool for supporting treatment decision for NSCLC patients receiving anti-PD-

(L)1-based therapy. The PROphet® model provides two main clinical utilities. First, it successfully predicts 

therapeutic benefit at 12 months, displaying superior predictive capabilities over PD-L1 based models. 

Second, when used in combination with PD-L1 testing, the model helps in determining whether a patient 

should receive ICI alone or an ICI-chemotherapy combination. Thus far, this tool can potentially improve 

overall rate by guiding patients with PROphet® negative result to alternative treatment modalities. 

Notably, tumor PD-L1 expression and tumor mutational burden (TMB) are the most prominent biomarkers 

for predicting clinical benefit from ICI-based therapy to date. While these biomarkers require tumor 

tissues, which is sometimes not available, PROphet® requires a blood test, which simplifies the procedure.  

Our model analyzes a large set of proteomic biomarkers, termed RAPs, that collectively provide a 

robust prediction of treatment benefit. Using supervised computational models to analyze omic-level 

data, we and others have previously identified blood-based signatures predictive of ICI outcomes11-14. 

However, successful validation can be challenging due to several intrinsic limitations, including overfitting 

and inter- and intra-patient heterogeneity, while large sample sizes are necessary to achieve acceptable 

model performance. The PROphet® model handles such challenges due to its reliance on hundreds of 

proteomic predictors. Assuming that most RAPs are indeed associated with CB, those RAPs that yield less 

reliable predictions have a minimal impact on the final output. 

This study has several limitations. First, the analyzed cohort includes patients receiving different 

treatment modalities, as well as patients with tumors of different histological types. Second, the cohort 

does not include a control group, and the patients were not randomized among the therapeutic strategies. 

Therefore, interpretation is limited. Third, while we tested the model in an independent validation set, 

this patient set was relatively small. Validation in a larger cohort is required.  

 

Conclusions 

Altogether, this study shows that using proteomic analysis of a pre-treatment plasma sample, the 

PROphet® model, when combined with PD-L1 test, stratifies the patients into four subgroups, providing 

additional resolution to the PD-L1 biomarker currently used to guide treatment selection. 
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Figure legend: 

Figure 1: Performance of the PROphet® predictive model. A. ROC plots of the five models. Predictive 

performance was compared across five models: PROphet® model; PD-L1-based model (PD-L1); Clinical 

model (CM); Integrated PROphet® + PD-L1; Integrated PROphet® + CM. (B). The AUC is indicated. The 

dashed line indicates AUC=0.5. CI, confidence interval. B. Forest plot comparing the five models. Cox 

regression analysis based on OS (top) and PFS (bottom) data. C. and D. OS (C) and PFS (D) analysis of 



patients stratified to high and low CB probability groups. The median CB probability was used as the 

stratification threshold. HR, hazard ratio. CI, confidence interval. E. Predicted CB probability as a function 

of observed CB rate. Each dot represents a patient. The observed CB rate for each predicted CB probability 

datapoint refers to the proportion of observed CB patients within a patient group assigned CB probability 

±0.15. X=Y is indicated by a black line. The goodness of fit is indicated. F. Bar plot showing predicted clinical 

benefit (CB) probabilities sorted from lowest. 

Figure 2: The PROphet® model predicts differential overall survival outcomes when combined with PD-L1 

expression level. A. and B. PD-L1≥50% patients were stratified to PROphet® positive (A) and PROphet® 

negative (B) groups. C. and D. PD-L1<50% patients were stratified to PROphet® positive (C) and PROphet® 

negative (D) groups. OS was evaluated in patients treated with ICI monotherapy vs combination ICI-

chemotherapy. Dashed line indicates median survival. 

 

Supplementary figure legend: 

eFigure 1: Patient exclusion. A cohort of 425 patients was assembled. Following patient exclusion, 339 

patients remained in the analysis. Reasons for exclusion are indicated. 

eFigure 2: A. Development of the PROphet® prediction model. A cohort of advanced stage NSCLC patients 

receiving ICI-based therapy was assembled. Pre-treatment blood samples were obtained, and plasma 

proteomes were profiled using SomaScan® technology. Clinical benefit (CB) was assessed at 12 months 

after starting treatment, and patients were followed up for 2 years. A predictive model for CB was 

developed as follows: Proteins displaying differential plasma levels in CB and NCB patient populations 

were selected for model training using a statistical test. Such proteins are collectively termed Resistance 

Associated Proteins (RAPs). A predictive model for CB was developed per RAP using a machine learning 

algorithm. CB predictions inferred from each RAP were summed up to yield a RAP score per patient. RAP 

scores were linearly scaled to values between 0 and 1, enabling the conversion of a given patient’s RAP 

score into a CB probability. B. Development and validation of the RAP model. The cohort was divided into 

development and validation sets (75% and 25%, respectively). The development set was randomly divided 

into train and test sets (75% and 25%, respectively). The train set was used for RAP selection followed by 

model training resulting in a predictive model per RAP. Clinical benefit (CB) predictions were then 

generated per RAP for each patient in the test set. CB predictions from all selected RAPs were summed 

up to yield a RAP score per patient in the test set. The process was repeated 80 times, each time with a 

random division of development set patients into train and test sets. RAP scores were averaged per 

patient in the development set and linearly scaled. Model output is CB probability (a value between 0 and 

1). The model was then locked and tested on the independent validation set. 

eFigure 3: Enrichment analysis for CB probabilities and observed CB rates at each time point. The 

enrichment analysis was done using 2D-enrichment test. The X-axis indicates the enrichment score for 

predicted CB probability. The Y-axis indicates the enrichment score for observed rates (as defined by the 

proportion of observed CB patients within a patient group assigned the CB probability ±0.15). The 

enrichment score is a value between 1 and -1. Positive and negative enrichment scores indicate 



enrichment in high and low CB probabilities, respectively and in high and low observed CB rates, 

respectively. The solid line indicates the X=Y line. 

eFigure 4: The PROphet® model predicts differential PFS outcomes when combined with PD-L1 expression 

level. A. and B. PD-L1≥50% patients were stratified to PROphet® positive (A) and PROphet® negative (B) 

groups. C. and D. PD-L1<50% patients were stratified to PROphet positive (C) and PROphet® negative (D) 

groups. PFS was evaluated in patients treated with ICI monotherapy vs combination ICI-chemotherapy. 

Dashed line indicates median PFS. 
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Table 1: Basic clinical parameters. For each parameter, except for 
age, the total is presented, and the percentage is presented in 
brackets. Age is presented as median and the range in brackets. 

Feature Parameter Total (n=367) 

Sex 

Female 126 (34.3%) 

Male 241 (65.7%) 

Age Years 65 (38-89) 

ECOG 

0 142 (38.7%) 

1 205 (55.9%) 

2 18 (4.9%) 

Unknown 2 (0.5%) 

Histology 

Non-squamous 285 (77.7%) 

Squamous cell lung cancer 80 (21.8%) 

Unknown 2 (0.5%) 

Smoking history 

Yes 334 (91.0%) 

No 33 (9.0%) 

PD-L1 

<1% 93 (25.3%) 

1-49% 120 (32.7%) 

>50% 131 (35.7%) 

Unknown 23 (6.3%) 

Treatment 

ICB monotherapy 162 (44.1%) 

ICB + chemotherapy 205 (55.9%) 

Line 

1st 270 (73.6%) 

>1 97 (26.4%) 

Clinical benefit 

Clinical benefit (CB) 90 (24.5%) 

No clinical benefit (NCB) 236 (64.3%) 

Unknown 41 (11.2%) 
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