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Abstract 

Backround: Transcriptomic profile differences between patients with bipolar disorder 

and healthy controls can be identified using machine learning and can provide 

information about the potential role of the cerebellum in the pathogenesis of bipolar 

disorder.With this aim, user-friendly, fully automated machine learning algorithms can 

achieve extremely high classification scores and disease-related predictive 

biosignature identification, in short time frames and scaled down to small datasets. 

Method: A fully automated machine learning platform, based on the most suitable 

algorithm selection and relevant set of hyper-parameter values, was applied on a 

preprocessed transcriptomics dataset, in order to produce a model for biosignature 

selection and to classify subjects into groups of patients and controls. The parent 

GEO datasets were originally produced from the cerebellar and parietal lobe tissue of 

deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST 

Array.   

Results: Patients and controls were classified into two separate groups, with no 

close-to-the-boundary cases, and this classification was based on the cerebellar 

transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and 

Average Precision 0.955. Using 6 of the characteristic features (genes) discovered 

during the selection process, 99,6% of predictive performance was achieved. The 3 

genes contributing most to the predictive power of the model (92,7% predictive 

performance) are also deregulated in temporal lobe epilepsy. KEGG analysis 

revealed participation of 4 identified features in 6 pathways which have been 

associated with bipolar disorder. 

Conclusion: 93% Area Under Curve, 96% Average Precision, and complete 

separation between unaffected controls and patients with bipolar disorder, were 

achieved in ~2 hours. The cerebellar transcriptomic biosignature suggests a potential 

genetic overlap with temporal lobe epilepsy and new genetic contributions to the 

pathogenesis of bipolar disorder. 
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1. Background  

Bipolar disorder (BD) is a mood disorder characterized by unusual fluctuations of 

mood, thinking, activity and sleep patterns, classified in six subtypes [1] (with bipolar 

disorder types 1 and 2 the most prevalent) and presented as a constellation of 

phenotypes, with a variety of cognitive and behavioral features [2]. It is a highly 

hereditary disease, running in families, with an early onset, unpredictable course and 

detrimental impact due to the great risk of fatal self-destructive events, long term 

disability and great financial and social burden, despite existing pharmacological and 

psychotherapeutic treatment strategies [3]. For these reasons, the neuroanatomy [4], 

neurogenetics and neurobiology [5] of BD are fields of intense research concerning 

all brain areas and of paramount importance for 45 million patients globally [6].   In 

this context, the cerebellum is a relatively recent target of neurogenetics research in 

BD, with its main functional roles related to modulation of movement, to emotion and 

to cognition [7]. Research has linked the cerebellum to emotional, cognitive and 

affective processing and their disruption in mood disorders [7], [8]. Structural  [9], 

[10], [11], [12], [13], [14], [15], functional [7], [8], [14], [16], [17], [18], [19], 

neurotransmission [20], [21], metabolic [22], [23], [24], [25] and transcriptomic [26], 

[27], [28], [29] alterations in the cerebellum in BD point to the cerebellum’s particular 

role in the affected brain-wide networks. 

Machine learning is now gradually being used in psychiatry, in order to optimize 

genetic analysis [30], [31], to highlight the most characteristic differences among 

groups of patients and controls, and to confirm their importance for diagnostic 

classification into these groups. These complex classification algorithms, produce 

genetic signatures using data from the analysis of samples from living tissue, blood, 

saliva, as well as from postmortem brain tissue (prefrontal cortex) [31]. The data 

include SNP (5 studies) [30, table 1.] and transcriptomics (2 studies) [31], [32] 

analysis results. In this context, transcriptomic data analysis can contribute greatly to 

psychiatric research [33]. Data from the less explored area of the cerebellum can add 

new and important biosignatures to the puzzle of BD pathogenesis and progression, 

and potentially to treatment response and resistance.  The current study is, as far as 

we know, the first where autoML and transcriptomic data from the cerebellum were 

used for biosignature identification and patient classification. 

2. Aims of the study  

 

The aim of this analysisis the selection of characteristic transcriptomic biosignatures 

of bipolar disorder in the cerebellum, using the autoML platform for optimal 

performance. The features identified could facilitate the discovery of the genetic 

networks related to BD, highlight their importance at the local and brain-wide network 

levels and explore a potential genetic overlap with other central nervous system 

(CNS) disorders.   

 

3. Methods   

 

For this study, we applied the fully automatic machine learning (autoML) platform 

Just Add Data Bio (JADBIO) [34] on public transcriptomic data from previous studies 
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[30], [31] that analyzed the transcriptomic profiles of the cerebellum and parietal 

cortex of postmortem brain tissues and produced a set of biosignatures [29]. Patient 

and control groups were homogenized by tissue sample location (cerebellum), 

psychiatric diagnosis, sex and age.  The autoML system has a simple, user-friendly 

interface and has been created for direct application on low-sample, high-

dimensional databases. The issue of reliability of sophisticated, non-linear machine 

learning analyses on small sample data (~30), has been specifically and thoroughly 

addressed theoretically [35] and for applications on omics datasets in precision 

oncology [34]. 

 

The platform is automatically trained and evaluated (tested), in order to identify highly 

optimized predictive and classification models, using characteristic biosignature 

profiles. When provided with a well-defined set of features (e.g., data from 

transcriptomic, biochemical, neuroimaging, psychometric or symptom intensity 

studies), it can produce a very small subset of predictors (biosignatures / 

characteristic features) selected from among these, leading to increased predictive 

power performance. In studies which work with binary classification (e.g., the current 

study, in which classification into the two groups of BD patients and controls took 

place using transcriptomic data), the classification boundary is defined by the most 

statistically significant combination of biosignatures (the characteristic biosignature), 

which distinguishes patients from controls. System applicability has been tested for 

diagnostic classification and time to event prediction, producing robust classification, 

biosignature identification and prediction results (AUCs 85-95%), using data from 

oncology, neurology and psychiatry [36-40].   

 

 

3.1 Data acquisition 

Publicly available data have been used, from the online BioDataome database [41], 

which is constructed by uniformly preprocessed, disease-annotated omics data from 

GEO and RECOUNT databases, based on a uniform preprocessing pipeline, 

described in detail at the BioDataome documentation page [42]. We analyzed the 

BioDataome csv. which corresponds to the GEO dataset GSE35978, a. containing 

expression data from the human cerebellum (produced from GSE35974) and parietal 

cortex, b. from post mortem brain tissue samples, c. extracted from unaffected 

subjects and schizophrenic, bipolar and depressed patients, d. from the Stanley 

Foundation Brain Collection [43]. The expression data were obtained by microarray 

analysis using the “[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array [transcript 

(gene) version]”. The dataset was initially used for the analyses by Chen C et al [27], 

[28].  Technical details about the initial postmortem sample (age, Ph, postmortem 

interval, sex etc) are available at the EMBL-EBI page for E-GEOD-35978 [44], [45]. 

Demographic data about a. race/ethnicity, b. side of brain of the samples, c. Bipolar 

Disorder types,  d. Occurrence of psychotic features and e. cause of death of the 

participants, are available at the Array Collection description [46]. Inclusion criteria 

and diagnostic methodology for the samples of the Stanley Foundation Brain 

Collection, are described at the Tissue Repository information page [47]. 
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3.2 Data Processing   

 

3.2.1 Dataset selection and homogenization  

Data have been downloaded in .csv format from the BioDataome database. The 

preprocessed file includes data for 144 samples from the cerebellum and 168 

samples from the parietal cortex. The 144 cerebellum samples include unaffected 

subjects and patients with bipolar disorder, schizophrenia and depression (SI, 

information on GSE35974 and GSE35978). From the cerebellum group, all 50 

unaffected subjects and 37 bipolar disorder patients (sex:  females/ males, age span: 

20 - 70) were initially chosen (SI, Images 1A-1B and 1C-1D). From the initial 

heterogeneous groups of patients and controls, a number of subjects were removed, 

and two new, smaller groups of affected / unaffected subjects were produced, 

matched for sex (female / male) and for age. At the same time, we aimed to exceed 

(as much as the sample sizes allowed) the minimum threshold of 30 subjects per 

group required for the machine learning analysis (SI, Images 2A-2B and 2C-2D). The 

final dataset includes the following two groups: Group A with 35 bipolar patients (18 

female and 17 male) and Group B with 37 unaffected controls (19 female and 18 

male). The small size of available data excluded the possibility of testing after the 

initial training; this was balanced by the extremely high AUCs produced during the 

initial (training) analysis. During the initial microarray analysis, a number of 

transcriptomes were used as controls [27], [28]. These have been identified and 

removed from the csv. of the analysis, and the final datasheet (Diagnosed Subjects x 

Features) consequently produced. The datasets are 2D matrices (features/ genes x 

diagnosis for any given subject, unaffected or patient). 

3.2.2 Feature selection and biosignature construction 

For the analysis, data were uploaded to JADBIO version 1.4.14 (April 2021) and the 

binary classification (categorical) functionality of the platform was employed. The 

classification process is based on the Statistically Equivalent biosignatures (SES) 

method, with Support Vector Machines, Random Forest, and Penalized Linear 

Models algorithms. [34], [39]. For the given 2D matrices, the predicted outcome is 

diagnosis (Bipolar or Unaffected), and the metric chosen for optimization is the AUC. 

Preprocessing used Constant Removal Standardization. 

Feature selection was performed using LASSO (Least Absolute Shrinkage and 

Selection Operator) Feature Selection (penalty=0.0, lambda=5.509e-02). The 

analysis protocol followed has been a repeated 10-fold cross validation without 

dropping (max. repeats = 20), with 596 configurations, 5760 predictive models 

trained and 83440 predictive models omitted (total 89200). The chosen predictive 

algorithm uses Ridge Logistic Regression (with penalty hyper-parameter lambda = 

10.0). The overall process applies the Bootstrap Bias Corrected Cross Validation, a 

protocol for algorithm hyper-parameter tuning during performance estimation and 

multiple tie adjustment [34], [39]. Time to complete was 2 hours 16 minutes. The 

technical analysis report is in SI-Appendix-1. 
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4. Results   

 

4. 1. Classification between BD patients and unaffected controls  

 

The AutoML classification analysis produced a Ridge Logistic Regression model with 

high AUC for the positive class bipolar (93%), based on 25 characteristic 

biosignatures. AUC, and Average Precision (AP) values and Confidence 

Intervals(CIs), Receiver Operating Characteristic Curve (ROC curve) and main 

optimized classification threshold dependent metrics for Accuracy / Balanced 

Accuracy are shown in Image 1.The BD and HC groups produced are completely 

separate and coherent in the Uniform Manifold Approximation and Projection (UMAP) 

plot (Image 2). 

 

 
 

Image 1. Using the best performing model option in the platform, the AUC for the 

positive class bipolar is 0.929 (~93%), with a 95% CI between 0.868 - 0.977, and the 

AP is 0.955, with a 95% CI between 0.914 - 0.986. Accuracy has been calculated at 

0.843, Precision at 0.906 and Specificity at 0.921 (full data in SI, Image 3). The 

classification threshold (0,61) has been optimized and determined for Accuracy / 

Balanced Accuracy. Classification as positive is performed when out-of-sample 

predicted probability is above this given threshold (0,61).  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.01.22.22269384doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.22.22269384
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

Image 2. Complete separation of BD patients from unaffected controls, in UMAP 

plots based on all the25 selected biosignatures. In the Box Plot contrasting the cross-

validated predicted probability of belonging to a specific class against the actual class 

of the samples, the medians are ~0,72 for the class “bipolar” and ~0,18 for the class 

“unaffected” (SI, Image 4). 

 

 

4.2 Biosignature identification  

 

The algorithm selected the most important 25 out of the 28869 features of the 

dataset. These 25 features (characteristic features) constitute the reference 

signature, used for the classification between BD and controls. Inclusion of the 6 

most important features (gene transcriptomes from RNU6-576P, MIR194-2, GDPD5, 

CARD16, RABGGTA, KREMEN2) achieves predictive performance (PP) 99,603%. 

Inclusion of the most important feature RNU6-576P leads to 76,6% PP, inclusion of 

the first and second (MIR194-2) most important feature achieves 85,8% PP, and 

additional inclusion of the third most important feature (GDPD5) achieves 92,7% PP. 

The progressive feature inclusion plot for the 6 most important out of the 25 identified 

features is presented in Image 3.  
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Image 3. Progressive feature inclusion plot. This plot reports the predictive 

performance (in percentage) that can be achieved by using only the 6 of the 25 

characteristic features (mentioned above). The features are added one at a time, 

starting from the most important and ending with the complete signature. Grey lines 

indicate 95% confidence intervals. In this image the predictive performance of the 6 

most important features is presented. 

 

 

4.3 KEGG analysis 

 

We applied KEGG analytical tools to the characteristic features with KEGG 

identifiers. Four of these genes (MIR194-2, CARD16, ASIC3, H4C1) are involved in 

7 KEGG pathways: MIR194-2 in the  hsa05206 pathway (“MicroRNAs in cancer”) 

[48], CARD16 in the hsa04621 pathway (“NOD-like receptor signaling”) [49] , ASIC3 

in the hsa04750 pathway (“Inflammatory mediator regulation of TRP channel”) [50] 

and H4C1 in 4 pathways: hsa05034 (“Alcoholism”) [51] , hsa04613 (“Neutrophil 

extracellular trap formation”) [52] , hsa05203 (“Viral carcinogenesis”) [53], hsa05322 

(“Systemic lupus erythematosus - Homo sapiens”) [54]. 

 

 

5. Discussion:   

 

5.1 Main Findings 

 

5.1.1 Genetic Biosignature genes and Neuropsychiatric Disease 

 

The classification between the Bipolar and unaffected control groups was completed 

in <1 hour, with accuracy ~93% and without overlaps between the produced sets of 

individuals. The Welsh t-test for the 6 most important genes established that the 

differences in expression between patients with bipolar disorder and unaffected 

controls are statistically meaningful (SI, Image 5). Classification using the JADBIO 

platform can be considered a reliable means and produces robust results, with 

potential research interest. The single most important identifier was by far the RNU6-

576P small non-coding RNA, accounting for ~77% of total feature importance. The 

three most important features  
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The three most important features according to their performance are RNU-576P, 

MIR194-2, and GDPD5. There are at least 21 known or probable functional roles of 

RNU6-576P, MIR194-2, and GDPD5 in the nervous system and in CNS diseases 

(including the gene aliases from Gene Cards). 36 related articles are presented in SI-

Appendix 1.  

 

The most consistent and important finding is that RNU6-576P, MIR194-2 and 

GDPD5 have been associated with epilepsy (though not until now with bipolar 

disorder). Both epilepsy and bipolar disorder are characterized by episodic functional 

deregulation in the CNS [55], co-occur [56], share common symptoms and 

precipitating factors [57], [58], their treatment with antiepileptics / mood stabilizers 

partially overlaps [59], and potential pathophysiological links have been proposed 

recently [60] regarding aberrant neuronal excitation-inhibition related to ANK-3 gene 

expression. Epileptiform EEG discharges are connected to progress and worse 

course of disease in BDII patients [61] and manic symptoms are more common in 

patients with temporal lobe epilepsy [57]. ANK3 belongs to a cluster of genes with 

altered expression patterns in the cerebellar vermis, in patients with bipolar disorder 

[26] , [62]. Significantly, alterations in RNU6-576P and MIR194-2 expression are 

connected to temporal lobe epilepsy [63], [64], [65], [66], [67], which shares the most 

common symptoms and pathways with Bipolar Disorders I and II [56] - [61].   

 

The role of small non-coding RNAs and pseudogenes is a new area of intense 

research in relation to the onset of psychotic disorders, depression and bipolar 

disorder [64], [65] and their participation in the epigenetic modification of DNA [48].  

RNU6-576P is the most overexpressed small non-coding mRNA in the hippocampus 

of patients with mesial temporal lobe epilepsy [63] and the most important identifying 

biosignature in the cerebellum of BD patients in this study. The role of MIR-194-2 

expression in epilepsy has been studied in the greatest detail, and a constant pattern 

of down-regulation has been documented, in various epilepsy studies [66] - [69].  

 

5.1.2. KEGG Analysis results and Neuropsychiatric Disease 

 

Associations of the identified KEGG pathways with neuropsychiatric diseases or 

proposed pathophysiological or treatment mechanisms, have been found in several 

studies and the results are presented analytically.   

 

a) hsa05206 pathway includes MIR194-2 gene and also miR-34a gene. miR-34a 

expression alterations in the cerebellum have been connected to bipolar disorder in 

previous studies in the same post-mortem sample [29] , [70].  

 

Secondarily, the hsa05206 pathway, has been connected to the mechanism of action 

of saikogenin G, a bioactive ingredient of the traditional antidepressant treatment 

Radix Bupleuri in Chinese medicine [71], but has not been connected to response to 

lithium therapy in bipolar disorder [72]. 

 

b) hsa04621 pathway (includes CARD16 gene) implicates immunological 

deregulation in bipolar disorder [73], schizophrenia [74], [75] depression [76] and 

epilepsy [77] and is a target pathway for certain antiepileptics [78]. 
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c) hsa04750 pathway (includes ASIC3 gene), has been connected to schizophrenia 

[79], post-stroke depression [80] and to metabolic  syndrome in bipolar disorder and 

schizophrenia [81]. 

 

d –g) (pathways involving H4C1)  

 

hsa05322 , hsa05034 , hsa05203 and hsa04613 pathways, have been all 

associated with a genetic risk for depression [82], with many mechanisms mediated 

by immunological  processes [83].  

 

Also, hsa04613 has been separately connected [84] to depression and to fatigue (in 

patients receiving chemotherapy for cancer) [85]; fatigue is also a characteristic 

symptom of depression. hsa05203 has been separately connected to Post Traumatic 

stress Disorder, a major predictor for depression [86], epigenetic contributions to 

human behavior [87],  risk for first episode psychosis [88] and  schizophrenia [89] 

and hsa05322 has been separately associated with oxidative stress and cognitive 

function in schizophrenia [90] and antipsychotics- induced parkinsonism [91]. 

 

Concisely, 6 out of 7 identified KEGG pathways, are associated with bipolar disorder 

and major psychiatric diseases (depression, psychosis) -which share common 

phenotypical features with bipolar disorder- and with epilepsy. The hsa05206 

pathway is of particular interest, as it includes also miR-34a gene; Both ANK3 

(Ankyrin-3) and CACNB3 (voltage-dependent L-type calcium channel subunit beta-3) 

genes, are directly targeted by miR-34a [29], [70].  

ANK3 and could be connected to the neurobiology of bipolar disorder [70], [92], [93], 

[94], [95].  

 

5.2 Limitations of the study 

The present study was based on a relatively small sample of patients with BD Types 

Ι and II, with an increased analogy of deaths from suicide, and was based on post-

mortem tissue sampling and microarray analysis. Genetic differences between 

patients with BD I and BD II have been suggested [96], [97], [98], [99], [100], using 

family databases, but neuroimaging differences have not been confirmed [101]. The 

bipolar spectrum is highly heterogeneous, with many different biotypes and their 

probable neurobiological causes [4], [102], [103], [104], [105]; different biotypes can 

be fully represented only in large samples [4]. The BD group of 37 subjects includes 

7 patients who had committed suicide, a number close to known prevalence of death 

by suicide in BD. Suicide mainly occurs during the depressive state of the disease 

and – occasionally – during a manic episode, and could be connected to certain 

patterns of gene expression [104] and biosignature differences [106], found also in 

the cerebellum.  Also. its frequency can vary depending on the depressive, manic or 

mixed state of the disease [107]. Finally, future studies, based on progresses in 

knowledge of the cerebellar transcriptomic landscape [108], using microarray [109] , 

RNA-seq and other methods, could provide additional insights in the neurobiology of 

BD in the cerebellum and the region specificity of our and future findings.  Further 
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study is very important, as the genetic characteristics of post-mortem brain tissue 

samples could be extremely complex in the same area [110] and divergent from the 

same characteristics of the living brain, in health and disease; still they remain one of 

the cornerstones of research on the neurobiology of the CNS and its disorders [111], 

[112], [113], [114] . 

 

Abbreviation List 

AutoML: Automatic Machine Learning 

GEO: Gene Expression Omnibus 

AUC: Area Under Curve  

AP: Average Precision   

TLE: Temporal Lobe Epilepsy  

BD: Bipolar Disorder  

CNS: Central Nervous System  

JADBIO: Just Add Data Bio 

SES: Statistically Equivalent bioSignatures 

LASSO: Least Absolute Shrinkage and Selection Operator 

ROC: Receiver Operating Characteristic (curve) 

CI: Confidence Interval 

UMAP: Uniform Manifold Approximation and Projection 
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