High number of SARS-CoV-2 persistent infections uncovered through genetic analysis of samples from a large community-based surveillance study

Mahan Ghafari1,2, Matthew Hall1, Tanya Golubchik1,3, Daniel Ayoubkani4,5, Thomas House6, George MacIntyre-Cockett1,7, Helen Fryer1, Laura Thomson1, Anel Nurtay1, David Buck7, Angie Green7, Amy Trebes7, Paolo Piazza7, Lorne J Lonie7, Ruth Studley4, Emma Rourke4, Darren Smith8,9, Matthew Bashton8,9, Andrew Nelson8, Matthew Crown8,9, Clare McCann8, Gregory R Young8,9, Rui Andre Nunes dos Santos9, Zack Richards9, Adnan Tariq9, Roberto Cahuantzi4, Wellcome Sanger Institute COVID-19 Surveillance Team**, COVID-19 Infection Survey Group, The COVID-19 Genomics UK (COG-UK) Consortium***, Jeff Barrett11, Christophe Fraser1,7,11, David Bonsall1,7,16, Ann Sarah Walker12,13,14,15, Katrina Lythgoe1,2

*Corresponding author: mahan.ghafari@ndm.ox.ac.uk

1Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK.
2Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
3Sydney Infectious Diseases Institute (Sydney ID), School of Medical Sciences, Faculty of Medicine and Health, University of Sydney
4Office for National Statistics, Newport, UK
5Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester, UK
6Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
7Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK.
8The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
9Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
10https://www.cogconsortium.uk
11Wellcome Sanger Institute, Cambridge CB10 1SA, UK
12Nuffield Department of Medicine, University of Oxford, Oxford, UK
14The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
15MRC Clinical Trials Unit at UCL, UCL, London, UK
16Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK

**The full list of names is available at https://www.sanger.ac.uk/project/wellcome-sanger-institute-covid-19-surveillance-team/

**The full list of names and affiliations of COG-UK members is provided in the appendix

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections may act as viral reservoirs that could seed future outbreaks, give rise to highly divergent lineages, and contribute to cases with post-acute Coronavirus disease 2019 (COVID-19) sequelae (Long Covid). However, the population prevalence of persistent infections, their viral load kinetics, and evolutionary dynamics over the course of infections remain largely unknown. We identified 381 infections lasting at least 30 days, of which 54 lasted at least 60 days. These persistently infected individuals had more than 50% higher odds of self-reporting Long Covid compared to the infected controls, and we estimate that 0.09-0.5% of SARS-CoV-2 infections can become persistent and last for at least 60 days. In nearly 70% of the persistent infections we identified, there were long periods during which there were no consensus changes in virus sequences, consistent with prolonged presence of non-replicating virus. Our findings also suggest reinfections with the same major lineage are rare and that many persistent infections are characterised by relapsing viral load dynamics. Furthermore, we found a strong signal for positive selection during persistent infections, with multiple amino acid substitutions in the Spike and ORF1ab genes emerging independently in different individuals, including mutations that are lineage-defining for SARS-CoV-2 variants, at target sites for several monoclonal antibodies, and commonly found in immunocompromised patients. This work has significant implications for understanding and characterising SARS-CoV-2 infection, epidemiology, and evolution.

Main

The emergence of highly divergent variants of SARS-CoV-2 has been a defining feature of the COVID-19 pandemic. While the evolutionary origins of these variants are still a matter of speculation, multiple pieces of evidence point to chronic persistent infections as their most likely source. In particular, infections in immunocompromised patients who cannot clear the virus may lead to persistence for months or even years before potentially seeding new outbreaks in the community. Persistence of SARS-CoV-2 during chronic infections exposes the viral population to host-immune responses and other selective pressures as a result of treatments over prolonged periods of time. They also release the virus from undergoing the tight population bottlenecks that are characteristic of SARS-CoV-2 transmission, making the viral population less vulnerable to stochastic genetic drift. These adaptive intrahost changes can lead to elevated evolutionary rates, particularly in key regions of the Spike protein that are often associated with immune escape and elevated rates of transmission.

Despite the significant public health implications of persistent infections, uncertainty still surrounds how common these infections are among the general population, how
long they last, their potential for adaptive evolution, and their contribution to Long Covid.

In this work, we leveraged genetic, symptom, and epidemiological data from the Office for National Statistics Covid Infection Survey (ONS-CIS)\textsuperscript{21}, an ongoing large scale community-based surveillance study carried out in the UK. We identified individuals with persistent SARS-CoV-2 infection and characterised various aspects of their infection including evolutionary changes in the virus, viral load kinetics, number of reported symptoms, and prevalence of Long Covid.

Identifying persistent infections

We considered more than 100,000 high-quality sequenced samples from the ONS-CIS collected between 2nd November 2020 to 15th August 2022, and representing ~95,000 people living in ~75,000 households across the UK (see Methods). Individuals in the survey were typically sampled once a week for the first four weeks of their enrolment, and then monthly thereafter. To identify persistent infections we first limited the dataset to individuals with two or more RT-PCR positive samples with cycle threshold (Ct) values ≤30 (in which sequencing was attempted; a proxy for viral load), taken at least 26 days apart, and where the consensus sequences were of the same major lineages of Alpha, Delta, BA.1 or BA.2 (BA.4 and BA.5 not considered). If those sequences also shared the same rare single nucleotide polymorphisms (SNPs) at one or more sites relative to the major-lineage population-level consensus, we classified them as having a persistent infection.

We defined a rare mutation as one observed in 400 or fewer samples within the entire ONS-CIS dataset, giving a false positive rate of identifying persistent infections of 0-3\% depending on the major lineage (see Methods and Supplementary Figure 1). We note that the rare SNP method provides a conservative estimate for the true number of persistent infections since some persistent infections may not have rare mutations. To further evaluate the robustness of our method in identifying persistent infections, we considered the phylogenetic relationship between the sequences from persistent infections relative to other sequences of the same major lineage that belonged to individuals with only a single sequence within the ONS-CIS dataset. The great majority of sets of sequences identified as belonging to the same persistent infection formed monophyletic groups with strong bootstrap support (Figure 1a; see also Supplementary Figure 2). However, seven sequences did not group with the other sequence(s) from the same persistent infection. All of these had high Ct values (Ct~30) and poor genome coverage which may explain their lack of clustering on the phylogeny (Supplementary Figure 2).

We found 381 persistent infections with sequences spanning at least 26 days, of which 54 spanned at least 56 days, representing nearly 0.07\% (54/77,561) of all individuals with one or more sequences (with Ct≤30) of the four major lineages we
investigated in this study (Figure 1b; see also Table 1). Notably, 9% (2/23), 9% (19/219), and 8% (8/208) of sequences from persistent infections with Alpha, Delta, and BA.1, respectively, were sampled weeks after when the corresponding major lineage has dropped to ≤1% frequency of all the ONS-CIS sequences (Figure 1c); the longest infection was with BA.1 and lasted for at least 193 days (see Figure 1b).

The actual duration of persistent infections are likely to be at least 3-4 days longer than the time between when the first and last sequenced samples were collected, since it typically takes 3-4 days since the start of infection for viral loads to be sufficiently high to be sequenced (Ct≤30) \(^{22,23}\), and similarly viral loads will be too low (Ct values too high) to sequence at the tail end of infection. Since individuals were typically sampled weekly during the first four weeks of enrollment, followed by monthly sampling thereafter, it is unsurprising that most persistent infections had observable durations clustering around 30 or 60 days (see Supplementary Figure 3).

We found evidence suggestive of transmission from 11 persistently infected individuals: we identified two households each with two members having concurrent persistent infections, and in nine other households, one member tested positive for SARS-CoV-2 by RT-PCR within 10 days of a positive sequenced sample being collected from a persistently infected individual from the same household. As well as being clustered in households, the sequences from the suspected persistently infected source and the recipient had either no consensus nucleotide differences (nine cases) or one consensus nucleotide difference (two cases), consistent with transmission. If these do represent transmission, it is worth noting that none of these persistent infections involved highly divergent sequences relative to their first sequence, and hence these do not provide an example of the emergence and spread of highly divergent lineages.

Identifying reinfections with the same major lineage

We considered a pair of sequences from the same individual to indicate a reinfection if they were sampled at least 26 days apart, had at least one consensus nucleotide difference between the sequenced sampling timepoints, and shared no rare SNPs (see Methods). This criterion may overestimate the true number of reinfections as some persistent infections may not have a rare SNP, and within-host evolution can lead to the loss of a rare SNP and/or the gain of other mutations leading to differences in the consensus sequence between the samples. We identified three individuals for which pairs of sequences from different sampling timepoints had no identical rare SNPs and at least one consensus difference, but whose viral load trajectories were consistent with a persistent chronic infection. We therefore excluded these individuals from the reinfection group (see Supplementary Figure 4).
Overall, we identified 60 reinfections with the same major lineage (Table 1). Of all the cases classed as either persistent infections or reinfections with the same major lineage, 10-15% were classed as reinfections (see Table 1), rising to 20-40% if only samples collected at least 56 days apart were included (see Figure 1b). This suggests the number of individuals reinfected with the same major lineage is low compared to the number of individuals with persistent infection. Sequences from individuals identified as reinfected, collected at the point of primary infection and reinfection, did not form monophyletic groups and mostly belonged to distantly related subclades, and hence supports our method for identifying reinfections (Figure 1a; Supplementary Figure 2).

Evidence of non-replicating virus during infection

Of the 381 persistently infected individuals that we identified, nearly 70% (267/381) had a pair of sequenced samples taken at least 26 days apart with no nucleotide differences at the consensus level. This is striking given the between-host within-lineage evolutionary rate of SARS-CoV-2 of ~2 single nucleotide variants (SNVs) per month. We contrasted the number of consensus nucleotide differences between pairs of samples from persistent infections with 16,000 random pairs of sequences sampled from the complete set of sequenced samples from the ONS-CIS, and with each pair from the same major lineage (Supplementary Figure 5). Of these, only 6 pairs had no SNVs (i.e., less than 0.04% of pairs).

Emergence of notable mutations

For all pairs of sequences from each of the persistent infections, we identified mutations for which there was a change in consensus between the two sampling time points. Among the 381 persistently infected individuals, we observed 317 changes in the consensus nucleotide representing 277 unique mutations, and 31 deletions representing 18 unique deletions. Many of these mutations have previously been identified as either lineage-defining mutations for variants of concern or variants of interest (eight mutations and two deletions), recurrent mutations in immunocompromised individuals (15 mutations and four deletions), or key mutations with antibody escape properties and target sites for various different monoclonal antibodies (seven mutations) (Supplementary Table 1).

We observed several mutations at the same genomic positions in multiple individuals over the course of their persistent infections. For example, three BA.2 infected individuals from different households acquired a mutation at codon position 547 in Spike (Figure 2), two of which were the T547K mutation which is a lineage-defining mutation for BA.1, and one the K547T mutation (Figure 2c; also see Supplementary Table 1). Strikingly, twelve individuals acquired a deletion (ORF1ab: Δ81-87) in the NSP1 coding region. A similar deletion has previously been observed during the chronic infection of an immunocompromised individual with...
cancer \textsuperscript{16}, and was associated with lower type I interferon response in infected cells \textsuperscript{29}. We also identified a persistent infection with BA.1 lasting for at least 133 days during which 33 unique mutations (23 mutations in ORF1ab, 6 in Spike, 1 in ORF3a, 1 in M, and 2 in ORF7) were observed (see Supplementary Figure 2); eleven of the ORF1ab mutations and all of the mutations in Spike, ORF3a, and ORF7 were nonsynonymous.

Overall, we observed a strong signal for positive selection in Spike, with nearly nine-fold more nonsynonymous compared to synonymous mutations (Figure 2b). With a total of seven nonsynonymous mutations, ORF8 had the highest per base number of nonsynonymous mutations followed by Spike with 61 nonsynonymous mutations.

Persistence with relapsing viral load

Of the 381 persistent infections, 65 had three or more RT-PCR tests taken over the course of their infection. We classified these infections as persistent-relapsing if they had a negative RT-PCR test during the infection (n=20), and the rest as persistent-chronic (n=45) (Figure 3a,b). Given the weekly or monthly sampling of individuals enrolled in the ONS-CIS, infections classed as persistent-chronic may have unsampled periods of very low viral burden, meaning the persistent-relapsing category is likely to be an underestimate. Nonetheless, the observation of relapsing viral load dynamics in over 30\% of cases is striking given that, in the absence of genetic information, they could have been misidentified as reinfections, depending on the definition used. Of the 27 cases identified as reinfections with three or more RT-PCR tests, all showed relapsing viral load dynamics (Figure 3c).

As the sampling strategy of ONS-CIS is based on testing representative individuals across the UK regardless of symptoms, we can estimate the percentage of SARS-CoV-2 infections that are persistent and last for longer than 60 days in the general population. This requires making assumptions about how many persistent infections are missed among ONS-CIS participants due to the monthly (and weekly) sampling. More precisely, estimating the proportion of infections that are persistent depends on the proportion of days the infection has sequenceable virus during the infection (would have Ct≤30 if tested); the fewer the number of days the infection has sequenceable virus, the more likely it is that a persistent infection is be missed. By taking two extreme scenarios for the proportion of days that the virus is sequenceable during persistent infection (0.7 and 0.14; see Methods), we estimate that approximately 0.1-0.5\% of infections become persistent for 60 days or more.

Difference in viral load and symptoms

For the majority of persistent infections, Ct values (inversely proportional to viral titre \textsuperscript{30}) were higher at the last sequenced time point compared to the first sequenced time point (Figure 3d). For reinfections with the same major lineage, the last
sequenced sample also had higher Ct values than the first, but the magnitude of the
difference was smaller compared to persistent infections (Figure 2d). In both cases,
the rise in Ct value (decrease in viral titre) during infections or between reinfections
could be a consequence of host immunity or within-host compartmentalisation.
Additionally, the rise in Ct for reinfections could be due to the disproportionate
sampling of individuals with older infections, which tend to have lower viral loads,
towards the end of an epidemic wave. 

Individuals with persistent infections remained largely asymptomatic during the later
stages of infection, with, on average, reporting two fewer symptoms in the last 7
days at the last time of sampling (at which a sequence was obtained) when
compared to the first. They also consistently reported very few or no symptoms after
the first positive sample (Figure 3e). In comparison, individuals reinfected with the
same major lineage reported on average only one fewer symptom at the reinfection
sampling time point compared to the primary sampling time point (Figure 3e).

Prevalence of Long Covid

From February 2021, as well as reporting symptoms, participants were asked if they
describe themselves as having Long Covid and still experiencing symptoms more
than four weeks after they first had COVID-19 (see Methods). We estimated the
prevalence of self-reported Long Covid in the persistently infected individuals
compared with a control group, accounting for several confounding variables (see
Methods). In the persistent infection group, 9.0% of respondents (32/354) self-
reported Long Covid at their first visit ≥12 weeks since the start of infection, and
7.1% (19/266) reported Long Covid at ≥26 weeks. However, in the control group,
only 5.1% (4,976/97,404) reported Long Covid at their first visit ≥12 weeks, and 4.5%
(3,261/72,407) reported Long Covid at ≥26 weeks.

Correcting for confounders, we found strong evidence for a 55% higher odds of
reporting Long Covid ≥12 weeks post-infection among persistently infected
individuals compared to controls (Chi square test with Yates correction \( p=0.004 \) for
the unadjusted model, \( p=0.021 \) for the adjusted model), but no evidence of a
difference for Long Covid ≥26 weeks post-infection (\( p=0.127 \) for the unadjusted
model, \( p=0.367 \) for the adjusted model) (Table 2). The lower rate of reporting Long
Covid 26 weeks post-infection could be because the majority of the persistent
infections we identified lasted for less than 26 weeks, and hence persistence of an
infection may no longer be a contributing factor to Long Covid.

Discussion

We developed a robust approach for identifying persistent SARS-CoV-2 infections in
individuals with sequenced samples spanning a month or longer. Of the 381
persistent infections we identified among participants of the ONS-CIS, 54 lasted at
least two months, two over six months, and in some cases the infecting lineage had gone extinct in the general population. In contrast, we only identified 60 reinfections by the same major lineage as the primary infection, suggesting immunity to the same variant remains strong after infection, at least until the lineage has gone extinct.

The large number of persistent infections we uncovered is striking, given the leading hypothesis that many of the variants of concern (VOCs) emerged wholly or partially during long-term chronic infections in immunocompromised individuals. Since the ONS-CIS is a community-based surveillance study, our observations suggest the pool of people in which long-term infections could occur, and hence potential sources of divergent variants, may be much larger than generally thought. We estimate that more than nearly one in a thousand of all infections, and potentially as many as one in 200, may become persistent for at least two months. The harbouring of these persistent infections in the general community may also help explain the early detection of cryptic lineages circulating in wastewaters long before they spread in the population at large.

In support of the hypothesis that VOCs may emerge during prolonged infections, a number of studies have shown elevated evolutionary rates driven by selection during chronic infections of immunocompromised individuals. Among the persistently infected individuals we identified, we also found strong evidence for positive selection and parallel evolution, particularly in Spike and ORF1ab. In the most extreme case, we observed one persistent infection with 33 substitutions over a four-month period, 20 of which were nonsynonymous.

Potentially more remarkable, however, was our discovery of viral infections exhibiting latent evolutionary dynamics, with no consensus level genome changes for two months or longer. As far as we are aware, this is the first study to demonstrate that decelerated evolutionary rates may be a common outcome of persistent infection. The factors causing these low rates of evolution are unknown, but one possible explanation is infection of long-lived cells which then seed new outbreaks within the infected individual weeks or months later. Although the relapsing viral load dynamics we found in many of the persistently infected individuals supports this hypothesis, we did not find any consistent pattern between the amount of viral divergence during infection and the lower viral load activity in these individuals.

Intriguingly, individuals with persistent infections report fewer symptoms later in a persistent infection compared to at their first positive sample, or remain asymptomatic throughout infection, but have more than 50% higher odds of Long Covid compared to a control group. Although the link between viral persistence and Long Covid may not be causal, these results suggest persistent infections could be contributing to the pathophysiology of Long Covid, as also evidenced by the observation of circulating SARS-CoV-2 S1 spike protein in a subset of patients with Long Covid months after first infection. The association between persistent...
infection and Long Covid does not imply that every persistent infection can lead to
Long Covid, only 9% of persistently infected individuals reported having Long Covid,
nor does it mean that all cases of Long Covid are due to a persistent infection.
Indeed, many other possible mechanisms have been suggested to contribute to
Long Covid including autoimmunity/inflammation, organ damage, EBV reactivation,
and micro thrombosis (see ref 10 for a recent review).

Taken together, our observations highlight the continuing importance of community-
based genomic surveillance both to monitor the emergence and spread of new
variants, but also to gain a fundamental understanding of the natural history and
evolution of novel pathogens and their clinical implications for patients.

**Methods**

**ONS COVID-19 Infection Survey**

The ONS-CIS is a UK household-based surveillance study in which participant
households are approached at random from address lists across the country to
provide a representative sample of the population. All individuals aged two years
and older from each household who provide written informed consent provide swab
samples (taken by the participant or parent/carer for those under 12 years),
regardless of symptoms, and complete a questionnaire at assessments, which occur
weekly for the first month in the survey and then monthly. From 26 April 2020 to 31
July 2022, assessments were conducted by study workers visiting each household;
from 14 July 2022 onwards assessments were remote, with swabs taken using kits
posted to participants and returned by post or courier, and questionnaires completed
online or by telephone. Positive swab samples with Ct≤30 were sent for sequencing
(see below). For this analysis, we included data from 2nd November 2020 to 15th
August 2022, spanning a period from the earliest Alpha to latest Omicron BA.2
sequences within the ONS-CIS dataset.

This work contains statistical data from ONS which is Crown Copyright. The use of
the ONS statistical data in this work does not imply the endorsement of the ONS in
relation to the interpretation or analysis of the statistical data. This work uses
research datasets which may not exactly reproduce National Statistics aggregates.

**Sequencing**

From December 2020 onwards sequencing was attempted on all positive samples
with Ct≤30; before this date, sequencing was attempted in real-time wherever
possible, with some additional retrospective sequencing of stored samples. The vast
majority of samples were sequenced on Illumina Novaseq, with a small number
using Oxford Nanopore GridION or MINION. One of two protocols were used: either
the ARTIC amplicon protocol with consensus FASTA sequence files generated using the ARTIC nextflow processing pipeline, or veSeq, an RNASeq protocol based on a quantitative targeted enrichment strategy with consensus sequences produced using shiver. During our study period, we identified 94,943 individuals with a single sequence and 5,774 individuals with two or more sequences. Here, we only included sequences with ≥50% genome coverage.

Identifying rare SNPs

An important criterion for determining whether two sequences from the same individual are from the same infection is whether they share a rare single nucleotide polymorphism (SNP). These are defined as SNPs that are shared by fewer than 400 sequences corresponding to each major lineage within the full ONS-CIS dataset (Supplementary Figure 1). The thresholds were chosen to maximise the number of persistent infections identified whilst minimising the number of false positives (see below). The major lineages we considered were Alpha (B.1.1.7), Delta (B.1.617.2), Omicron BA.1 and Omicron BA.2, including their sublineages. Approximately 92-98% of all sequences from the four major lineages had a rare SNP relative to the major-lineage population-level consensus.

Identifying reinfections with the same major lineage

Any pair of sequences from the same individual, of the same major lineage, and at least 26 days apart were considered as candidate reinfections. Of these, pairs that had at least one nucleotide difference at the consensus level, and did not share any rare SNPs, were classed as reinfections. Pairs that had no identical rare SNPs, nor any nucleotide differences at the consensus level, were classed as undetermined.

Identifying individuals with persistent infection

We first identified individuals with two or more sequenced samples taken at least 26 days apart. We chose this cutoff because the majority of acutely infected individuals shed the virus for <20 days and no longer than 30 days in the respiratory tract. Given the extreme heterogeneity in the shedding profiles during some acute infections, we also considered a more conservative 56-day cutoff for some analyses.

For each identified individual we calculated the number of consensus nucleotide differences per site for all within-individual pairwise combinations of samples (Supplementary Figure 6). Only sites where a nucleotide difference could be called were included.

Candidate persistent infections were defined in one of two ways: (1) pairs of sequenced samples that belonged to the same major lineage, and (2) pairs of
sequenced samples where one or both had no defined phylogenetic lineage, but
where the genetic distance between them was lower than that required to
differentiate two major lineages (see Supplementary Figure 6). We assumed pairs
belonging to different major lineages were either coinfections or reinfections with two
different virus lineages. Only candidate persistent infections were considered in
further analysis.

Among the pool of candidate persistent infections, we defined persistent infections
as those with sequences sharing one or more rare SNPs at two or more consecutive
time points relative to the population-level consensus. A rare SNP is one that is
observed in 400 or fewer samples within the entire ONS-CIS dataset.

Determining the false positive rate for persistent infections

For each major lineage we generated a data set of 1,000 randomly paired
sequences from different individuals in the ONS-CIS, each sampled at least 26 days
apart. We determined the number of these pairs that would have been incorrectly
identified as persistent infections as a function of the threshold for determining if a
SNP is rare (Supplementary Figure 1). Although the total number of persistent
infections identified grew as the threshold for determining if a SNP is rare increased,
at very high thresholds the rate of false positives was also high. In our study, we
chose a threshold of 400 sequences (corresponding to all sequences of the same
major lineage within the full ONS-CIS dataset) for all of the major lineages, giving a
false positive rate (identifying an infection as persistent when it was not) of 0-3%.

Estimating the prevalence of persistent infections

Within the ONS-CIS we identified 54 infections that lasted 60 days or more.
Comparing this to the number of individuals that had sequenced samples belonging
to Alpha, Delta, BA.1 or BA.2, which to a good approximation will be the number of
infections of these variants, we identified approximately 54/77,561 (0.07%) infections
as persistent for >= 60 days. Since the ONS-CIS is a representative sample of
individuals from the general population, we can estimate the percentage of all SARS-
CoV-2 infections that became persistent for two months or longer. At one extreme, if
all persistent infections have sequenceable virus for only four days per month
(assuming viral dynamics similar to one acute infection each month), only 14% of
persistent infections would be detected through monthly sampling. Correcting for
this, we would estimate the percentage of persistent infections in the general
population to be 0.5% (0.07% / 0.14). At the other extreme, if we assume all
persistent-chronic infections (70% of persistent infections; see Main text) are
detectable through monthly sampling, and the rest have detectable virus for 4 days
per month, then we estimate that 74% (70% + 0.14*30%) of persistent infections
were identified, giving an estimate of 0.09% (0.07% / 0.74) infections being
persistent in the general population.
Phylogenetic analysis

For each of the four major lineages, we chose 600 consensus sequences with at least 95% coverage from the ONS-CIS dataset using weighted random sampling, with each sample of major lineage \(i\) collected in week \(j\) given a weight \(1/n_{ij}\), where \(n_{ij}\) is the number of sequences of major lineage \(i\) collected during week \(j\). These sequences were added as a background set to the collection of all consensus sequences for samples from persistent infections and reinfections. Mapping of each sequence to the Wuhan-Hu-1 reference sequence was already performed by shiver and thus a full alignment for each of the four lineages could be constructed using only this.

Maximum likelihood phylogenetic trees were constructed using IQ-TREE 1.6.12 using the GTR+gamma substitution model and the ultrafast bootstrap. Each tree was rooted using the collection dates of the samples and the heuristic residual mean square algorithm in TempEst. Visualisation used ggtree.

Comparing viral load activities and symptoms

To quantify the changes in viral load activities during persistent infections, we compared Ct values at the last time point a sequence was obtained to when the first sequence was collected. Similarly, for reinfections, we compared the changes in Ct value between the primary infection and reinfection. We used a paired t-test to calculate p-values in both cases as the distribution of differences in Ct values were normally distributed for both persistent infections (\(W=0.99, p=0.28\)) and reinfections (\(W=0.99, p=0.78\)) as determined by the Shapiro-Wilk test.

We also tracked 12 symptoms consistently solicited from all participants at every assessment. Symptoms were fever, weakness/tiredness, diarrhoea, shortness of breath, headache, nausea/vomiting, sore throat, muscle ache, abdominal pain, cough, loss of smell, and loss of taste. At each follow-up assessment, participants were asked whether these 12 symptoms had been present in the past seven days. Symptom discontinuation was defined as the first occurrence of two successive follow-up visits without reporting symptoms. To compare symptom counts during persistent infections and reinfections, we used the paired Wilcoxon test as the distribution of symptom differences is not normally distributed (see Figure 3d).

Long Covid analysis

From February 2021, at every assessment, participants were asked “would you describe yourself as having Long Covid, that is, you are still experiencing symptoms more than 4 weeks after you first had COVID-19, that are not explained by something else?”. When estimating Long Covid prevalence in this analysis, we
considered the first assessment at least 12 weeks and at least 26 weeks after infection. Our control group comprised all individuals with a positive PCR test and Ct≤30, excluding the persistently infected individuals identified in this study, over the same time span as persistent infections. We also ensured the follow-up from the start of infection to first Long Covid response was similar between persistent infections and controls (see Table 2).

In calculating the odds ratio of Long Covid in persistently infected individuals relative to the control group, we accounted for confounding variables such as age at the last birthday, sex, Ct value, calendar date, area deprivation quintile group, presence of self-reported long-term health conditions (binary), vaccination status (unvaccinated or single-vaccinated, fully-vaccinated or booster-vaccinated 14-89 days ago, fully-vaccinated or booster-vaccinated 90-179 days ago, fully-vaccinated or booster-vaccinated ≥180 days ago), and days from first positive test to Long Covid follow-up response. All variables except the last one were defined at the time of the first positive test. Continuous variables (age, Ct value, calendar date, days to follow-up response) were modelled as restricted cubic splines with a single internal knot at the median of the distribution and boundary knots at the 5th and 95th percentiles. Vaccination status was derived from a combination of CIS and NIMS data for participants in England, and CIS data alone for participants in Wales, Scotland and Northern Ireland.

We were unable to do the Long Covid analysis for the reinfection group due to the low number of participants in this cohort who reported new-onset Long Covid ≥12 weeks or ≥26 weeks after infections.

Funding Statement

The CIS was funded by the Department of Health and Social Care and the UK Health Security Agency with in-kind support from the Welsh Government, the Department of Health on behalf of the Northern Ireland Government and the Scottish Government. COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. The authors acknowledge use of data generated through the COVID-19 Genomics Programme funded by the Department of Health and Social Care. ASW is supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with the UK Health Security Agency (UK HSA) (NIHR200915) and the NIHR Oxford Biomedical Research Centre, and is an NIHR Senior Investigator. TH is supported by the Royal Society and Alan Turing Institute for Data Science and Artificial Intelligence. KAL is supported by the Royal Society and the Wellcome Trust.
The research was supported by the Wellcome Trust Core Award Grant Number 203141/Z/16/Z with funding from the NIHR Oxford BRC. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. The views expressed are those of the author and not necessarily those of the Department of Health and Social Care or UKHSA.

Data and materials availability

All genomic data have been made publicly available as part of the COVID-19 Genomics UK (COG-UK) Consortium. All other data, excluding personal clinical information on participants, are available in the main text, supplementary materials, or our GitHub repository (https://github.com/mg878/ONS-CIS_analysis).
References


36. Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-Sighted Virus Evolution and


42. Connor Lab. ncov2019-artic-nf. (Github).


Table 1: Frequency of persistent infections and reinfections per major lineage.

<table>
<thead>
<tr>
<th>Major lineage</th>
<th>Reinfection &gt;26 days</th>
<th>Reinfection &gt;56 days</th>
<th>Persistent infection &gt;26 days</th>
<th>Persistent infections &gt;56 days</th>
<th>%Reinfection &gt;26 days</th>
<th>%Reinfection &gt;56 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1.7</td>
<td>7</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>39%</td>
<td>50%</td>
</tr>
<tr>
<td>B.1.617.2</td>
<td>11</td>
<td>4</td>
<td>106</td>
<td>13</td>
<td>9%</td>
<td>24%</td>
</tr>
<tr>
<td>BA.1</td>
<td>14</td>
<td>2</td>
<td>97</td>
<td>15</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>BA.2</td>
<td>28</td>
<td>15</td>
<td>167</td>
<td>23</td>
<td>14%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Table 2: Prevalence of Long Covid in persistently infected individuals.

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Long Covid</th>
<th>Median follow-up (IQR*)</th>
<th>Unadjusted OR† (95% CI**)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>356</td>
<td>32 (9.0%)</td>
<td>101 (91-113)</td>
<td>1.27 (1.19-2.47)</td>
<td>1.55 (1.07-2.25)</td>
</tr>
<tr>
<td>Control</td>
<td>78,902</td>
<td>4,291 (5.4%)</td>
<td>100 (91-115)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Long Covid</th>
<th>Median follow-up (IQR)</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>326</td>
<td>19 (5.8%)</td>
<td>312 (271-390)</td>
<td>1.44 (0.90-2.29)</td>
<td>1.24 (0.77-2.00)</td>
</tr>
<tr>
<td>Control</td>
<td>72,608</td>
<td>3,000 (4.1%)</td>
<td>320 (272-384)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
</tbody>
</table>

* IQR=interquartile range
†OR=odds ratio
**CI= confidence interval
Figure 1: Individuals identified with persistent infections and reinfections within the ONS-CIS. (a) Phylogenetic relationship between samples from persistent infections and reinfections with a representative background population of Alpha (see Supplementary Figure 2 for the analysis on the other three major lineages). Dashed lines connect every pair of sequences from the same individual. Pairs from persistent infections cluster closely together while reinfections do not. All sequences from the same individual are given the same colour. (b) Days between the earliest and latest genomic samples from persistent infections and reinfections. Each point represents a single individual. Solid vertical lines show the 26- and 56-day cutoffs. Numbers on the side of each box shows the total counts per category for each major lineage. (c) Total number of sequences in the ONS-CIS per major lineage over time. (d) Timing of persistent infections (black) during the UK epidemic. Some persistent infections can be identified up to weeks after the lineage has been replaced at the population level. The numbers on the side of each box shows the total sequence counts for each category.
**Figure 2:** Distribution of single nucleotide polymorphisms and non-synonymous vs. synonymous mutations detected during persistent infections. (a) Frequency of mutations that resulted in a SNP change during one or more persistent infections. (b) Number of synonymous (blue) and non-synonymous (orange) mutations per gene during persistent infections. Numbers on each column show the total counts of SNPs in each category of mutations. (c) Description of recurrent mutations and deletions identified during persistent infections. See **Supplementary Table 1** for information about other mutations. **None of the recurrent mutations were from households with other infections.**

†Δ represents a deletion

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutation</th>
<th>Individuals**</th>
<th>Lineage of persistent infection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spike</td>
<td>T547K</td>
<td>2</td>
<td>BA.2</td>
<td>Lineage-defining for BA.1</td>
</tr>
<tr>
<td>Spike</td>
<td>I452R</td>
<td>2</td>
<td>BA.2</td>
<td>Lineage-defining for Delta, BA.4; recurrent in immunocompromised patients</td>
</tr>
<tr>
<td>Spike</td>
<td>T376A</td>
<td>2</td>
<td>BA.3</td>
<td>Lineage-defining for BA.2/4/5</td>
</tr>
<tr>
<td>Spike</td>
<td>T952</td>
<td>1</td>
<td>BA.2</td>
<td>Lineage-defining for BA.3; recurrent in immunocompromised patients</td>
</tr>
<tr>
<td>Spike</td>
<td>G446V/D</td>
<td>2</td>
<td>B.1.617.2, BA.2</td>
<td>Target site for several monoclonal antibodies</td>
</tr>
<tr>
<td>Spike</td>
<td>D215G</td>
<td>1</td>
<td>BA.2</td>
<td>Lineage-defining for Beta</td>
</tr>
<tr>
<td>Spike</td>
<td>7ΔA243/L244</td>
<td>3</td>
<td>one B.1.1.7, two BA.2</td>
<td>Lineage-defining for Beta; recurrent in immunocompromised patients</td>
</tr>
<tr>
<td>Spike</td>
<td>ΔF144</td>
<td>1</td>
<td>BA.2</td>
<td>Lineage-defining for Alpha, BA.1 and Eta</td>
</tr>
<tr>
<td>ORF1ab</td>
<td>L590F</td>
<td>2</td>
<td>BA.1, BA.2</td>
<td>Commonly found in Mu, Delta, and B.1.1.519</td>
</tr>
<tr>
<td>ORF1ab</td>
<td>T4175</td>
<td>2</td>
<td>BA.1</td>
<td>Commonly found in BA.2</td>
</tr>
<tr>
<td>ORF1ab</td>
<td>T638I</td>
<td>2</td>
<td>BA.2</td>
<td>Recurrent in immunocompromised patients</td>
</tr>
<tr>
<td>ORF1ab</td>
<td>D4532D</td>
<td>1</td>
<td>BA.2</td>
<td>Recurrent in immunocompromised patients</td>
</tr>
<tr>
<td>ORF1ab</td>
<td>ΔR1-4B</td>
<td>12</td>
<td>one B.1.617.2, three BA.1, eight BA.2</td>
<td>Recurrent in immunocompromised patients</td>
</tr>
<tr>
<td>ORF8</td>
<td>I121L</td>
<td>1</td>
<td>BA.1</td>
<td>Recurrent in immunocompromised patients</td>
</tr>
</tbody>
</table>
Figure 3: Comparison of viral load dynamics and number of reported symptoms during persistent infections and reinfections. Viral load trajectories of persistent infections with (a) relapsing and (b) chronic persistent infections and (c) reinfections with at least three PCR tests taken over the course of infection/until reinfection. (d) Change in cycle threshold (Ct) value and (e) total number of symptoms reported between the first and last time points with sequenced samples for all 381 persistent infections (purple) and 60 reinfections (cyan). Viral load at the last time point is significantly lower for persistent infections with Ct value being more than +6.7 (IQR: +3.2, +10.2) units higher at the last time point (paired t-test p<10^{-8}). The difference is less pronounced for reinfections with +2.5 (IQR: -1.1, +7.4) units difference between primary infection and reinfections (paired t-test p=0.0003). Similarly, persistently infected individuals tend to report fewer number of symptoms at the later stages of their infection compared to reinfections in the last 7 days at the last time point (at which a sequence was obtained) when compared to the first. On average, persistently infected individuals report two more symptoms at the time of their first sequenceable sample (virus samples with a positive Ct≤30) relative to their last sample, with a median of 1 (IQR: 0, 4) fewer reported symptoms (paired Wilcoxon p<10^{-29}), while reinfected individuals report only one more symptom at the point of primary infection relative to reinfection, with a median of 0 (IQR: 0, 3) fewer reported symptoms (paired Wilcoxon p=0.005).
Supplementary Figure 1: Number of persistent infections identified with a shared rare SNP as a function of the threshold for calling a rare SNP. Threshold value of 1 for rare SNPs implies the rare SNP is only found in one sequence of that lineage in the ONS-CIS dataset, excluding sequences from any persistently infected individuals. As the threshold value for calling a rare SNP increases, the number of persistent infections (of any duration) identified (black) increases until at some point the threshold value becomes so high that any individual with two or more sequences of the same major lineage would be identified as a persistent infection based on the rare SNP criterion at which point the false positivity rate (magenta) reaches 100%. At threshold value 400 (vertical dashed line) chosen in this study for identifying persistent infections, the percentage of false positives are 0% for BA.1 and BA.2 and 3% for Alpha and Delta.
Supplementary Figure 2: Phylogenetic relationship between samples from persistent infections and a representative background population per major lineage. Dashed lines connect every pair of sequences from the same individual. All sequences from the same individual are given the same colour. Pairs of sequences for (a) Alpha, (b) Delta, (c) Omicron BA.1, and (d) Omicron BA.2 that belong to persistent infections cluster closely together while reinfections do not. However, some of the sequences in 2 (out of 97) persistent infections with BA.1 and 5 (out of 167) persistent infections with BA.2 have poor bootstrap support (<80) and do not cluster together or cluster in a basal sister relationship. In all of these 7 cases, at least one of the sequences from each individual has a Ct value close to 30 with poor coverage. On the other hand, all sequences that belong to the same individual and have strong bootstrap support (>80) cluster together.
Supplementary Figure 3: Days between all pairs of sequences from the same individual with two or more sequences. Pairs of sequences are classified as (i) pairs with at least one unidentified Pango lineage (green), (ii) pairs with identical major lineage (orange), and (iii) pairs from different major lineages. Bottom panel shows the counts of pairs in each of these three categories for the first 200-day time span (highlighted in a dashed rectangle in the top panel). Pairs include all possible combinations of sequences from the same individual. The number of pairs peaks at the 7-, 30-, and 60-day periods due to the sampling frequency of ONS-CIS (see Methods). Note that pairs with identical major lineage may not necessarily have identical Pango lineages (see Methods).
Supplementary Figure 4: Viral load dynamics of individuals identified with persistent infections and reinfections stratified by duration and viral activity. Viral load activities of individuals, with 3 or more PCR tests taken during infection/until reinfection, identified as having (a) persistent infections and (b) reinfections with relapsing (left column) and persistent chronic (right column) trajectories. Three reinfections (two occurring in < 60 days and one between 60 to 90 days since first sequence) with persistent chronic viral load dynamics are excluded from the reinfection group as they are deemed potential persistent infections which do not have rare SNPs.
Supplementary Figure 5: Number of single nucleotide polymorphisms detected in pairs of sequences from persistent infections vs. random pairs from a representative background population. Number of Single Nucleotide Variants (SNVs) per site between all the sequences collected from persistent infections (purple) and random pairs from individuals with only a single sequence within the ONS-CIS (blue) as a function of the number of days between each pair. For each major lineage, a pool of sequences from individuals with only one sequence within the ONS-CIS was sub-sampled and 500 random pairs generated for every 20 additional days between samples. For some major lineages where there were fewer than 500 pairs available beyond a certain time point, all possible random pairs within that 20-day period are used. Solid line and shaded area show the median and interquartile range, respectively, for random pairs over time. Note that the line and shaded area in each graph does not represent the rate of evolution but can be deemed as a measure of lineage diversity as a function of time difference between samples.
**Supplementary Figure 6: Pairwise differences between sequences from individuals with two or more sequences.** (Left column) Number of single nucleotide polymorphisms (SNPs) between pairs of sequences from each individual with two or more sequences. Pairs include all possible combinations of sequences from the same individual. Vertical dashed line shows the lowest number of SNPs per base for pairs with different major lineages. Any pair with at least one unidentified lineage with a SNP per base smaller than the dashed line is selected as a candidate pair from a persistent infection. Pairs with different major lineages are coloured based on their number of SNPs per base into three groups: (i) pairs with one BA.1 and one BA.2 or BA.4 or BA.5 sequence (orange); (ii) pairs with one BA.2 and one BA.4 or BA.5 sequence (blue); and (iii) pairs with one Omicron (including all BA.x lineages) and one Delta (B.1.617.2), Alpha (B.1.1.7), or B.1.177 sequence (green). (Right column) Proportion of sequences with different number overlapping base pairs. Those with at least one unidentified lineage have a lower number of overlapping base pairs relative to pairs with identifiable lineage (i.e. pairs with identical or different major lineage) mainly due to having lower coverage.
The COVID-19 Genomics UK (COG-UK) consortium

June 2021 V.1

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Samuel C Robson PhD 13, 84

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

Dr Thomas R Connor PhD 11, 74 and Prof Nicholas J Loman PhD 43

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Tanya Golubchik PhD 5

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation:

Dr Rocio T Martinez Nunez PhD 46

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

Dr David Bonsall PhD 5

Funding acquisition, Leadership and supervision, Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation:

Prof Andrew Rambaut DPhil 104

Funding acquisition, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

Dr Luke B Snell MSc, MBBS 12

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Software and analysis tools, and Visualisation:

Rich Livett MSc 116

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics:

Dr Catherine Ludden PhD 20, 70

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis:

Dr Sally Corden PhD 74 and Dr Eleni Nastouli FRCPa 96, 95, 30

Funding acquisition, Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools:

Dr Gaia Nebbia PhD, FRCPa 12
Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis:
Ian Johnston BSc 116

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis:
Prof Katrina Lythgoe PhD 5, Dr M. Estee Torok FRCP 19, 20 and Prof Ian G Goodfellow PhD 24

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation:
Dr Jacqui A Prieto PhD 97, 82 and Dr Kordo Saeed MD, FRCPath 97, 83

Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools:
Dr David K Jackson PhD 116

Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation:
Dr Catherine Houlihan PhD 96, 94

Leadership and supervision, Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation:
Dr Dan Frampton PhD 94, 95

Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:
Dr William L Hamilton PhD 19 and Dr Adam A Witney PhD 41

Funding acquisition, Samples and logistics, Sequencing and analysis, and Visualisation:
Dr Giselda Bucca PhD 101

Funding acquisition, Leadership and supervision, Metadata curation, and Project administration:
Dr Cassie F Pope PhD 40, 41

Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics:
Dr Catherine Moore PhD 74

Funding acquisition, Leadership and supervision, Metadata curation, and Sequencing and analysis:
Prof Emma C Thomson PhD, FRCP 53

Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics:
Dr Ewan M Harrison PhD 116, 102

Funding acquisition, Leadership and supervision, Sequencing and analysis, and
Visualisation:
Prof Colin P Smith PhD

Leadership and supervision, Metadata curation, Project administration, and Sequencing and analysis:
Fiona Rogan BSc

Leadership and supervision, Metadata curation, Project administration, and Samples and logistics:
Shaun M Beckwith MSc, Abigail Murray Degree, Dawn Singleton HNC, Dr Kirstine Eastick PhD, FRCPath, Dr Liz A Sheridan PhD, Paul Randell MSc, PgD, Dr Leigh M Jackson PhD, Dr Cristina V Ariani PhD, and Dr Sónia Gonçalves PhD.

Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis:
Dr Derek J Fairley PhD, Prof Matthew W Loose PhD, and Joanne Watkins MSc.

Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation:
Dr Samuel Moses MD

Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools:
Dr Sam Nicholls PhD, Dr Matthew Bull PhD, and Dr Roberto Amato PhD.

Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis:
Prof Darren L Smith PhD

Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation:
Prof David M Aanensen PhD and Dr Jeffrey C Barrett PhD.

Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis:
Dr Dinesh Aggarwal MRCP, Dr James G Shepherd MBCHB, MRCP, Dr Martin D Curran PhD, and Dr Surendra Parmar PhD.

Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools:
Dr Matthew D Parker PhD

Metadata curation, Samples and logistics, Sequencing and analysis, and Software and analysis tools:
Dr Catryn Williams PhD.

Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation:
Dr Sharon Glaysher PhD.
Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Anthony P Underwood PhD 14, 116, Dr Matthew Bashton PhD 36, 65, Dr Nicole Pacchiarini PhD 74, Dr Katie F Loveson PhD 84 and Matthew Byott MSc 95, 96

Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation:

Dr Anthony P Underwood PhD 14, 116, Dr Matthew Bashton PhD 36, 65, Dr Nicole Pacchiarini PhD 74, Dr Katie F Loveson PhD 84 and Matthew Byott MSc 95, 96

Funding acquisition, Leadership and supervision, and Metadata curation:

Dr Kate E Templeton PhD 56, 104

Funding acquisition, Leadership and supervision, and Project administration:

Dr Alessandro M Carabelli PhD 20

Funding acquisition, Leadership and supervision, and Sequencing and analysis:

Dr Simon Cottrell PhD 74, Dr Justin O’Grady PhD 75, 103 and Prof Dominic Kwiatkowski PhD 116, 108

Leadership and supervision, Metadata curation, and Project administration:

Dr Patrick J Lillie PhD, FRCP 37

Leadership and supervision, Metadata curation, and Samples and logistics:

Dr Nicholas Cortes MBCHB 33, Dr Nathan Moore MBCHB 33, Dr Claire Thomas DPhil 33, Phillips J Burns MSc, DipRCPath 37, Dr Tabitha W Mahungu FRCPath 80 and Steven Liggett BSc 86

Leadership and supervision, Metadata curation, and Sequencing and analysis:

Angela H Beckett MSc 13, 81 and Prof Matthew TG Holden PhD 73

Leadership and supervision, Project administration, and Samples and logistics:

Dr Lisa J Levett PhD 34, Dr Husam Osman PhD 70, 35 and Dr Mohammed O Hassan-Ibraheim

Leadership and supervision, Project administration, and Sequencing and analysis:

Dr David A Simpson PhD 77

Leadership and supervision, Samples and logistics, and Sequencing and analysis:

Dr Meera Chand PhD 72, Prof Ravi K Gupta PhD 102, Prof Alistair C Darby PhD 107 and Prof Steve Paterson PhD 107

Leadership and supervision, Sequencing and analysis, and Software and analysis tools:

Prof Oliver G Pybus DPhil 23, Dr Erik M Volz PhD 39, Prof Daniela de Angelis PhD 52, Prof David L Robertson PhD 53, Dr Andrew J Page PhD 75 and Dr Inigo Martincorena PhD 116
Leadership and supervision, Sequencing and analysis, and Visualisation:
Dr Louise Aigrain PhD and Dr Andrew R Bassett PhD

Metadata curation, Project administration, and Samples and logistics:
Dr Nick Wong DPhil, MRCP, FRCPath, Dr Yusri Taha MD, PhD, Michelle J Erkiert BA and Dr Michael H Spencer Chapman MBBS

Metadata curation, Project administration, and Sequencing and analysis:
Dr Rebecca Dewar PhD and Martin P McHugh MSc

Metadata curation, Project administration, and Software and analysis tools:
Siddharth Mookerjee MPH

Metadata curation, Project administration, and Visualisation:
Stephen Aplin, Matthew Harvey, Thea Sass, Dr Helen Umpleby FRCP and Helen Wheeler

Metadata curation, Samples and logistics, and Sequencing and analysis:
Dr James P McKenna PhD, Dr Ben Warne MRCP, Joshua F Taylor MSc, Yasmin Chaudhry BSc, Rhys Izuagbe, Dr Aminu S Jahun PhD, Dr Gregory R Young PhD, Dr Claire McMurray PhD, Dr Clare M McCann PhD, Dr Andrew Nelson PhD and Scott Elliott

Metadata curation, Samples and logistics, and Visualisation:
Hannah Lowe MSc

Metadata curation, Sequencing and analysis, and Software and analysis tools:
Dr Anna Price PhD, Matthew R Crown BSc, Dr Sara Rey PhD, Dr Sunando Roy PhD and Dr Ben Temperton PhD

Metadata curation, Sequencing and analysis, and Visualisation:
Dr Sharif Shaaban PhD and Dr Andrew R Hesketh PhD

Project administration, Samples and logistics, and Sequencing and analysis:
Dr Kenneth G Laing PhD, Dr Irene M Monahan PhD and Dr Judith Heaney PhD

Project administration, Samples and logistics, and Visualisation:
Dr Emanuela Pelosi FRCPath, Siona Silviera MSc and Dr Eleri Wilson-Davies MD, FRCPath

Samples and logistics, Software and analysis tools, and Visualisation:
Dr Helen Fryer PhD

Sequencing and analysis, Software and analysis tools, and Visualisation:
Dr Helen Adams PhD, Dr Louis du Plessis PhD, Dr Rob Johnson PhD, Dr William T Harvey PhD, Dr Joseph Hughes PhD, Dr Richard J Orton PhD and Dr Lewis G Spurgin
Lyons MD, Dr Thomas Williams MD, Dr Sam T Haldenby PhD, Jillian Durham BSc and Dr Steven Leonard PhD.

Metadata curation, and Software and analysis tools:
Robert M Davies MA (Cantab)

Project administration, and Samples and logistics:
Dr Rahul Batra MD, Beth Blane BSc, Dr Moira J Spyer PhD, Perminder Smith MSc, Mehmet Yavus, Dr Rachel J Williams PhD, Adhyana IK Mahanama MD, Dr Buddhini Samarawera MD, Sophia T Girgis MSc, Samantha E Hansford CSci, Dr Angie Green PhD, Dr Charlotte Beaver PhD, Katherine L Bellis, Matthew J Dorman, Sally Kay, Liam Prestwood and Dr Shavanthi Rajatileka PhD.

Project administration, and Sequencing and analysis:
Dr Joshua Quick PhD

Project administration, and Software and analysis tools:
Radoslaw Poplawski BSc

Samples and logistics, and Sequencing and analysis:
Dr Nicola Reynolds PhD, Andrew Mack MPhil, Dr Arthur Morriss PhD, Thomas Whalley BSc, Bindi Patel BSc, Dr Iliana Georgana PhD, Dr Myra Hosmillo PhD, Malte L Pinckert MPhil, Dr Joanne Stockton PhD, Dr John H Henderson PhD, Amy Hollis HND, Dr William Stanley PhD, Dr Wen C Yew PhD, Dr Richard Myers PhD, Dr Alicia Thornton PhD, Alexander Adams BSc, Tara Annett BSc, Dr Hibo Asad PhD, Dr Maxine Adams MSc, Jason Coombes BSc, Johnathan M Evans MSc, Laia Fina, Bree Gatica-Wilcox MPhil, Lauren Gilbert, Lee Graham BSc, Jessica Hey BSc, Ember Hilvers MPH, Sophie Jones MSc, Hannah Jones, Sara Kumziene-Summerhayes MSc, Dr Caoimhe McKerr PhD, Jessica Powell BSc, Georgia Pugh, Sarah Taylor, Alexander J Trotter MRes, Charlotte A Williams BSc, Leanne M Kermack MSc, Benjamin H Foulkes MSc, Marta Gallis MSc, Hailey R Hornsby MSc, Stavroula F Louka MSc, Dr Manoj Pohare PhD, Paige Wolverson MSc, Peijun Zhang MSc, George MacIntyre-Cockett BSc, Amy Trebes MSc, Dr Robin J Moll PhD, Lynne Ferguson MSc, Dr Emily J Goldstein PhD, Dr Alasdair Maclean PhD, and Dr Rachael Tomb PhD.

Samples and logistics, and Software and analysis tools:
Dr Igor Starinskij MSc, MRCP

Sequencing and analysis, and Software and analysis tools:
Laura Thomson BSc, Joel Southgate MSc, Dr Moritz UG Kraemer DPhil, Dr Jayna Raghwani PhD, Dr Alex E Zarebski PhD, Olivia Boyd MSc, Lily Geidelberg MSc, Dr Chris J Illingworth PhD, Dr Chris Jackson PhD, Dr David Pascall PhD, Dr Sreenu Vattipally PhD, Timothy M Freeman MPhil, Dr Sharon N Hsu PhD, Dr Benjamin B Lindsey MRCP, Dr Keith James PhD, Kevin Lewis, Gerry Tonkin-Hill and Dr Jaime M Tovar-Corona PhD.
MBCHB 61, Dr Mariyam Mirfenderesky FRCPath 61, Jane Greenaway MSc 62, Kevin Cole 64, Phillip Clarke 67, Nichola Duckworth 67, Sarah Walsh 67, Kelly Bicknell 68, Robert Impey MSc 68, Dr Sarah Wyllie PhD 68, Richard Hopes 70, Dr Chloé Bishop PhD 72, Dr Vicki Chalker PhD 72, Dr Ian Harrison PhD 72, Laura Gifford MSc 74, Dr Zoltan Molnar PhD 77, Dr Cressida Auckland FRCPath 79, Dr Cariad Evans PhD 85, Dr Kate Johnson PhD 85, Dr David G Partridge FRCPath, FRCPath 85, 109, Dr Mohammad Raza PhD 85, 109, Paul Baker MD 86, Prof Stephen Bonner PhD 86, Sarah Essex 86, Leanne J Murray 86, Andrew I Lawton MSc 87, Dr Shirelle Burton-Fanning MD 89, Dr Brendan Al Payne MD 89, Dr Sheila Waugh MD 89, Andrea N Gomes MSc 91, Maimuna Kimuli MSc 91, Darren R Murray MSc 91, Paula Ashfield MSc 92, Dr Donald Dобий MBCHB 92, Dr Fiona Ashford PhD 93, Dr Angus Best PhD 93, Dr Liam Crawford PhD 93, Dr Nicola Cumley PhD 93, Dr Megan Mayhew PhD 93, Dr Oliver Megram PhD 93, Dr Jeremy Mirza PhD 93, Dr Emma Moles-Garcia PhD 93, Dr Benita Percival PhD 93, Dr Megan Driscoll BSc 94, Leah Ensell BSc 95, Dr Helen L Lowe PhD 96, Laurentiu Maffeit BSc 96, Matteo Mondani MSc 98, Nicola J Chaloner BSc 99, Benjamin J Cogger BSc 99, Lisa J Easton MSc 99, Hannah Huxson BSc 99, Jonathan Lewis MSc, PgD, FIBMS 99, Sarah Lowdon BSc 99, Cassandra S Malone M Sc 100, Florence Muneno BSc 99, Manasa Mutingwende MSc 99, Roberto Nicodemi BSc 99, Olga Podplomyk FD 99, Thomas Somassa BSc 99, Dr Andrew Beggs PhD 100, Dr Alex Richter PhD 100, Claire Cormie 102, Joana Dias MSc 102, Sally Forrest BSc 102, Dr Ellen E Higginson PhD 102, Mailis Maes MPhil 102, Jamie Young BSc 102, Dr Rose K Davidson PhD 103, Kathryn A Jackson MSc 107, Dr Lance Turtle PhD, MRCP 107, Dr Alexander J Keeley MRCP 109, Prof Jonathan Ball PhD 113, Timothy Byaruhanga MSc 113, Dr Joseph G Chappell PhD 113, Jayasree Dey MSc 113, Jack D Hill MSc 113, Emily J Park MSc 113, Arezou Fanaie MSc 114, Rachel A Hilson MSc 114, Geraldine Yaze MSc 114 and Stephanie Lo 116

Sequencing and analysis:

Safiah Afifi BSc 10, Robert Beer BSc 10, Joshua Maksimovic FD 10, Kathryn McCullagge Masters 10, Karla Spellman FD 10, Catherine Bresner BSc 11, William Fuller BSc 11, Dr Angela Marchbank BSc 11, Trudy Workman HNC 11, Dr Ekaterina Shelest PhD 13, Dr Johnny Debebe PhD 18, Dr Fei Sang PhD 18, Dr Marina Escalera Zamudio PhD 23, Dr Sarah Francois PhD 23, Bernardo Gutierrez MSc 23, Dr Tetyana I Vasylyeva DPhil 23, Dr Flavia Flaviiani PhD 23, Dr Manon Ragonnet-Cronin PhD 23, Dr Katherine L Smollett PhD 42, Alice Broos BSc 53, Daniel Mair BSc 53, Jenna Nichols BSc 53, Dr Kyriaki Nomikou PhD 53, Dr Lily Tong PhD 53, Ioulia Tsatsanis MSc 53, Prof Sarah O’Brien PhD 54, Prof Steven Rushon PhD 54, Dr Roy Sanderson PhD 54, Dr Jon Perkins MBCHB 55, Seb Cotton MSc 56, Abbie Gallagher BSc 56, Dr Elias Allara MD, PhD 70, 102, Clare Pearson MSc 70, 102, Dr David Bibby PhD 72, Dr Gavin Dabrera PhD 72, Dr Nicholas Ellaby PhD 72, Dr Eileen Gallagher PhD 72, Dr Jonathan Hubbard PhD 72, Dr Angie Lackenby PhD 72, Dr David Lee PhD 72, Nikos Manesis 72, Dr Tamyo Mbisa PhD 72, Dr Steven Platt PhD 72, Katherine A Twohig 72, Dr Mari Morgan PhD 74, Alp Aydin MSc 75, David J Baker BEng 75, Dr Ebenezer Foster-Nyarko PhD 75, Dr Sophie J Prosolek PhD 75, Steven Rudder 75, Chris Baxter BSc 77, Silvia F Carvalho MSc 77, Dr Deborah Lavin PhD 77, Dr Arun Marripan PhD 77, Dr Clara Radulescu PhD 77, Dr Aditi Singh PhD 77, Miao Tang MD 77, Helen Morcette BSc 79, Nadua Bayzid BSc 96, Marius Cotic MSc 96, Dr Carlos E Balcazar PhD 104, Dr Michael D Gallagher PhD 104, Dr Daniel Maloney PhD 104, Thomas D Stanton BSc 104, Dr Kathleen A Williamson PhD 104, Dr Robin Manley PhD 105, Michelle L Michelsen BSc 105, Dr Christine M Sambles PhD 105, Dr David J Studholme PhD 105, Joanna Warwick-Dugdale BSc 105, Richard Eccles MSc 107, Matthew Gemmell MSc 107, Dr Richard Gregory PhD 107, Dr Margaret Hughes PhD 107, Charlotte Nelson MSc 107, Dr Lucille Rainbow

The copyright holder for this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.29.23285160 doi: medRxiv preprint (which was not certified by peer review) is the author/under, who has granted medRxiv a license to display the preprint in perpetuity.
Preprint
Public Health England, 71 Public Health England, Cambridge, 72 Public Health England, Colindale, Trust, 68 Portsmouth Hospitals University NHS Trust, 64 Northumbria Healthcare NHS Foundation Trust, 65 Northumbria University, 66 University Hospital NHS Trust, 62 North Tees and Hartlepool NHS Foundation Trust, 60 North Cumbria Integrated Care NHS Foundation Trust, 61 North Middlesex College and Clyde, 56 NHS Lothian, 57 NIHR Health Protection Research Unit in HCAI and AMR, Imperial University of Glasgow Centre for Virus Research, 54 Newcastle University, 55 NHS Greater Glasgow and Clyde, 56 NHS Lothian, 57 NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, 58 Norfolk and Norwich University Hospitals NHS Foundation Trust, 59 Norfolk County Council, 60 North Cumbria Integrated Care NHS Foundation Trust, 61 North Middlesex University Hospital NHS Trust, 62 North Tees and Hartlepool NHS Foundation Trust, 63 North West London Pathology, 64 Northumbria Healthcare NHS Foundation Trust, 65 Northumbria University, 66 NU-OMICS, Northumbria University, 67 Path Links, Northern Lincolnshire and Goole NHS Foundation Trust, 68 Portsmouth Hospitals University NHS Trust, 69 Public Health Agency, Northern Ireland, 70 Public Health England, 71 Public Health England, Cambridge, 72 Public Health England, Colindale,