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Abstract1

While the first infection by an emerging disease is often unknown, information on early cases can be2

used to date it, which is of great interest to trace the disease’s origin and understand early infection3

dynamics. In the context of the COVID-19 pandemic, previous studies have estimated the date of4

emergence (e.g., first human SARS-CoV-2 infection in Wuhan, emergence of the Alpha variant in the5

UK) using mainly genomic data. Another dating attempt only relied on case data, estimating a date6

of emergence using a non-Markovian stochastic model and considering the first case detection.7

Here, we extend this stochastic approach to use available data of the whole early case dynamics.8

Our model provides estimates of the delay from the first infection to the N th reported case. We first9

validate our model using data concerning the spread of the Alpha SARS-CoV-2 variant in the UK.10

Our results suggest that the first Alpha infection occurred on (median) August 20 (95% interquantile11

range across retained simulations, IqR: July 20–September 4), 2020. Next, we apply our model to12

data on the early reported cases of COVID-19. We used data on the date of symptom onset up to mid-13

January, 2020. We date the first SARS-CoV-2 infection in Wuhan at (median) November 26 (95%IqR:14

October 31–December 7), 2019. Our results fall within ranges previously estimated by studies relying15

on genomic data. Our population dynamics-based modelling framework is generic and flexible, and16

thus can be applied to estimate the starting time of outbreaks, in contexts other than COVID-19, as17

long as some key parameters (such as transmission and detection rates) are known.18
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1 Introduction21

Dating the first infection of an emerging infectious disease is a step towards tracing the disease’s ori-22

gin and understanding early epidemic dynamics. Beyond the early transmission of a new pathogen,23

estimating the date of first infections is also of interest while studying the initiations of local clus-24

ters in naïve populations. For example, this happens when the pathogen is first introduced to a25

new location, but also when the pathogen evolves to distinct genotypes such as emerging variants26

of concern (VOCs).27

Various attempts have been made to date the first human infections by SARS-CoV-2 that led to28

the COVID-19 pandemic (noting that earlier spillovers, leading to dead-ends, may have occurred).29

Using a stochastic model for the epidemic spread coupled with genomic data allowing to trace trans-30

mission at the individual level, Pekar et al. [1] estimated that the first human infection took place31

between late October and early December 2019. This estimate resulted from revising previous find-32

ings yielding an emergence date between mid-October and mid-November 2019 [2], notably after33

updating the dates of the first case reported [3]. Another modeling study dated the first COVID-1934

case between early October and mid-November 2019 by adapting a technique used in conservation35

science [4], but was also based on outdated data. Other studies have focused on the introductions36

of SARS-CoV-2 to different countries. For instance, studies using molecular clock analyses relying37

on genomic data to determine the time of most recent common ancestor (tMRCA) of lineages in-38

troduced in a focal country have been conducted in the context of France [5], the United States [6]39

and the United Kingdom (UK) [7]; while another study used a stochastic non-Markovian approach40

relying on mortality data to estimate the date of SARS-CoV-2 introduction to France [8]. One study41

focusing on the emergence of the ‘EU1’ SARS-CoV-2 variant (B.1.1778) circulating among European42

countries during the summer of 2020 used genomic data to date most introductions to June, 2020 [9].43

Dating attempts have also been done for the ‘Alpha’ variant (B.1.1.7), whose date of emergence was44

estimated at early August 2020 using a stochastic, non-Markovian approach relying on the date of45

the first observed case [10], and whose tMRCA was estimated at late August 2020 [11].46

The tMRCA however does not necessarily approximate the emergence date [12], which can have47

taken place earlier. Infection times occurring earlier than the tMRCA can be estimated thanks to48

mathematical models. Moreover, modeling studies have helped unveiling other unobserved indi-49

cators during the early stages of epidemics, such as the epidemic size at the time of first detec-50

tion [10, 13]. In particular, because infection numbers are low, stochastic approaches are key to51

studying early dynamics. Hence, methodological developments of stochastic models to study the52

early stages of infectious diseases remain of great interest in the field of mathematical epidemiology.53

The main objective of our study is the estimation of the date of the first infection leading to a54

sustained epidemic (hereafter named the date of epidemic/outbreak emergence), using available55

data on the first N detected cases. To this end, we build a stochastic model and designed a simu-56

lation framework extending previous work [10]. This approach provides the time elapsed between57

epidemic emergence and the N first observed cases, as well as the proportion of the epidemic that58

remains undetected.59

Here, we present in detail the construction of our model and its applications to two epidemio-60

logical contexts. First, we use data on the spread of the Alpha variant in the UK, and validate our61

extension of the model presented in [10]. Next, we parameterize our model to reproduce the dy-62

namics of the early outbreak in Wuhan to estimate a range of probable dates for the emergence of63

the COVID-19 pandemic.64
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2 Results65

2.1 Modeling the early dynamics of an epidemic outbreak66

We develop a stochastic epidemic model that estimates the time elapsed between the first infection67

and N reported cases, using available data and estimates on key epidemiological parameters. We68

model infectious disease transmission with a general branching process starting from a single infec-69

tious individual. This implies that times from infection to transmission events are not exponentially70

distributed as assumed by ordinary differential equation models. We then model the detection of71

infected individuals, which constitutes the modeled time series of cases. Both infection and de-72

tection processes follow distributions with known fixed parameters; cf. Table 2. Importantly, we73

assume fixed parameters as estimated by previous studies (namely, the detection probability), and74

we later examine the robustness of our findings to these exact values. We consider the time-series75

of infections and detections up to the day of occurrence of the N th case. We calibrate our model76

to reproduce the observed epidemic, using available data on disease cases. For more details on the77

model, we refer to the Methods section.78

The main outcome of our model is the time series of cases, from which we deduce the delay79

between emergence (first infection) and N th case. By first infection, we refer to successful epidemic80

outbreaks only; that is, we do not account for the first infections that may have led to epidemics81

that went extinct. In addition, by keeping track of the whole epidemic, we retrieve the time series82

of infections and the number of secondary cases produced by each infectious individual. We can83

thereby compute, for instance, the epidemic size at the time where the N th case is reported, and84

deduce the proportion of detected infections (i.e., cases). This proportion is impacted by detec-85

tion delays and stochasticity and thus, it is not straightforwardly obtained from the probability of86

detection considered in the simulations.87

We run as many numerical simulations as needed to obtain 5 000 successful epidemics, i.e., epi-88

demics that were sustained after a predetermined period of time and that verified the calibration89

conditions imposed by the data from a certain epidemiological context (details in the Methods sec-90

tion). We apply our model to two epidemiological contexts: the emergence of the ‘Alpha’ variant91

in the UK and the emergence of SARS-CoV-2 in Wuhan. Both applications and the corresponding92

results are described in more detail below.93

2.2 Estimating the date of the first infection with the Alpha variant in the UK94

As a first validation of our model, we estimate the emergence of the Alpha variant in the UK, which95

was the main result of the numerical applications presented in [10]. We applied our model to a96

dataset of N = 406 samples carrying the Alpha variant collected and sequenced between Septem-97

ber 20 and November 11, 2020 [14]. Table 2 summarizes the parameter values used in our simu-98

lations. The 5 000 simulated epidemics that we analyse below result from model calibration (i.e.,99

epidemics arising from a single infectious individual and verifying the calibration constraints; de-100

tails in the Methods section), and represent 25% of all simulations run with the input parameters.101

The cumulative cases of the accepted epidemics are depicted in Supplementary Figure S3.102

Hereafter, we summarize our results using median values and 95% interquantile ranges (95%IqR;103

values between the 2.5th and the 97.5th percentiles) from the distributions of the different epidemi-104

ological indicators obtained from the 5 000 simulated epidemics, similar to a posterior distribution105

obtained in an Approximate Bayesian Computation framework (see Methods). We estimated the106

number of days between the 1st infection and the N th case at 83 (95%IqR: 68–114), dating the emer-107
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gence of the Alpha variant in the UK at August 20, 2020 (95%IqR: July 20–September 4), and not108

earlier than June 12, 2020. Alpha transmissions were ongoing about 26 (95%IqR: 9–56) days before109

the date at which the first known case was sampled and sequenced. Table S1 in the Appendix pro-110

vides other calibration metrics like the delay between the 1st and N th sequenced samples in the111

simulations. Figure 1 depicts our estimates of the date of emergence along with the epidemic curve112

(i.e., the daily number of sequenced samples; by sampling date), for context, as well as previous esti-113

mates, for comparison. In particular, we ran an updated version of the model presented in [10] (the114

distribution of the number of secondary cases is negative-binomial instead of Poisson previously,115

and its mean, R , is now equal to 1.9 instead of 1.5 in [10]). We also compare our results to tMRCA116

estimates [11] (personal communication of the distributions). Our median estimates for the emer-117

gence date fall within a very close, slightly narrower range than that found by running an updated118

version of [10], while falling∼ 1 week earlier than the estimated tMRCA [11]. These comparisons are119

summarized in Supplementary Table S2.120

We further estimated the epidemic size at the date of infection of the N th case at about 90 700121

(95%IqR: 80 400–102 000). The simulated detected cases thus represent a proportion of about 0.48%122

(95%IqR: 0.43%–0.53%) of the total number of infections. Note that a case is an infected individ-123

ual who underwent a PCR test and whose sample was sequenced and contained the Alpha variant,124

which accounts for the low probability of detection. Our results are summarized in Table 1. For the125

results of running our model for N = 1 and the comparison of our results with those of [10], we refer126

to Supplementary Figure S5 and Supplementary Table S3.127
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Figure 1: Estimates of the date of emergence of the Alpha variant in the United Kingdom (UK). (A) The
epidemic curve corresponding to the data used to calibrate the model, for context. A total of N = 406
samples carrying the Alpha variant were collected between September 20 and November 11, 2020 [14]. (B)
Violin plots for the distributions of the date of emergence. We estimated the emergence of the Alpha variant
in the UK at August 20 (95%IqR: July 20–September 4), 2020 (top, blue; upper and lower bound of the
95%IqR depicted by bars). For comparison, we also show the distributions of the estimates from an updated
version of the model developed in [10]—which relies on a single observation on September 20—where we
set R = 1.9 and a negative-binomial distribution for the number of the secondary cases (middle, orange).
The distribution for the estimated time of most recent ancestor (tMRCA) [11] is also shown (bottom, gray).
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2.3 Estimating the date of emergence of SARS-CoV-2 in Wuhan128

Next, we applied our model to the dataset of the early cases of COVID-19 considered in [1] (personal129

communication). A total of 3 072 confirmed COVID-19 cases were reported to have had symptoms130

onset between December 10, 2019 and January 19, 2020, the day before the first public declaration131

of human-to-human transmission, shortly before the first lockdown interventions [15]. We param-132

eterized our model using estimates from the literature; cf. Table 2. The 5 000 selected simulations133

represent 13% of all runs (cf. Supplementary Table S1, Appendix) and are depicted in Supplemen-134

tary Figure S4.135

Our simulations yield an estimated median number of days between the 1st SARS-CoV-2 in-136

fection to the N th symptomatic COVID-19 case recorded of 54 (95%IqR: 43–80) days, dating the137

emergence (i.e., the first sustained human infection) of SARS-CoV-2 to November 26 (95%IqR: Oc-138

tober 31–December 7), 2019, and not earlier than September 28, 2019. This also implies that the139

epidemic remained completely undetected (i.e., no detected infections) for about 9 (95%IqR 3–20)140

days. These findings are depicted in Figure 2, along with the observed epidemic curve (i.e., COVID-141

19 cases dataset) as well as recently published estimates of the date of emergence of the COVID-19142

pandemic [1] (personal communication of the distributions), for comparison. Our estimates fall143

remarkably close to those previously found in [1] (cf. Supplementary Table S2, Appendix).144

We further estimate the median number of infections on the day of infection of the N th case at145

about 63 600 (95%IqR: 57 300–69 800), which results in a median proportion of detected infections146

of 5.31% (95%IqR: 5.07%–5.56%). Our results are summarized in Table 1.147
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Figure 2: Estimates of the emergence of SARS-CoV-2 in Wuhan. (A) Observed epidemic curve, for context.
A total of N = 3 072 COVID-19 cases with symptom onset between December 10, 2019 and January 19, 2020,
the day before the first public statement on human-to-human transmission. (B) Violin plots for the
distributions of the date of emergence. We estimated the median date of the first SARS-CoV-2 infection (i.e.,
emergence) at November 26 (95%IqR: October 31–December 7), 2019 (top, blue; upper and lower bound of
the 95%IqR depicted by bars). For comparison, the distribution for the estimates from [1] are also shown
(bottom, purple).
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Table 1: Estimates of the date of emergence and other epidemiological indicators resulting from the cal-
ibrated model. Here we summarize the estimates obtained from the numerical application of our model
to two epidemiological contexts: the Alpha variant infections in UK, and the first COVID-19 cases reported
in Wuhan. The estimated time elapsed between the first infection to the N th observed case yields the esti-
mated emergence date. In addition, we estimate the epidemic size at the date of detection of the N th case.
The proportion of detected infections and mean secondary cases are retrieved for comparison with the input
epidemic parameters. Median and 95% interquantile ranges are shown, unless stated otherwise.

Epidemiological indicator Alpha (UK, 2020) COVID-19 (Wuhan, 2019)

Number of days from 1st infection to N th case 83 (68–114) 54 (43–80)

Date of first infection Aug 20 (Jul 20–Sep 4), 2020 Nov 26 (Oct 31–Dec 7), 2019

Date of earliest infection Jun 12, 2020 Sep 28, 2019

Epidemic size at day of infection of the N th case 90 700 (80 400–102 000) 63 600 (57 300–69 800)

Proportion of detected infections 0.48% (0.43%–0.53%) 5.31% (5.07%–5.56%)

Mean number of secondary infections 1.90 (1.88–1.92) 2.51 (2.43–2.59)

2.4 Sensitivity analyses148

Here, we evaluate the impact of uncertainty around the main model parameters on the results, by149

running our simulations while varying the input values of the expected number of secondary cases150

(R ), the overdispersion parameter (κ) and the probability of detecting an infection (pdetect). We find151

that increasing both pdetect and R implies a reduction in the number of days between the first infec-152

tion and the N th case, meaning that the epidemic emerges later. In addition, we find that increasing153

R (i.e., higher number of per-day transmission events) yields distributions with more pronounced154

skewness, reflecting the occurrence of larger super-spreading events; cf. the Methods section. Me-155

dian estimates and 95%IqR are summarized in the Supplementary Table S2 in the Appendix.156

We further evaluate the impact of the tolerances chosen for accepting the simulated epidemics157

on our results (cf. Methods for details). We run our simulations while varying the tolerance for the158

difference between the simulated and the observed daily number of infections, δY
tol, and the toler-159

ance on the difference between the simulated and the observed period of time between the 1st and160

the N th case, δτtol, for both applications. Our estimates are robust with respect to these variations.161

However, our model seems to be slightly more sensitive to the choice of the minimum length of the162

time interval of cases.163
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Figure 3: Sensitivity analyses. Distributions for the date of emergence of the Alpha variant in the UK (left)
and the COVID-19 epidemic in Wuhan (right) obtained from running our simulations setting different input
values for key model parameters: the reproduction number, R (panels A and B), the overdispersion
parameter, κ, (panels C and D), the probability of detection, pdetect (panels E and F), the tolerance for the
difference between the simulated and the observed daily number of infections, δY

tol (panels G and H) and
the tolerance for the difference between the lengths of the simulated and the observed cases time periods,
δτtol (panels I and J). The absence of a violin plot for δY

tol = 0.1 in panel G results from the absence of selected
simulations in > 3 million runs. Median values are depicted by crosses and mean values by diamonds.
Baseline parameterization of the model is depicted in blue (middle).9
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Uncertainty around very early case declaration164

We ran additional sensitivity analyses for the application to the emergence of the COVID-19 cases165

in Wuhan, to evaluate the impact of the uncertainty around very early case declaration, by apply-166

ing our model to different datasets; cf. Section 2.3 of the Appendix. We first used a shorter dataset,167

with data on COVID-19 cases with symptoms onset only up to December 31, 2019, the day of the168

first public declaration of a cluster of pneumonia of unknown etiology [15] (N = 169). We also used169

an outdated, later corrected dataset published by the WHO [16] (N = 202) where the first case re-170

ported symptoms onset was on December 2, 2019. We found that using the shorter dataset dates the171

epidemic emergence 2–3 days earlier than our main results, and selects simulations with a slightly172

higher mean number of secondary infections (c.f. Table 1 and Supplementary Table S4), which may173

reflect a change in the population behavior following the first public announcement. However, us-174

ing the outdated dataset [16] dates the epidemic emergence about a week prior to our main results,175

while the mean number of secondary infections remained about the same, which reflects the im-176

pact of the date of first detection on the results.177

10
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3 Discussion178

We estimate the date of emergence of an epidemic outbreak, defined as the first infection leading to179

a sustained transmission chain, relying on estimates of key epidemiological parameters as well as180

available data on the first N observed cases. With our population-dynamics approach, we recover181

estimates very close to those of previous studies [1, 11], which were obtained using information182

from whole genome sequences.183

Our model was conceived as an extension of the numerical application presented in [10]. This184

methodology relies on a general branching process to model disease transmission and detection.185

Our model is informed by available data on the first N observed cases (unlike [10], who used the date186

of first detection only). We further account for super-spreading events using a negative-binomial187

distribution for the generation of secondary infections. This assumption may reduce the time elapsed188

between the first infection and the first detection or increase its variance, in comparison to ignoring189

super-spreading events by considering other distributions (e.g. Poisson) [10] or by ignoring individ-190

ual heterogeneity in infectiousness [8], as well as by using deterministic approaches [8].191

We first study the emergence of the Alpha variant as model validation. Our results suggest that192

the Alpha variant emerged in the UK around August 20, 2020 and not earlier than June 12, 2020.193

Our results fall indeed within the same ranges as those of the approach presented in [10]when up-194

dated to match our parameterization; and fall shortly earlier than previous tMRCA estimates of the195

Alpha variant [11]. This result makes sense: tMRCA does not necessarily yield the date of first in-196

fection, which may have occurred before the most recent common ancestor. Next, we apply our197

model to data on the early COVID-19 cases in Wuhan, estimating the date of the first SARS-CoV-198

2 infection around November 26 (95%IqR: Oct 31–Dec 7), 2019, and not earlier than September199

18, 2019. These ranges also fall remarkably close to—slightly later than—recently published esti-200

mates [1]. To the best of our knowledge, the novelty of these findings rests on using exclusively a201

population-dynamics approach, unlike previous studies addressing the subject. The median es-202

timate in Pekar et al. [1] (which is a first infection, and not a tMRCA) falls ∼ 8 days before ours,203

which can be explained by the fact that our approach ignores genomic information. Namely, with204

our approach, having two cases with the exact same infecting virus, or two cases with viruses two205

mutations away, are treated the same way, as our approach only uses case numbers. Using genomic206

information would however yield an earlier date of emergence if the infecting viruses are genetically207

more distant. Our findings are thus also compatible with a previous study that found no evidence of208

widespread transmission in Wuhan before December 2019, using serological data [17]. Hence, in ac-209

cordance to previous discussions [1, 2], our results suggest that widespread SARS-CoV-2 circulation210

(and even more so, international spread) earlier than the end of 2019 is unlikely. Assuming an origin211

of the pandemic in China [18], claims of large early (i.e., before January 2020) circulation outside of212

China [e.g. 19, and references therein] would be therefore extraordinary, and require extraordinary213

evidence, excluding potential false positive by setting appropriate controls.214

Quantifying the time that emerging epidemics remain undetected before detecting the first cases215

is particularly important in the context of emergent pathogens such as SARS-CoV-2, where very216

early cases may remain unidentified, especially if a high proportion of the infections are asymp-217

tomatic [20] (N.B.: most COVID-19 cases with symptoms onset up to December 31, 2019 were de-218

clared retrospectively [21]). There is also evidence that SARS-CoV-2 may have been introduced in219

other countries for some time before the first reported cases [5, 6, 7, 22]. Accordingly, our approach220

shows that early SARS-CoV-2 infections of the transmission chain that was first detected at Wuhan’s221

Huanan market [18] remained undetected for more than a week and up to 3 weeks before the first222

case of symptomatic COVID-19 was observed.223

The impact of uncertainty on our results is assessed by varying the main transmission and de-224
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tection parameters, as well as the rejection criteria for the simulated epidemics. These sensitivity225

analyses unveil the robustness of our approach regarding the choice of the rejection criteria. On the226

other hand, we find that the main model parameters (expected number of secondary infections, R ,227

and probability of detection, pdetect) have a greater impact on the model outcomes: as expected,228

both higher transmissibility and higher detection shorten the time between emergence and N de-229

tected infections. This variation in the results is particularly true for the application on the Alpha230

variant data, probably due to the notably smaller case dataset we use.231

Our study has several limitations. First, our results depend heavily on input data, while access232

to good quality data on the early stages of an epidemic outbreak may be challenging. Datasets may233

be scarce, they may face reporting delays, early cases may be detected retrospectively and detec-234

tion protocols may change. Early Wuhan COVID-19 cases with—severe—symptoms onset before235

December 30 (the day of issue of the emergency notice from the Wuhan Municipal Health Commis-236

sion) [23, 15] were diagnosed clinically before tests for SARS-CoV-2 infection were available [3]. In237

particular, our methods rely on the date of first infection (cf. the Methods section, condition (C3)).238

See Supplementary Figure S6 and Supplementary Table S4, where emergence estimates change.239

Second, our model requires early estimates of the distributions for key epidemiological indicators240

such as the mean number of secondary infections, the secondary infection generation time, the241

probability of case detection and the incubation period, which depend themselves on the quality242

of early observed data and may not be available for new emerging infectious diseases. In particular,243

it can be challenging to estimate the probability of case detection (or ascertainment rate) during244

early stages of an emergent infectious diseases, and it may vary between countries [24]. Third, we245

model epidemic spread starting from a single infectious individual, thus neglecting scenarios of246

multiple introductions. This impedes, for instance, the application of our model to contexts such247

as SARS-CoV-2 importation to France [5]. This may also be a limitation in the context of epidemics248

emerging from multiple spillover events, such as has been concluded by [1] relying on data on the249

early SARS-CoV-2 lineages. Fourth, the forward simulations of our model do not allow to consider250

time-dependent parameters. Hence, we are constraint to use data on relatively short periods of time251

to ensure that epidemiological parameters remain nearly constant over the study period. This may252

not reflect early epidemic dynamics, where public outbreak alerts may provoke, on the one hand, an253

increase in testing efforts and thus, rapid changes in the probability of detection and, on the other254

hand, changes in individual behaviors that may impact the probability of disease transmission and255

thus, the expected number of secondary infections.256

The numerous, fast and free availability of genomic data for the COVID-19 epidemic is unprece-257

dented. Here, we built our model in a parsimonious, generic and flexible manner intended to be258

applied to contexts other than COVID-19, provided that key epidemiological parameters are known259

and transmission chains arise from a single infectious individual. Further developments of our260

model need to include genomic data on top of case data, as it is likely that sequencing will remain261

as intensive for other infectious diseases as it has been for COVID-19.262
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4 Methods263

4.1 Model264

We extend the methods presented in the numerical applications of [10], where the time of emer-265

gence was estimated from data on the first reported case only, using a stochastic population-dynamics266

approach. We model the early stages of the epidemic and use dates of the first N observed cases267

to estimate the date of emergence. We use the term ‘case’ to refer to infections that are ascertained268

and reported: time series of cases may thus correspond to one of the following types of time se-269

ries: infection detection, sample sequences, symptoms onset declarations, etc. We use the term270

‘probability of detection’ for the probability of such ascertainment to occur.271

Our model is defined by a non-Markovian branching process to model the transmission of an272

infectious disease, starting from a single infectious individual in a fully susceptible population [8,273

10]. Since we study early epidemic dynamics, i.e., for a relatively short period of time, all distribution274

parameters are assumed to be constant during the modeled time period. At any time t , infected275

individuals may transmit the disease. We account for super-spreading events by assuming that the276

number of secondary cases follows a negative binomial distribution,277

NegBinom
�

number of failures= κ, probability of transmission=
κ

κ+R

�

, (1)

where R denotes the expected number of secondary infections (i.e., the effective reproduction num-278

ber).279

Then, we model the ascertainment of infections by drawing the per-day number of observed280

cases from a Binomial distribution281

Binom
�

number of trials= I (dk ), probability of success= pdetect

�

, (2)

where I (dk ) is the number of incident infections at day dk , with k = 1, 2, . . ., and pdetect is the prob-282

ability of infection detection. The generation time of each new infection, {ti }i=1,2,..., and the time283

from infection to detection of a case,
�

τ j

	

j=1,2,...,N
are drawn from a Gamma distribution284

Gamma (shape=ωx , scale= θx ) , (3)

with x ∈ {t ,τ}, respectively.285

4.2 Estimation of the date of first infection286

In our simulations, we discretize time by∆t = 0.1 days. Note that times to infection and detection287

are still on a continuous scale. We then aggregate epidemiological indicators such as new infections288

and cases by day (denoted by dk , where k = 1, 2, ...), since this is the time scale at which most data289

are presented. We run stochastic simulations forward in time, from t = t0, the time of occurrence of290

the first (undetected) infection (i.e., I (t0) = 1), until the end of the day of detection of the N th case,291

dK , which is determined by dK ≤τN < dK +1. Note that while the N th case is a stopping criterion of292

our model, our analyses still deal with all M ≥N cases occurring up to the end of day dK ; that is,293

Y (dk )≡
∑

i∈{1,...,M }
s.t. dk≤τi<dk+1

yi , k = 1, 2, . . . , K , (4)

where yi denotes the i th detected infection (i.e., the i th case) and Y (dk ) denotes the number of in-294

fections detected on day k . A depiction of our infectious disease transmission and detection model295

is shown in Figure 4.296
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Figure 4: Model diagram. (A) We model infectious disease transmission (dark blue elements) starting from
a single infectious individual (full dark blue dot), using a general branching process. The generation time of
secondary infections, {ti+1− ti }i=0,1,..., follows a Gamma distribution (shown in orange, above the first
transmission event). In addition, we model the detection of infected individuals (light blue elements),
which yields the time series of observed cases,

�

τ j

	

j=1,...,N
. The number of cases are aggregated daily. Days

are denoted by {dk }k=1,...,K and depicted by alternating gray and white bands. Our algorithm stops the day
at which the N th case is observed, dK , but our analyses deal with the set of all cases detected on day dK ,
�

yj

	M

j=1
, where M ≥N . (B) Resulting epidemic curve (cases per day). Our model is calibrated so that the

simulated epidemic curve, {Yk }Kk=1, reproduces the observed number of cases per day. The main outcome of
our model is the number of days elapsed between the first infection and the N th observed case, dK . NB. the
time scale in the figure is not representative of our simulations: infection and detection delays in the
simulations usually span multiple days.
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The goal is to estimate the date of the first infection. To this end, we follow a strategy that is simi-297

lar to an approximate Bayesian computation (ABC) algorithm. In ABC, one would define a (typically298

uniform) prior distribution for the date of the first infection (i.e., date of emergence), randomly draw299

emergence dates from this distribution, simulate stochastic epidemics and compute a distance be-300

tween the data (the observed time series of cases) and each simulation. One simple algorithm (re-301

jection algorithm) consists in accepting the small fraction of trajectories that are closest to the data.302

The distribution of emergence dates from the accepted simulations then approximates the poste-303

rior distribution of the date of first infection.304

Here, we do not follow this computationally intensive strategy, yet our inference method is very305

close to an ABC algorithm and yields an approximate posterior distribution of the date of emer-306

gence. Let us assume for simplicity that we want to infer with ABC a single parameter, the date of307

emergence, defining to this end a distance metric based only on the date dK when the simulations308

reach the N th case. We only accept simulations with identical date (distance 0) to that observed in309

the data. If the prior distribution for the dates of emergence is uniform, the set of accepted simula-310

tions is identical to a set of simulations with unlabelled date of emergence, where simulation time311

is shifted to absolute date such that the date dK is indeed identical to that observed in the data. This312

follows from our assumption that all parameters are constant in time, implying that the epidemio-313
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logical dynamics do not depend on absolute date but solely on time elapsed since the first infection.314

Thus, all simulations can actually be retained and shifted to absolute dates in such a way that they315

correspond to a sample from the posterior distribution in this simple ABC algorithm. The actual316

rejection criterion is actually slightly more complex than described, as we not only match exactly317

the date of the N t h case, but also additionally require a set of calibration conditions ensuring that318

the stochastic epidemiological dynamics are similar to those observed in the data. This procedure319

is repeated until we simulated 5 000 accepted epidemics. To compute the dates of emergence from320

these simulations, we take the final date of the observed case data and subtract the duration of each321

simulated epidemic, which produces the posterior distribution of the date of emergence.322

We now describe our calibration conditions in detail. Simulated epidemics (‘sim’) are calibrated323

to reproduce the observed (‘obs’) epidemic, via four conditions. First we constrain our model to324

accept the simulations where an epidemic occurs, i.e., if the number of infections is high enough325

that N cases are ensured (here, five times higher than the expected number of cases):326

∑

i

I (ti )> 5×N /pdetect. (C1)

Second, we require that the first simulated infection predates the first observed case:327

t sim
1 ≤τobs

1 . (C2)

Third, the length of the time period (in days) between the first and the N th case must be similar to328

the observed time period in the case data set, under a certain tolerance δτtol:329

τsim
N −τsim

1 ≥δτtol

�

τobs
N −τobs

1

�

, (C3)

where
¦

τobs
j

©

j=1,...,N
is the time series of observed cases (i.e., the data set of reported cases). The330

fourth and last constraint concerns the epidemic curve; the daily number of cases of the simulated331

epidemic is required to resemble (under a certain tolerance δY
tol) to the observed behavior:332

max
k

�

�

�

�

�

k
∑

j=1

Y obs(d j )−
k
∑

j=1

Y sim(d j )

�

�

�

�

�

≤δY
tol N , k = K , K −1, K −2, . . . , (C4)

where
∑k

j=1 Y (d j ) denotes the cumulative number of cases at day dk . The daily case count in the333

accepted simulations thus depends on N , i.e. on the epidemiological context.334

For more details on the numerical application of the model, please refer to the pseudo-algorithm335

in the Appendix. The simulations were run in Julia [25] version 1.8, and the results figures were gen-336

erated in R [26] version 4.1.2, using the ggplot2 package [27], version 3.3.6. All data and codes337

needed for reproducibility of our results and the corresponding figures are available at a public338

Github repository: https://github.com/sjijon/estimate-emergence-from-data.339

4.3 Applications340

4.3.1 Alpha variant in the UK341

The first application concerns the early stages of the spread of the Alpha SARS-CoV-2 variant in the342

UK, and thus serves as a validation of our extended version of the model presented in [10].343

The first reported sequence of the SARS-CoV-2 Alpha variant of concern, was collected on Septem-344

ber 20, 2020 [28]. Here, we define a case as a sequenced sample carrying the Alpha variant, and we345
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define the probability of a case detection as the probability of sampling and sequencing such vari-346

ant. The parameterization of our model is as in [10], except for the expected number of secondary347

infections, R , which was updated to match the hypotheses made in [11], to ensure comparability348

of results; cf. Table 2. The data on early Alpha cases were retrieved from the Global Initiative on349

Sharing Avian Influenza Data (GISAID) [29], available at doi.org/10.55876/gis8.230104xg (Ap-350

pendix). We use the data on the sequences submitted to GISAID up to November 30, 2020, and used351

only the sample collected up to November 11, 2020. This choice was done to overcome reporting352

delays; cf. Supplementary Figure S1.353

4.3.2 COVID-19 in Wuhan354

The second application concerns the early COVID-19 cases reported in Wuhan, China. Here, we355

define a case as a confirmed COVID-19 infection, in many cases determined retrospectively [21]. We356

use the dataset considered in [1] (personal communication), comprising 3 072 COVID-19 cases with357

symptoms onset between December 10, 2019 and January 19, 2020, the day before the first public358

statement on human-to-human transmission [15]; cf. Supplementary Figure S2 in the Appendix.359

The input parameters are summarized in Table 2.360

Table 2: Input parameters. Dates for the first and N th observed cases correspond to the dates in the data
set. A case in the context of the Alpha variant in the UK is defined as a sequenced sample, whereas a case in
the context of COVID-19 in Wuhan is defined as a confirmed, symptomatic case. The total numbers of
observed cases correspond to the size of the data set used to inform the model. The key epidemiological
parameters are obtained from available literature.

Parameter Symbol Alpha SARS-CoV-2

Total number of observed cases N 406 3072

Date of first reported case d obs
1 Sep 20, 2020 Dec 10, 2019

Date of N th observed case d obs
K ′ Nov 11, 2020 Jan 19, 2020

Expected number of secondary cases R 1.90 [11] 2.50 [30]

κ 0.57 [10] 0.10 [31]

Secondary infection generation time κt 0.83 [10] 0.83 [10]

θt 6.60 [10] 6.60 [10]

Probability of case detection pdetect 0.01 [10] 0.15 [30]

Time to detection κτ 0.58 [10] 1.04 [32]

θτ 12.0 [10] 6.25 [32]

Tolerance on the length of the cases time period∗ δτtol 0.9 0.9

Tolerance on the daily number of cases∗ δY
tol 0.3 0.3

∗Used to select the simulations that resemble the observed data; cf. the Methods section.
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