Mortality rates among hospitalized patients with COVID-19 treated with convalescent plasma
A Systematic review and meta-analysis

Jonathon W. Senefeld, PhD†; Ellen K. Gorman, BS†; Patrick W. Johnson, BS2; M. Erin Moir, PhD3; Stephen A. Klassen, PhD4; Rickey E. Carter, PhD2; Nigel S. Paneth, MD5; David J. Sullivan, MD6; Olaf H. Morkeberg, BA1; R. Scott Wright, MD7,8; DeLisa Fairweather, PhD9; Katelyn A. Bruno, PhD9,10; Shmuel Shoham, MD11; Evan M. Bloch, MBchB, MS12; Daniele Focosi, MD13; Jeffrey P. Henderson, MD, PhD14,15; Justin E. Juskewitch, MD, PhD16; Liise-anne Pirofski, MD17; Brenda J. Grossman, MD, MPH18; Aaron A.R. Tobian, MD, PhD12; Massimo Franchini, MD19; Ravindra Ganesh, MBBS, MD20; Ryan T. Hurt, MD, PhD20; Neil E. Kay, MD21,22; Sameer A. Parikh, MBBS23; Sarah E. Baker, PhD1; Zachary A. Buchholtz, BS1; Matthew R. Buras, BS23; Andrew J. Clayburn, BS1; Joshua J. Dennis, BS1; Juan C. Diaz Soto, MD1; Vitaly Herasevich, MD, PhD1; Allan M. Klompas, MB, BCH, BA10; Katie L. Kunze, PhD23; Kathryn F. Larson, MD7; John R. Mills, PhD16; Riley J. Regimbal, BS1; Juan G. Ripoll, MD1; Matthew A. Sexton, MD1; John R.A. Shepherd, MD1; James R. Stubbs, MD16; Elitza S. Theel, PhD16; Camille M. van Buskirk, MD16; Noud van Helmond, MD1; Matthew N.P. Vogt, MD1; Emily R. Whelan, BS9; Chad C. Wiggins, PhD1; Jeffrey L. Winters, MD16; Arturo Casadevall, MD, PhD6#; Michael J. Joyner, MD11**

Author Affiliations
1Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
2Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
3Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
4Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
5Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
6Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
7Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
8Human Research Protection Program, Mayo Clinic, Rochester, Minnesota
9Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida
10Center for Regenerative Medicine and Division of Cardiology, University of Florida, Gainesville, Florida
11Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
12Department of Pathology Johns Hopkins University School of Medicine, Baltimore, Maryland
13North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
14Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
15Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
16Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota
Division of Hematology, Mayo Clinic, Rochester, Minnesota
Department of Immunology, Mayo Clinic, Rochester, Minnesota
Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona

*Corresponding Author: Michael J. Joyner, MD, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905 (joyner.michael@mayo.edu)

†Dr. Senefeld and Ms. Gorman contributed equally as first authors to the work of the study and manuscript.
*Dr. Casadevall and Joyner contributed equally as senior authors to the work of the study and manuscript.

Word Count: 2,921
Key Points

Question. What is the evidence regarding the potential mortality benefit associated with transfusion of convalescent plasma in hospitalized patients with COVID-19?

Findings. In this meta-analysis of 39 randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants, transfusion of convalescent plasma was associated with a 13% mortality benefit. Subgroup analyses revealed that patients treated with plasma containing higher levels of antibodies and patients treated earlier in the course of the disease had a greater mortality benefit associated with COVID-19 convalescent plasma transfusion.

Meaning. These findings suggest that transfusion of COVID-19 convalescent plasma is associated with a mortality benefit for hospitalized patients, particularly those treated earlier in the disease course.

Abstract

IMPORTANCE. Many hospitalized patients with COVID-19 have been treated with convalescent plasma. However, it is uncertain whether this therapy lowers mortality and if so, if the mortality benefit is larger among specific subgroups, such as recipients of plasma with high antibody content and patients treated early in the disease course.

OBJECTIVE. To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19.

DATA SOURCES. On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature.

STUDY SELECTION. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3,841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of five reviewers.

DATA EXTRACTION AND SYNTHESIS. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using inverse-variance random-effects model.

MAIN OUTCOMES AND MEASURES. Prespecified end point was all-cause mortality during hospitalization.

RESULTS. Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses demonstrated that transfusion of COVID-19 convalescent plasma was associated with a significant decrease in mortality compared with the control cohort for
both randomized clinical trials (odds ratio (OR), 0.87 [95% CI, 0.76-1.00]) and matched cohort studies (OR, 0.77 [95% CI, 0.64-0.94]). Meta-analysis of subgroups revealed two important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared to convalescent plasma containing low antibody levels (OR, 0.85 [95% CI, 0.73 to 0.99]). Second, earlier treatment with COVID-19 convalescent plasma was associated with a significant decrease in mortality compared with the later treatment cohort (OR, 0.63 [95% CI, 0.48 to 0.82]).

CONCLUSIONS AND RELEVANCE. COVID-19 convalescent plasma use was associated with a 13% reduced risk in mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Introduction

The COVID-19 pandemic created a humanitarian crisis that prompted an expeditious search for safe and effective COVID-19 therapies. Before identifying effective antispoke monoclonal antibodies and small molecule antivirals, COVID-19 convalescent plasma was proposed as a safe treatment with a promising efficacy profile in early reports. More recently, as new SARS-CoV-2 variants emerged and evaded antispoke monoclonal antibodies, interest has been renewed in understanding the clinical efficacy of COVID-19 convalescent plasma, particularly among patients who are immunocompromised. Although COVID-19 convalescent plasma has been widely available and used to treat over half-a-million patients with COVID-19, uncertainty remains about the utility of COVID-19 convalescent plasma and its association with mortality due to heterogenous findings from individual studies. Heterogeneity in clinical studies is likely due to several key factors: biological diversity of COVID-19 convalescent plasma, evolving and nonstandard treatment protocols, and a wide spectrum of clinical use of COVID-19 convalescent plasma from postexposure prophylaxis to therapy of last resort in patients with multiorgan failure. In this framework, many different approaches have been used to study the mortality of patients with COVID-19 treated with COVID-19 convalescent plasma, including randomized clinical trials (RCTs), real-time pooling of individual patient data from RCTs, and meta-analyses. The present work was performed to provide an updated, high-quality systematic review and meta-analysis on the use of COVID-19 convalescent plasma.

This systematic review and meta-analysis aimed to evaluate the association of COVID-19 convalescent plasma with mortality among hospitalized patients with COVID-19 by pooling data from RCTs and matched cohort studies. Moreover, prespecified analyses aimed to determine if the potential association between COVID-19 convalescent plasma and mortality benefit differs across patient subgroups based on anti-SARS-CoV-2 antibody levels within COVID-19 convalescent plasma and the timing of the convalescent plasma transfusion in relation to the disease course. By integrating information from many studies and lines of evidence, we hope that this work provides new insights, clarifies ambiguous areas, and removes biases from the scientific corpus.

Methods

This systematic review and meta-analysis followed the recommendations in the Cochrane Handbook for Systematic Review of Interventions and reported findings according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. The study protocol has been registered in PROSPERO (CRD42022316321); all changes to the protocol are reported in the Methods section. In accordance with the Code of Federal Regulations, 45 CFR 46.102, this study was exempt from obtaining institutional review board approval from Mayo Clinic and the requirement to obtain informed patient consent because it is secondary use of publicly available data sets.
Eligibility Criteria

Eligible patients were hospitalized with COVID-19. The intervention investigated was transfusion with COVID-19 convalescent plasma of any dosage. The control group was treated with standard of care according to local treatment guidelines, with or without a placebo. The primary outcome was all-cause mortality during hospitalization. Randomized clinical trials and matched cohort studies were eligible for all analyses. For subgroup analyses, where the focus is on differences among patients treated with COVID-19 convalescent plasma, case series were also eligible.

Information Sources

On October 26, 2022, PubMed, MEDLINE, Google Scholar, and medRxiv were searched for eligible studies published beginning with January 1, 2020—approximating the origins of the COVID-19 pandemic. Keywords used in the search included ((convalescent plasma) OR (convalescent serum)) AND COVID-19 (and medical subject headings).

Selection and Data Collection Processes

Both the selection process and data collection process were performed in duplicate and independently by two reviewers from a cohort of five potential reviewers (J.W.S., E.K.G., M.E.M., S.A.K., O.H.M.), and all data were independently verified by review from a third reviewer. Disagreements were discussed until consensus. Data abstraction was performed using a standardized data abstraction form. Abstracted data included patient demographic characteristics (sample size, age, sex, need for mechanical ventilation at the time of COVID-19 convalescent plasma transfusion) and COVID-19 convalescent plasma transfusion characteristics (volume transfused, antibody level, and time to transfusion in relation to disease course) as available. Data were abstracted corresponding to the latest available follow-up time for mortality. Further information on the selection process is presented in Figure 1.

Study Risk of Bias Assessment

A risk of bias assessment was conducted using the Cochrane Risk of Bias 2.0 Tool for randomized clinical trials57,58 and the Newcastle-Ottawa Scale for matched cohort studies. Two reviewers from a cohort of three potential reviewers (J.W.S., E.K.G., S.A.K.) applied the risk of bias assessment independently, and verified by a third reviewer. Discrepancies were discussed until a consensus was reached.

Statistical Analysis

For the primary, dichotomous outcome of mortality, we performed a meta-analysis using a random-effects model. We extracted raw data on mortality events and the number of patients for each group. For each study, we compared the observed number of deaths among patients transfused with COVID-19 convalescent plasma with the expected number if
all patients were at equal risk using standard formulae for 2×2 contingency tables. Trials results were combined and weighted using an inverse-variance model. Analyses were done using Comprehensive Meta-analysis software (CMA 2.0, Biostat, Englewood, USA). Results are reported with 95% confidence intervals (CIs), statistical significance was set at \(\alpha = .05 \), and all tests were 2-tailed.

Primary meta-analyses were performed separately for randomized clinical trials and matched cohort studies. We performed prespecified subgroup analyses, including a subgroup analysis based on timing of convalescent plasma transfusion (early vs. late treatment) in relation to the COVID-19 disease course and a subgroup analysis based on antibody concentration in the transfused COVID-19 convalescent plasma (high vs. low antibody levels).

Additionally, an exploratory meta-analysis was performed on hospitalization rates among outpatients with recent SARS-CoV-2 exposure or infection.

Results

Study Selection and Characteristics

The process of study selection is represented in the PRISMA flow diagram (Figure 1). Thirty-nine randomized clinical trials\(^{10-48}\) enrolling 21,529 participants and 70 matched cohort studies\(^{2,59-127}\) enrolling 50,160 participants were included in the primary analyses. Although controlled studies were the focus of this systematic review and meta-analysis, secondary analyses on COVID-19 convalescent plasma antibody levels and timing of COVID-19 convalescent plasma transfusion encompass findings from case series, as delineated below.

Risk Assessment

The results of the risk of bias assessment for randomized clinical trials and matched cohort studies are presented in eTable 2 and eTable 3, respectively, in the Supplement. Because our analyses primarily included controlled trials and focused on a discrete, dichotomous outcome that is unlikely to be influenced by implicit biases of research personnel (all-cause mortality), many studies were determined to have low risk of bias. Matched cohort studies were associated with higher risk of bias because of the open-label trial design.

Association Between Convalescent Plasma Transfusion and Mortality in Hospitalized Patients with COVID-19

Key findings of the primary meta-analysis of 39 randomized clinical trials including 11,303 patients treated with COVID-19 convalescent plasma and 10,226 patients treated with usual care (controls) are displayed in Figure 2. Treatment with COVID-19 convalescent plasma was associated with a 13% reduced risk in mortality rates compared to usual care, with a pooled risk ratio estimate of 0.87 (95% CI, 0.76 to 1.00).
The clinical benefit associated with COVID-19 convalescent plasma observed in 39 randomized clinical trials was also supported by meta-analysis of 70 matched cohort studies, which included 14,541 patients treated with COVID-19 convalescent plasma and 35,619 patients treated with usual care (controls). In this meta-analysis of matched cohort studies, treatment with COVID-19 convalescent plasma was associated with a 23% reduced risk in mortality rates compared to usual care, with a pooled risk ratio estimate of 0.77 (95% CI, 0.64 to 0.94). A forest plots associated with these findings is displayed in eFigure 1 in the Supplement. Although there was heterogeneity between individual studies, there was a high level of concordance between these two separate meta-analyses.

Exploratory Analyses of Outpatient COVID-19 Convalescent Plasma

Six randomized clinical trials\(^{128-133}\) enrolling 2,824 participants were included in an exploratory analysis of hospitalization or mortality rates among outpatients with recent SARS-CoV-2 exposure or infection. In this meta-analysis, treatment with COVID-19 convalescent plasma among outpatients was associated with a 35% decrease in hospitalization rate, with a pooled risk ratio estimate of 0.65 (95% CI, 0.45 to 0.94). Results of this exploratory meta-analysis are shown in the forest plot in Figure 3. However, there was no apparent mortality benefit associated with convalescent plasma among outpatients, with a pooled risk ratio estimate of 0.60 (95% CI, 0.16 to 2.28), eFigure 2.

Subgroup Analyses

COVID-19 convalescent plasma antibody levels. Among patients treated with COVID-19 convalescent plasma, receipt of convalescent plasma with higher levels of antibodies has been suggested to be associated with reduced mortality.\(^{20,54}\) Thus, heterogeneity of antibody levels in the COVID-19 convalescent plasma used to treated patients may impact the mortality rates reported. Hence, we examined within-study mortality rates among patients treated with convalescent plasma containing high or low antibody levels. Because several assays were authorized for use in the manufacture of high antibody-titer convalescent plasma and cutpoints used to qualify high antibody-titer convalescent plasma have changed over time, we used study-defined cutpoints to define high and low antibody levels. Information on assay systems and cutpoints used to delineate high and low antibody levels are provided in eTable 4 in the Supplement.

In this framework, three matched cohort studies\(^{98,109,114}\) enrolling 330 participants and 12 case series \(^{54,134-144}\) enrolling 29,361 participants were included in this subgroup analysis. In this subgroup meta-analysis, treatment with COVID-19 convalescent plasma containing high antibody levels was associated with a 15% decrease in mortality rates compared to convalescent plasma containing low antibody levels, with a pooled risk ratio estimate of 0.85 (95% CI, 0.73 to 0.99). Results of this subgroup meta-analysis are shown in the forest plot in Figure 4.
Timing of COVID-19 convalescent plasma transfusion. Among hospitalized patients transfused with COVID-19 convalescent plasma, transfusion earlier in the COVID-19 disease course has been suggested to be associated with reduced mortality, thus, heterogeneity of the time between COVID-19 diagnosis and convalescent plasma transfusion may impact mortality rates. Because there was no standard to define 'early treatment' and individual studies used diverse criteria to define 'early treatment', we used study-defined cutpoints to delineate early and late treatment with COVID-19 convalescent plasma. Information on cutpoints used to define earlier and later treatment with COVID-19 convalescent plasma are provided in eTable 5 in the Supplement.

In this context, we examined within study mortality rates among patients treated with convalescent plasma earlier compared to those treated later in the COVID-19 disease course. This subgroup analysis examined 26 studies, including: 2 randomized clinical trials enrolling 5,990 participants, 7 matched cohort studies enrolling 1,928 participants, and 17 case series enrolling 10,530 participants. In this subgroup meta-analysis, treatment with convalescent plasma earlier in the COVID-19 disease course was associated with a 37% decrease in mortality rates compared to treatment later in the disease course, with a pooled risk ratio estimate of 0.63 (95% CI, 0.48 to 0.82). Results of this subgroup meta-analysis are shown in the forest plot in Figure 5.

Case series and reports

In the United States and many other countries, the regulatory framework during the COVID-19 pandemic enabled broad access to COVID-19 convalescent plasma. In this context, a large number of single-arm studies evaluated the risk of death from COVID-19 after transfusion with convalescent plasma, including over 300 case series or case reports. The case series and case reports treated 135,949 participants with COVID-19 convalescent plasma and mortality was observed in 33,771 participants (~25% mortality rate). Study level data are provided in eTable 5 in the Supplement, and references associated with these case series and case reports are provided in the Supplementary References.

Discussion

This systematic review and meta-analysis of 39 randomized clinical trials and 70 matched cohort studies of use of COVID-19 convalescent plasma for hospitalized patients with COVID-19 provides new insights into the therapeutic use of convalescent plasma and removes biases from the scientific and clinical literature. This meta-analysis found that convalescent plasma was associated with a clinically meaningful mortality benefit among hospitalized patients with COVID-19. However, given the large diversity of the included trials and heterogeneity of findings, the results must be analyzed and interpreted critically.

Overall, COVID-19 convalescent plasma transfusion was associated with a 13% decrease in mortality rates compared with the (usual care) control group. Subgroup analyses revealed that patients treated with high-titer plasma and patients treated earlier in the course of the
disease benefited more from COVID-19 convalescent plasma transfusion than patients treated with lower-titer plasma or patients treated later in the course of the disease. Exploratory analyses also demonstrated that transfusion of COVID-19 convalescent plasma among outpatients was associated with a 35% decrease in hospitalization rates compared with the control group—a finding which is consistent with pooled individual patient data. Our finding that convalescent plasma transfusion reduced mortality is consistent with the epidemiologic data showing an inverse correlation between plasma use and COVID-19 death in the USA.

Although data were directionally consistent when pooling randomized clinical trials and matched cohort studies, findings of individual trials were heterogenous. This heterogeneity between trials is likely associated with several factors. First, clinical heterogeneity may be based on patient characteristics at the time of COVID-19 convalescent plasma therapy. It is important to consider COVID-19 disease severity, which is directly related to higher odds of death. Among studies in which the patients had more severe disease, mortality was higher and there was often no clinical benefit associated with COVID-19 convalescent plasma transfusion. This meta-analysis found that treatment with COVID-19 convalescent plasma earlier in the course of the disease was associated with a 37% decrease in mortality rates. Thus, treatment later in the course of the disease may not confer a mortality benefit, unless the patients are immunocompromised.

Second, clinical heterogeneity may result from differences in the COVID-19 convalescent plasma intervention itself, particularly the antibody content and geographic provenance of plasma supplies. Several assays are authorized for use in the manufacture of high antibody-titer convalescent plasma and there are established, assay-specific cutpoints used to define high antibody-titer convalescent plasma. However, there is discordance between assays and the cutpoints to define high antibody-titer convalescent plasma are not directly comparable across assays. Additionally, the cutpoints used to qualify high antibody-titer convalescent plasma have changed over time, and generally, the required antibody content has increased. In this context, the discordance between assays and changing clinical guidelines may have contributed to heterogeneity of individual trial findings. This meta-analysis found that treatment with high-titer convalescent plasma was associated with a 15% decrease in mortality rates, and treatment with low-titer convalescent plasma may not confer a clinically meaningful mortality benefit.

Critical reporting and sufficient analyses are crucial when it comes to investigating heterogeneity of meta-analyses in systematic reviews. Failure to fully reflect heterogeneity of results may lead to misinterpretations, incorrect assumptions, and incorrect and potentially harmful clinical recommendations. In this framework, this meta-analysis may provide new insights into the therapeutic use of convalescent plasma. Although this meta-analysis revealed that convalescent plasma was associated with a clinically meaningful overall mortality benefit among hospitalized patients with COVID-19, convalescent plasma is not a panacea because it is a non-standardized therapy that requires early use for efficacy.
COVID-19 convalescent plasma may be unlikely to confer a mortality benefit among patients treated with low antibody-titer convalescent plasma later in the COVID-19 disease course. The finding that COVID-19 convalescent plasma was associated with reduced mortality is consistent with the historical experience from the 1918 pandemic where convalescent serum therapy was associated with reduced mortality.165

Limitations

This systematic review and meta-analysis has several limitations. First, the empirical, clinical studies were associated with biological diversity and heterogenous comparator groups. Key factors were continuously evolving during the pandemic, including the pathogen of interest (SARS-CoV-2), contemporary treatment strategies for the disease of interest (COVID-19), and antibody content of the treatment of interest (COVID-19 convalescent plasma). In this context, we believe the high level of concordance among study outcomes despite the biological heterogeneity between studies offer compelling evidence for the therapeutic value of convalescent plasma among COVID-19 patients overall. Second, we did not have access to patient-level data for the studies included in this article. Thus, our subgroup analyses that separated patients by a single baseline characteristic were simplistic.166 Lack of patient-level data does not allow analyses using more complex statistical models that incorporate multiple characteristics167, and previous studies have pooled patient level data from clinical trials of COVID-19 convalescent plasma.6,49 Third, we limited our focus to a single outcome. Finally, we note that the preponderance of data in this analysis came from studies in the first years of the pandemic involving unvaccinated populations that were immunologically naïve to SARS-CoV-2 and today most individuals in the countries contributing the majority of studies are vaccinated and/or have prior experience with COVID-19, making the populations then and now immunologically different.

Conclusion

This systematic review and meta-analysis found that convalescent plasma was associated with a 13% decrease in mortality rates in hospitalized patients with COVID-19 compared with a control cohort. Subgroup analyses revealed that patients treated with high-titer plasma and patients treated earlier in the course of the disease benefited more from COVID-19 convalescent plasma transfusion. Thus, reasonable concerns about the use of low antibody-titer convalescent plasma later in the course of the disease remain. These findings can offer experts a new starting point in forming their judgement of the therapeutic effectiveness of COVID-19 convalescent plasma and may help transform subjective and nebulous insider views to more transparent and reliable knowledge base. Finally, our findings support the deployment of convalescent plasma in future epidemic emergencies until better therapies are available with the caveat that convalescent plasma should be administered early in disease using units with the highest antibody content available.
ARTICLE INFORMATION

Author Contributions: Drs Senefeld and Joyner had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Senefeld, Klassen, Carter, Paneth, Casadevall, Joyner

Acquisition, analysis, or interpretation of data: Senefeld, Gorman, Johnson, Moir, Klassen, Paneth, Morkeberg, Casadevall, Joyner

Drafting of the manuscript: Senefeld, Gorman, Casadevall, Joyner

Statistical analysis: Senefeld, Gorman, Casadevall, Joyner

Obtained funding: Senefeld, Carter, Paneth, Wright, Fairweather, Bruno, Casadevall, Joyner

Supervision: Senefeld, Carter, Paneth, Casadevall, Joyner

Conflict of Interest Disclosures: Drs Senefeld, Carter, Joyner, Fairweather, Bruno, Wright reported being investigators in the US Expanded Access Program of COVID-19 convalescent plasma. Drs Paneth, Casadevall, Joyner reported serving as leadership for the COVID-19 Convalescent Plasma Project outside the submitted work.

Funding/Support: This work was supported by the United Health Group, David and Lucile Packard Foundation, Schwab Charitable Fund (Eric E. Schmidt, Wendy Schmidt donors), National Basketball Association, and Mayo Clinic.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
REFERENCES

98. Mendoza RP, Fyke W, Daniel D, et al. Administration of high titer convalescent anti-
SARS-CoV-2 plasma: From donor selection to monitoring recipient outcomes. *Hum

99. Mesina FZ, Mangahas CG, Gatchalian EM, Ariola-Ramos MS, Torres RP. Use of
Convalescent Plasma Therapy among Hospitalized Coronavirus Disease 2019 (COVID-

100. Mesina F, Julian J, Relos J, et al. Use of Convalescent Plasma Therapy with Best
Available Treatment (BAT) among Hospitalized COVID-19 Patients: A Multi-Center

Plasma Transfusion for the Treatment of COVID-19-Experience from Poland: A

convalescent plasma transfusion in severe and critically ill COVID-19 patients: A single

2021;93(3):1678-1686.

104. Pan C, Chen H, Xie J, et al. The Efficiency of Convalescent Plasma Therapy in the
Management of Critically Ill Patients Infected With COVID-19: A Matched Cohort

Plasma for the Treatment of Severe COVID-19- A Propensity Score-Matched Control

treated with hyperimmune plasma. A proof of concept single arm multicenter trial.

patients of 80 years and older with COVID-19 pneumonia. *BMC Geriatr.*
2021;21(1):566.

111. Salazar E, Christensen PA, Graviss EA, et al. Significantly Decreased Mortality in a
Large Cohort of Coronavirus Disease 2019 (COVID-19) Patients Transfused Early with
Convalescent Plasma Containing High-Titer Anti-Severe Acute Respiratory Syndrome

Mortality rates among hospitalized patients with COVID-19 treated with convalescent plasma
A Systematic review and meta-analysis

Figures

10,413 potentially eligible studies identified based on database search criteria

- 6,572 duplicates removed

3,841 studies screened

- 3,097 irrelevant studies removed

744 full-text studies assessed for eligibility

- 294 studies excluded
 - 144 No original data (review or editorial)
 - 61 Duplicate (Pre-print or pre-press)
 - 53 Mortality not available for CCP group
 - 28 CCP not used
 - 8 Full-text unavailable in English

450 articles included in systematic review

- 335 case reports or case series included
- 70 matched cohort studies included
- 45 randomized clinical trials assessed for eligibility

- 39 (inpatient) randomized clinical trials included
- 6 (outpatient) randomized clinical trials included in exploratory analyses

FIGURE 1. PRISMA flow diagram. Flow diagram displaying the selection of articles through different phases of the systematic review, and categorization of included articles.
<table>
<thead>
<tr>
<th>Source</th>
<th>Convalescent plasma group</th>
<th>Usual care group</th>
<th>Ratio of death rates, OR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baijai et al.2022</td>
<td>3/14 (21%)</td>
<td>1/15 (7%)</td>
<td>3.31 (0.42-26.42)</td>
<td>0.10%</td>
</tr>
<tr>
<td>Rajas et al.2022</td>
<td>6/46 (13%)</td>
<td>2/25 (4%)</td>
<td>2.89 (0.58-12.23)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Seng et al.2022</td>
<td>22/87 (25%)</td>
<td>7/42 (17%)</td>
<td>1.63 (0.68-3.93)</td>
<td>0.55%</td>
</tr>
<tr>
<td>Jaff et al.2021</td>
<td>16/60 (27%)</td>
<td>11/60 (18%)</td>
<td>1.61 (0.68-3.77)</td>
<td>0.58%</td>
</tr>
<tr>
<td>Thoraxius-Urning et al.2022</td>
<td>7/99 (7%)</td>
<td>2/46 (4%)</td>
<td>1.59 (0.38-6.79)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Elzahed et al.2021</td>
<td>1/17 (6%)</td>
<td>0/15 (0%)</td>
<td>1.19 (0.11-11.84)</td>
<td>0.16%</td>
</tr>
<tr>
<td>Selene et al.2021</td>
<td>1/180 (0.5%)</td>
<td>1/120 (0.8%)</td>
<td>1.49 (0.66-3.25)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Krieng et al.2021</td>
<td>1/169 (0.6%)</td>
<td>1/67 (1.5%)</td>
<td>1.75 (0.46-6.85)</td>
<td>0.14%</td>
</tr>
<tr>
<td>Belgin et al.2021</td>
<td>156/625 (25%)</td>
<td>69/331 (22%)</td>
<td>1.17 (0.85-1.61)</td>
<td>4.21%</td>
</tr>
<tr>
<td>Baijai et al.2022</td>
<td>42/200 (21%)</td>
<td>37/200 (19%)</td>
<td>1.17 (0.72-1.91)</td>
<td>1.76%</td>
</tr>
<tr>
<td>Self et al.2022</td>
<td>89/482 (19%)</td>
<td>80/465 (17%)</td>
<td>1.09 (0.78-1.52)</td>
<td>3.84%</td>
</tr>
<tr>
<td>Agarwal et al.2020</td>
<td>34/235 (14%)</td>
<td>31/229 (14%)</td>
<td>1.08 (0.64-1.82)</td>
<td>1.55%</td>
</tr>
<tr>
<td>Gonzalez et al.2021</td>
<td>113/616 (18%)</td>
<td>80/616 (13%)</td>
<td>1.54 (0.53-1.86)</td>
<td>1.94%</td>
</tr>
<tr>
<td>RECOVERY 2021</td>
<td>139/5795 (24%)</td>
<td>140/5763 (24%)</td>
<td>0.98 (0.90-1.07)</td>
<td>15.80%</td>
</tr>
<tr>
<td>RECAP CAN2021</td>
<td>40/1070 (37%)</td>
<td>34/904 (38%)</td>
<td>0.96 (0.60.1.15)</td>
<td>12.78%</td>
</tr>
<tr>
<td>Simonovich et al.2021</td>
<td>25/238 (11%)</td>
<td>11/105 (11%)</td>
<td>0.95 (0.46-1.99)</td>
<td>0.79%</td>
</tr>
<tr>
<td>Balkein et al.2021</td>
<td>7/63 (11%)</td>
<td>1/95 (13%)</td>
<td>0.87 (0.33-2.10)</td>
<td>0.45%</td>
</tr>
<tr>
<td>De Santis et al.2022</td>
<td>11/36 (31%)</td>
<td>25/71 (33%)</td>
<td>0.81 (0.35-1.89)</td>
<td>0.60%</td>
</tr>
<tr>
<td>O’Sullivan et al.2022</td>
<td>59/462 (13%)</td>
<td>71/462 (15%)</td>
<td>0.81 (0.36-1.67)</td>
<td>3.09%</td>
</tr>
<tr>
<td>van den Berg et al.2022</td>
<td>3/15 (20%)</td>
<td>1/6 (16%)</td>
<td>0.79 (0.32-1.95)</td>
<td>0.71%</td>
</tr>
<tr>
<td>Menchette et al.2021</td>
<td>14/141 (10%)</td>
<td>16/141 (11%)</td>
<td>1.00 (0.64-1.34)</td>
<td>1.00%</td>
</tr>
<tr>
<td>Bennett-Guerrero et al.2021</td>
<td>12/100 (12%)</td>
<td>10/100 (10%)</td>
<td>1.02 (0.62-1.67)</td>
<td>1.00%</td>
</tr>
<tr>
<td>Bhatnagar et al.2017</td>
<td>10/40 (25%)</td>
<td>20/80 (25%)</td>
<td>0.63 (0.24-1.42)</td>
<td>0.47%</td>
</tr>
<tr>
<td>Roy et al.2022</td>
<td>10/40 (25%)</td>
<td>10/40 (25%)</td>
<td>0.63 (0.24-1.42)</td>
<td>0.47%</td>
</tr>
<tr>
<td>Henskiener et al.2022</td>
<td>1/16 (6%)</td>
<td>16/64 (24%)</td>
<td>0.61 (0.26-1.41)</td>
<td>0.60%</td>
</tr>
<tr>
<td>Li et al.2020</td>
<td>8/51 (16%)</td>
<td>12/50 (24%)</td>
<td>0.60 (0.23-1.58)</td>
<td>0.45%</td>
</tr>
<tr>
<td>Pauladzmeden et al.2021</td>
<td>3/30 (10%)</td>
<td>5/30 (17%)</td>
<td>0.75 (0.23-2.48)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Karper et al.2021</td>
<td>11/53 (21%)</td>
<td>17/52 (33%)</td>
<td>0.55 (0.23-1.29)</td>
<td>0.57%</td>
</tr>
<tr>
<td>Lucembe et al.2022</td>
<td>7/60 (12%)</td>
<td>2/60 (20%)</td>
<td>0.54 (0.20-1.43)</td>
<td>0.45%</td>
</tr>
<tr>
<td>Prem et al.2020</td>
<td>23 (12%)</td>
<td>23 (12%)</td>
<td>0.50 (0.09-3.32)</td>
<td>1.23%</td>
</tr>
<tr>
<td>AlQattani et al.2020</td>
<td>1/20 (5%)</td>
<td>2/20 (10%)</td>
<td>0.50 (0.05-5.06)</td>
<td>0.08%</td>
</tr>
<tr>
<td>Ghubharan et al.2021</td>
<td>6/33 (14%)</td>
<td>11/33 (26%)</td>
<td>0.49 (0.17-1.39)</td>
<td>0.38%</td>
</tr>
<tr>
<td>Juendritz-Schul et al.2021</td>
<td>7/179 (4%)</td>
<td>14/178 (8%)</td>
<td>0.47 (0.19-1.13)</td>
<td>0.55%</td>
</tr>
<tr>
<td>O’Donnell et al.2021</td>
<td>19/150 (13%)</td>
<td>18/173 (25%)</td>
<td>0.42 (0.20-0.99)</td>
<td>0.76%</td>
</tr>
<tr>
<td>Risheedi et al.2020</td>
<td>1/21 (5%)</td>
<td>8/28 (29%)</td>
<td>0.21 (0.05-0.90)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Ali et al.2021</td>
<td>10/40 (25%)</td>
<td>10/40 (25%)</td>
<td>0.21 (0.05-0.90)</td>
<td>0.20%</td>
</tr>
<tr>
<td>Sdri et al.2021</td>
<td>2/40 (5%)</td>
<td>8/40 (20%)</td>
<td>0.21 (0.06-0.70)</td>
<td>0.29%</td>
</tr>
<tr>
<td>Villegas-Sanchez et al.2022</td>
<td>4/29 (14%)</td>
<td>8/16 (50%)</td>
<td>0.12 (0.01-1.32)</td>
<td>0.18%</td>
</tr>
<tr>
<td>Total</td>
<td>2548/11,303 (22.5%)</td>
<td>2382/10,226 (23.3%)</td>
<td>0.87 (0.76-1.00)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI: confidence interval, OR: odds ratio, REMAP-CAP: Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community Acquired Pneumonia.

FIGURE 2. Forest plot of mortality among randomized clinical trials.
FIGURE 3. Forest plot of hospitalization among outpatients with recent SARS-CoV-2 exposure or infection in randomized clinical trials.
FIGURE 4. Forest plot of mortality among studies investigating COVID-19 convalescent plasma containing high compared to low antibody levels.
<table>
<thead>
<tr>
<th>Source</th>
<th>Early group</th>
<th>Late group</th>
<th>OR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasso et al. 2022</td>
<td>16/29 (55%)</td>
<td>23/83 (28%)</td>
<td>3.32 (1.37-8.03)</td>
<td>3.86%</td>
</tr>
<tr>
<td>Balcells et al. 2021</td>
<td>5/28 (18%)</td>
<td>2/30 (7%)</td>
<td>2.96 (0.59-13.55)</td>
<td>2.02%</td>
</tr>
<tr>
<td>Kesecioglu et al. 2021</td>
<td>40/677 (6%)</td>
<td>79/3564 (2%)</td>
<td>1.73 (1.47-1.75)</td>
<td>6.68%</td>
</tr>
<tr>
<td>Sañi et al. 2021</td>
<td>6/22 (45%)</td>
<td>6/15 (40%)</td>
<td>1.24 (0.34-4.89)</td>
<td>2.16%</td>
</tr>
<tr>
<td>Kocyigit et al. 2021</td>
<td>43/64 (51%)</td>
<td>29/57 (51%)</td>
<td>1.01 (0.52-1.98)</td>
<td>4.70%</td>
</tr>
<tr>
<td>Akky Czemeniglu et al. 2021</td>
<td>4/22 (19%)</td>
<td>4/18 (22%)</td>
<td>0.81 (0.19-3.58)</td>
<td>2.99%</td>
</tr>
<tr>
<td>Briggs et al. 2021</td>
<td>30/80 (38%)</td>
<td>32/71 (45%)</td>
<td>0.73 (0.38-1.40)</td>
<td>4.80%</td>
</tr>
<tr>
<td>Salazar et al. 2021</td>
<td>14/44 (6%)</td>
<td>8/77 (8%)</td>
<td>0.70 (0.14-3.71)</td>
<td>3.16%</td>
</tr>
<tr>
<td>Cain et al. 2021</td>
<td>1/37 (2%)</td>
<td>8/29 (28%)</td>
<td>0.69 (0.25-1.93)</td>
<td>3.34%</td>
</tr>
<tr>
<td>Lettanzio et al. 2021</td>
<td>18/92 (20%)</td>
<td>28/155 (27%)</td>
<td>0.67 (0.35-1.30)</td>
<td>4.75%</td>
</tr>
<tr>
<td>Mahapatra et al. 2021</td>
<td>21/1039 (2%)</td>
<td>42/150 (28%)</td>
<td>0.65 (0.43-0.98)</td>
<td>5.76%</td>
</tr>
<tr>
<td>Fazeli et al. 2022</td>
<td>386/1484 (26%)</td>
<td>410/1135 (36%)</td>
<td>0.62 (0.52-0.73)</td>
<td>6.32%</td>
</tr>
<tr>
<td>Gama et al. 2021</td>
<td>10/17 (6%)</td>
<td>11/59 (19%)</td>
<td>1.61 (1.17-1.91)</td>
<td>4.11%</td>
</tr>
<tr>
<td>Bajjar et al. 2022</td>
<td>20/115 (17%)</td>
<td>22/85 (26%)</td>
<td>0.80 (0.50-1.31)</td>
<td>4.84%</td>
</tr>
<tr>
<td>Moruzko-Malinowska et al. 2020</td>
<td>4/55 (9%)</td>
<td>9/23 (37%)</td>
<td>0.56 (0.13-2.40)</td>
<td>2.25%</td>
</tr>
<tr>
<td>Janaki et al. 2021</td>
<td>5/35 (14%)</td>
<td>3/9 (22%)</td>
<td>0.46 (0.08-2.06)</td>
<td>1.43%</td>
</tr>
<tr>
<td>Fodor et al. 2021</td>
<td>24/101 (24%)</td>
<td>34/88 (39%)</td>
<td>0.60 (0.37-0.93)</td>
<td>4.92%</td>
</tr>
<tr>
<td>Raman et al. 2021</td>
<td>2/20 (10%)</td>
<td>4/21 (19%)</td>
<td>0.49 (0.09-2.73)</td>
<td>1.78%</td>
</tr>
<tr>
<td>Asem et al. 2021</td>
<td>2/18 (11%)</td>
<td>1/15 (6%)</td>
<td>0.46 (0.23-1.08)</td>
<td>0.03%</td>
</tr>
<tr>
<td>Gonzaez et al. 2022</td>
<td>56/3313 (16%)</td>
<td>53/1606 (33%)</td>
<td>0.46 (0.40-0.53)</td>
<td>6.57%</td>
</tr>
<tr>
<td>De Silvestro et al. 2022</td>
<td>122/1112 (11%)</td>
<td>85/387 (22%)</td>
<td>0.40 (0.28-0.56)</td>
<td>6.06%</td>
</tr>
<tr>
<td>Ata et al. 2021</td>
<td>3/61 (3%)</td>
<td>9/50 (18%)</td>
<td>0.32 (0.07-1.50)</td>
<td>2.08%</td>
</tr>
<tr>
<td>Franchini et al. 2019</td>
<td>5/131 (4%)</td>
<td>46/272 (14%)</td>
<td>0.31 (0.17-0.58)</td>
<td>4.89%</td>
</tr>
<tr>
<td>Geenbaum et al. 2021</td>
<td>1/13 (8%)</td>
<td>11/31 (35%)</td>
<td>0.25 (0.06-1.01)</td>
<td>2.27%</td>
</tr>
<tr>
<td>Jeyaraman et al. 2021</td>
<td>9/25 (36%)</td>
<td>6/8 (75%)</td>
<td>0.22 (0.05-1.05)</td>
<td>2.07%</td>
</tr>
<tr>
<td>Ibrahim et al. 2020</td>
<td>2/16 (13%)</td>
<td>2/22 (55%)</td>
<td>0.17 (0.05-0.64)</td>
<td>2.54%</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 77.7\%$, $Q = 179.57$ ($df = 17$, $P < 0.01$), $I^2 = 86\%$

Different size symbols represent relative weights used in meta-analysis and are proportional to study size and variance. Horizontal lines indicate the 95% confidence interval (CI) of odds ratio (OR) estimate in each study. Diamond shape represents the pooled estimate with 95% CI.

FIGURE 5. Forest plot of mortality among studies investigating earlier compared to later transfusion of COVID-19 convalescent plasma.