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1 Supplemental Methods

We describe a general method to estimate multi-strain dynamics and relative
fitness advantages by partially pooling information across patches (geographic
subunits, i.e. countries) and strains (Main Text Fig 1). This statistical ap-
proach leverages a hierarchical mixed-effects Bayesian framework. The model
has two levels of hierarchy. In the first level, country-specific variant fitness
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advantages are structured such that the fitness advantage of a variant in one
location informs the expected fitness advantages of variants in other locations
to formalize the assumption that a variant’s properties in one location are likely
to be similar in another. In the second level, variants’ mean fitness advantages,
averaged over countries, consist of a shared (hierarchical) normal distribution.
This approach shares information across variants to formalize the ecological as-
sumption that most variants will be similarly fit to their recent ancestors and
observing extreme deviations in fitness is uncommon. This assumption leads to
shrinkage on extreme fitness advantage estimates for novel or otherwise infre-
quently observed variants for which we might otherwise overfit to noise in the
data.

In the main text, we apply the model to SARS-CoV-2 sequences submitted to
GISAID noauthor˙undated-xp up through July 1, 2022, focusing specifically
on BA.4 and BA.5’s global emergence.

1.1 Data processing

Line list SARS-CoV-2 sequence metadata was extracted from the GISAID database
noauthor˙undated-xp. Each row of the dataset contains information on the
collection date, submission date, location of sample collection, and the as-
signed pango lineage noauthor˙undated-vz of the sequence submitted to the
database. The country name in the location field is mapped to the correspond-
ing three letter ISO country code. Sequence submissions missing complete date
information (i.e. month and year instead of day month year) are excluded from
the analysis and we assume this missingness is completely at random. Because
pango lineage assignments are often delayed following initial submission, any
sequences submitted on the reference date are excluded as they will still be
labeled as “Unassigned” because they have not yet been assigned a lineage by
GISAID’s build of the Pangolin assignment tool noauthor˙undated-ie. Line
list data was aggregated by country, collection date, and pango lineage to get
daily counts of the number of lineages observed in each country. In order to
make the number of unique lineages tractable for model fitting and analysis,
we manually set the lineages we are interested in tracking. During this time
period, this corresponded to: BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. All
pango lineages except for those labeled as the variants we’re tracking and WHO
VOCs were aggregated by the first number in their pangolineage assignment.
For example, BA.5.1 would be assigned to the BA.5 lineage. We truncated the
data to the past 90 days from the reference date for model fitting. Lineages
with fewer than 50 observed sequences globally were aggregated into “other”
along with the sequences labeled as “Unassigned”. For visualization and model
evaluation, we further collapse the pangolineage assignments into the “variants
we’re tracking”, with all other pango lineages falling into the “other” category.
Summary statistics (i.e. daily and weekly observed variant prevalences and
standard errors) are calculated from this aggregation level, for comparison with
model outputs.
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1.2 Hierarchical generalized linear modeling approach

We model the dynamics of competing variants of a directly transmitted infec-
tious disease. This approach can be used generally for competing strains, but
we use here the example of SARS-CoV-2 variants using sequence metadata from
GISAID to produce estimates of relative variant growth rates and true propor-
tion of total cases in a given country. Using a hierarchical generalized linear
approach, the model shares information across countries and across variants to
improve estimates of variant growth advantages and dynamics in settings with
sparse sampling.

1.3 Observation process

We consider the observed counts of lineages as drawn from a multinomial dis-
tribution. If we consider all sequences observed over the past 90 days (90 days
ago t = 0;t ∈ W ), on day t we observe Nt sequences total (Nt ∈ W), of which
nit sequences are of variant lineage i (nit ∈ W; Nt =

∑
i nit). Then the set of

observed variant lineages over the time period is it ∈ {i, ..., I}, where I is the
reference variant, which we set as the dominant variant. Although this quantity
changes over time due to the emergence of mutations that warrant a new lineage
designation, we consider it here to be both fixed and known (i.e. the number of
unique Pango lineages known on day t = 90). The multinomial probability mass
function (PMF) and its unknowns motivate the regression model formulation

Yijt ∼ multinom(Njt, pijt)

pijt =
eηijt∑J
j=1 e

ηijt

ηijt = β0ij + β1ijzt

zt =
t− µt

σt

Where i indexes variants, j indexes countries, t indexes time, and µt and
σt describe the mean and standard deviation of the vector of timesteps where
each timestep is a day ( this transformation is discussed more in the Bayesian
modeling approach subsection). The parameters β0Ij = β1Ij = 0 are fixed to
ensure identifiability. The intercepts β0ij describe the initial variant prevalence
on the scale of the linear predictor on day t. The slope coefficients (β1ij) de-
scribe the difference in intrinsic growth rates for the variant in the numerator
and the variant in the denominator (i.e. β1ij = rij − rIj where rIj is the in-
trinsic/Malthusian growth rate of the dominant variant in country j). However,
this model does not produce an estimate of the actual intrinsic growth rates (i.e.
rij or rIj ) because fitting I cases would make the model overdetermined. This
is why we refer to the β1ij terms as relative variant growth rates in the text.
This formulation accounts for changes in sample size over time (i.e., changes in
Nt) and, from these counts, estimates the expected proportion of the popula-
tion made up of each variant. For interpretability, we present the global and
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country-specific estimates of the relative growth rates, β1ij and µβ1i as relative
weekly fitness advantages using the relation:

f = e7β1ij − 1

f = e7µβ1i − 1

As described by Davies et al.Davies2021-if

1.4 Hierarchical modeling structure

The hierarchical modeling approach pools information across variants and across
countries, strengthening inference in settings with sparse information. This par-
tial pooling addresses two forms of sparsity: variability in information available
across lineages because new lineages have only been observed for a short period
of time and systematic geographic variability in sequencing availability limiting
the amount of information available in specific countries.

In the first layer of hierarchy, the model shares information across variants,
making the assumption that most observed variants should be similar to each
other. The model likelihood structures expected relative variant growth rates
(i.e., µβ1i

) as drawn from a population distribution of growth rates:

µβ1i
∼ N(µhierarchical, σhierarchical)

The parameter µhierarchical specifies the expected relative variant growth rate
of any variant compared to the reference variant I, which we assign to be the
dominant variant to increase interpretability and numerical stability. The pa-
rameter σhierarchical specifies the expected amount of variability of mean relative
variant growth rates around µhierarchical. The parametric assumption of a nor-
mal distribution assumes that radically more or less fit variants than the bulk
of the population is quite rare (i.e., the population is not leptokurtic). Addi-
tional details on model fitting are available in the Bayesian Model Approach
subsection.

The model also shares information across countries, allowing variant dynam-
ics in one country to inform estimates of variant dynamics in other countries.
Individual countries have country-specific relative variant growth rates β1ij ,
where j indexes countries. The parameter µβ1i

is a global estimate of relative
variant fitness, pooled across countries. Systematic variation in growth rates
across countries is learned empirically, expressed as a variance-covariance ma-
trix Σ:

β0ij ∼ N(µβ0i, σβ0i)β11j

...
β1Ij

 ∼ MVN(

µβ11

...
µβ1I

 ,Σ)
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Σ =


σ2
β11

σβ11σβ12ρ21 σ2
β12

σβ11σβ13ρ31 σβ12σβ13ρ32 σ2
β13

...
. . .

σβ11σβ1I
ρI1 . . . σ2

β1I

 = D(σβ1)ΩD(σβ1)

Country-specific vectors of relative variant growth rates are drawn from this
multivariate normal distribution, with a shared vector of global means and em-
pirically learned variability around this mean vector. This approach allows for
stable estimates of variant dynamics in countries with limited sequencing capac-
ity or when variants have only been observed in a limited subset of countries.

Systematic correlations between relative variant growth rates in countries
(i.e.,β1ij ) is modeled by the variance-covariance matrix Σ . This matrix can be
decomposed into a correlation matrix Ω and a vector of independent lineage-
specific variances σ2

beta1i
:

Ω =


1
ρ21 1
ρ31 ρ32 1
...

. . .

ρI1 . . . 1



σ2
β1

=


σ2
β11

σ2
β12

. . .

σ2
β1I


This approach identifies systematic correlations between realizations of rel-

ative variant growth rates from this multivariate normal distribution. In other
words, it identifies if realizations of variant i in one country are systematically
higher or lower when realizations of another variant are higher in that country.
The variances of the β1ij realizations around the mean µβ1i

are independent,
allowing differences in local dynamics to reflect changing variability across vari-
ants.

1.5 Intercept structure

The model adds parametric structure to country-specific intercepts, enforcing
the idea that variants are introduced to new countries at similar times. More
formally, the variant-country intercept β0ij is drawn from a hierarchical distri-
bution:

β0ij ∼ t(µβ0i
, σ2

β0i
, ν = 2)

Unlike with the relative variant growth rates, there is no additional hierarchi-
cal structure on the means or variances of the intercepts β0ij . The means µβ0i

are
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left independent, to allow for independent and unstructured variant emergence.
Likewise the σ2

β0i
parameters are left independent across variants. This allows

for independent patterns of between-country variant invasion across variants
and allows for different amounts of variability initial prevalence of prevalence
on the initial day of the model. The parametric choice of a student t distribu-
tion allows for substantial variability in timing between countries (i.e., kurtosis,
heavy tails in the distribution).

1.6 Model assumptions and limitations

This approach makes a number of assumptions about the accuracy of the data
on competing variants. It assumes that variants are randomly sampled within
spatial units (e.g., countries, in this case), that lineages are correctly assigned
to the sequences (e.g., the Pangolin tool assigns lineages without error), and
that collection dates are correctly reported. However, the model does allow for
missing data — lineages can be observed an arbitrary number of times and in
an arbitrary number of spatial units.

The model does not currently account for spatial structure in any form —
neither in estimated variant prevalences nor in estimated intercepts. It does
not take into account which countries are neighbors or in close spatial proxim-
ity (i.e., there is no spatial kernel). It also does not account for structure in
variant invasion patterns due to, for example, airline mobility patterns. This
approach likely loses some spatial information that could improve estimates, but
also makes the model conceptually simpler and limits the amount of information
needed to run it. The model structure also assumes that relative variant fitness
advantage is constant over time and linear on the scale of the linear predictor.
This assumption is plausible because of the short time frame over which the
model is run — 90 days. Therefore, any systematic changes in the host popula-
tion that would impact the fitness of particular variants is unlikely to be large
enough to lead to large changes in fitness advantage.

1.7 Bayesian modeling approach

We fit this model with a fully Bayesian approach to allow for flexible numerical
sampling and directly interpretable parameters. We place informative priors on
model parameters:

µβ0i
∼ t(−5, 5, 3)

σβ0i
∼ N+(2, 1)

Ω ∼ LKJ(2)

σβ1i
∼ N+(0.5, 2)

µhierarchical ∼ N(−1, 0.5)

σhierarchical ∼ N(1, 0.1)
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These informative prior distributions are derived from the posterior of a previ-
ous, independent model fit. This model was fit to a subset of European coun-
tries for a period corresponding to November and December of 2021 with non-
informative priors. From that model fit, we use the first and second moments
from these marginal posterior distributions for hyperparameters as weakly infor-
mative prior distributions except for the prior on Ω and the degrees of freedom
on µβ0i . These priors are set to general weakly informative priors as recom-
mended by the Stan software creators, both for numerical simplicity and to
allow for different correlations because of the different subsets of variants ob-
served noauthor˙undated-fa. The time period for the original model fit used
to develop the prior distributions does not overlap with any of the observed
time points in any of the model fits interpreted here and the set of observed
variants and the dominant variant are both different, suggesting that the priors
provide reasonable scaling for the numerical sampler without being overfit to
the specific time period or variants.

For computational and modeling tractability, the time covariate is centered
and scaled:

zt =
t− µt

σt

Where µt and σt are the mean and standard deviation of the vector of
timesteps, with one day as one timestep. As a result, the priors on µhierarchical,
σhierarchical, and σβ1i

are on the scale of one standard deviation in scaled time (i.e.
going from 0 to 1 on this scale is about 26 days). All hierarchical distributions
are in a non-centered parameterization except for the distribution of which is in
the centered parameterization.

The model is fit using Hamiltonian Monte Carlo (HMC) with the No-U-Turn
sampler in CmdStan v2.29.2 noauthor˙undated-um. Using HMC instead of
a more approximate variational approach allows for full characterization of pos-
terior uncertainty. We run the model with 4 parallel chains with 2500 warmup
iterations and 500 sampling iterations per chain for a total of 2000 sampling
iterations. For all fits, the Gelman-rubin split r̂ statistic was less than 1.01,
no samples hit the maximum treedepth of 10, there were no divergences, and
E-BFMI is above 0.3, suggesting that the numerical sampler converged and was
able to perform unbiased sampling.

2 Retrospective validation of country-specific vari-
ant prevalence projections

2.1 Processing and fitting of historical datasets

Line-list sequence data from GISAID was downloaded on the following dates,
which we refer to as “reference” dates: April 30th, 2022, May 16th, 2022, May
27th, 2022, June 4th, 2022, June 27th, 2022 and July 1st, 2022. A consensus set
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of lineages was found by identifying all lineages that exceed the global thresh-
old of 50 or more observed sequences in the past 90 days across any of the 6
reference datasets. These datasets were each processed as described in the Data
Processing subsection. We fit the multicountry model to each reference dataset
independently using all sequences collected within the 90 days preceding the ref-
erence date and the same consensus set of lineages to be estimated. We define
the calibration period as the period over which any sequences were collected and
had been submitted by the reference date globally in GISAID, with the forecast
period defined by any days without any observed sequences globally. To test
the model’s predictive power, we forecasted 21 days out and compare this to
any data observed by the last reference dataset from July 1st, 2022. The model
returns the mean variant prevalence estimate and the predicted number of ob-
served sequences of each lineage, for both the 90 day time period of calibration
and the 21 day forecast. For the predicted number of observed sequences of
each lineage, the model must know the number of total samples sequenced on
each day. We fed into the model inputs the number of observed sequences per
day by collection date for the final comparison reference dataset from July 1st,
2022. Using the predicted number of sequences of a particular lineage allows
us to account for the higher uncertainty in observed lineage prevalence on days
with lower number of reported sequences.

2.2 Estimation model comparison: Multicountry vs. Sin-
gle country stability over time

For each reference dataset, we compare variant prevalence estimations from
the multicountry model with estimations from country-independent multino-
mial models using the nnet package version 7.3.17 in R Ripley2022-hc. The
nnet package returns the maximum likelihood estimation (MLE) of variant fit-
ness advantages and mean variant prevalences. In order to get an estimate of
the uncertainty of these outputs, non-parametric bootstrapping with replace-
ment was performed, generating 100 boot-strapped datasets with time points
randomly sampled with replacement from the true data. Each boot-strapped
dataset was fit using the nnet multinom function. To get the predicted ob-
served number of sequences of a particular lineage, we used the stats package
noauthor˙undated-eu in R to simulate from the multinomial probability mass
function with the point estimates of each parameter pertaining to each boot-
strapped parameter set.
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Figure S1: Multicountry (top) and single country (bottom) model
estimated variant prevalence compared to the data observed at that
time. Each column represents the date that the models were run and estimates
were made (reference date). Shading indicates the calibration period (darker)
and the forecast period (lighter). Line indicates the median projection. Purple
dots indicate the weekly average observed prevalence of BA.5 as of that refer-
ence date, with bands indicating the standard error.

Figure S1 shows the model estimated BA.5 proportions in Portugal compared
to, in this instance, the observed variant proportions as of that reference date
(purple points), for the multicountry model and the single country model. In the
main text in Figure 4, we compare the model estimates to the observed variant
proportions as of July 1st, 2022. These differ because of the delay from specimen
collection to sequence submission, resulting in backfilling of prior proportion
estimates as new sequences get added.

In Figure S1, we observe that both models fit the observed data from Portu-
gal relatively well during the calibration period, but that the model that relies
only on the data from Portugal is highly erratic, as the refitting to the boot-
strapped datasets results in widely variable projected BA.5 proportions a the
early reference dates.
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Figure S2: Multicountry (A) and single country (B) estimates of the
weekly fitness advantage of BA.5 at each reference date. A. For the
multicountry model, the posterior distribution of the estimated weekly fitness
advantage is shown as of each reference date. Points indicate the median, bands
indicate the 95th and 75th percentiles of the posterior distribution. B. Single
country model estimates of the estimated weekly fitness advantage is shown as
of each reference date. Points indicate the estimated fitness advantage applied
to the observed data, bands indicate the 95% confidence intervals on the single
country model using the normal approximation.

In Figure S2, we compare the estimates of the Portugal-specific weekly fit-
ness advantage from the multicountry model and the single country model in
order to compare the stability of the estimated variant fitness advantage in a
particular region. For the multicountry model, we see that the early estimates
do shift over time, however the median estimate is much closer to the later
estimate than is the case for the single country model. We hypothesize that
the reason for this early overestimate in the single country model could be due
to factors such as demographic stochasticity, sampling bias, and overfitting to
noisy data when data is sparse. In the main text, we show that the global esti-
mated variant fitness advantage of BA.5, while initially more uncertain, remains
relatively stable over the 5 reference dates (Main text, Fig 4B).
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Figure S3: Comparison of the country-specific fitness advantage es-
timates across reference date and countries. A. Multicountry model es-
timates across reference dates show relative stability, even at early time points
for BA.4 and BA.5. B. Single country model estimates across reference dates
show the greater decline in estimated fitness advantage of emerging variants
such as BA.5 over time (i.e. in the UK and Portugal), and overall less stability
than in the multicountry model. Gray indicates time periods where there was
insufficient data for model convergence within the country for that variant (a
problem we don’t see in the multicountry model because it leverages data for
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that variant from other countries).

In Figure S3, we show across a range of countries the estimated country-
specific transmission advantage for the multicountry model (S3A) and the sin-
gle country model (S3B). What we see is that there is greater fluctiation over
time (left to right in each heatmap) in the estimates in the single country model
compared to the relative stability of the estimates from the multicountry model.
Likewise, we are able to make estimates of country-specific fitness advantages
for all country-variant combinations in the multicountry model, whereas in the
single country model, if that variant has not been observed in that country or
there is not sufficient data, the model is unable to converge (gray gaps).
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Figure S4: Difference between country-specific fitness advantage from
the multicountry model (β̂multicountryijt) and single-country models

(β̂multicountryijt). The log differences in the two estimates (y-axis) are plotted
against log cumulative sequences of a variant observed in a country on a day (x
axis).

In Figure S4, we compare the difference between the multicountry fitness
advantage estimate and the single country fitness advantage estimate for four
key variants as a function of the number of observed sequences of that variant in
that country up until the time the estimation was made. The estimated coeffi-
cients from the multicountry model are consistently lower at low sequence counts
than those estimated by single country maximum likelihood multinomial regres-
sions. The maximum likelihood estimate coefficients are both higher initially
and decline more slowly with the increase in sample size than those from the
multicountry model. We note, however, that the comparison in terms of sample
size is not one-to-one because the multicountry model uses all global sequences,
while the single country is constrained to total within-country sequences (x axis
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values). Estimates from models fit on country-variant-days with fewer than 10
cumulative sequences are discarded to remove extreme outliers.
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Figure S5: Estimated country-specific fitness advantage (β̂multicountryijt).
Horizontal lines are the average of the estimates from the top 10% of cumula-
tive sequences for the variant-lineage bin to visually approximate the asymptote.
Estimated fitness advantages greater than 10 are removed for visual clarity, but
all such estimates are from the MLE model and would further exaggerate the
contrast (n = 44).

In Figure S5, we compare the estimated weekly variant fitness advantage for
4 key variants for the multicountry model (top) and the single country model
(bottom) versus the number of observed sequences of that variant in that coun-
try up until the time the estimation was made. Maximum likelihood estimates
are higher initially and converge more slowly in the single country model than
in the multicountry model estimates, highlighting the improved stability of the
multicountry model estimates. This is particularly evident in the case of BA.5
(right column) where multicountry estimates are relatively stable while the sin-
gle country estimates decline significantly as the number of sequences increases.
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Figure S6: Estimated global fitness advantages from multicountry
model over time. Estimated global means of variant fitness advantages esti-
mated across the 5 reference dates.

In Figure S6, when we look at the estimates of global variant fitness advan-
tage over time we see that estimates are stable with no systematic trend across
variants. The lack of trend systematic trend across variants suggests that this
estimator is appropriate to evaluate the risk posed by an emerging variant.

2.3 Evaluation of model estimates using the Brier score

For both the multicountry and the MLE model, we used 100 draws from the
distributions of lineage prevalence estimates to evaluate the accuracy of the
model predictions compared to the observed daily lineage prevalence from the
July 1st, 2022 reference dataset. For countries that observed no sequences of
a particular lineage in the consensus dataset during the 90 day time window,
the MLE estimation model does not estimate a prevalence for that lineage.
To enable a fair comparison of the two model outputs at the country-level,
we collapse all prevalence estimations from the multicountry model for these
unobserved lineages into “other” for that country. We use the Brier score to
evaluate the accuracy of each draw of the model output. The Brier score is
calculated at the country-level for both the calibration period and the forecast
period, and the two combined. Because we have a distribution of probabilistic
predictions from our model output (variant proportions over time), we get a
distribution of the mBrier score at each reference time point as a result of the
evaluation process.

To estimate the Brier score for each country and reference dataset from the
multinomial model output, we compare the mean estimated probability that a
sequence is the ith lineage at the tth time, (p̂t,i), to the observed binary outcome
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Ψi,t,k of whether the kth sequence on the tth day is the ith lineage.

BS =
1∑τ

t=1 Nt

τ∑
t=1

l∑
i=1

N∑
k=1

(p̂t,i −Ψi,t,k)
2

Where Nt is the total number of sequences collected on the tth day, l is
the number of possible outcomes, in this case, the number of unique lineages
estimated, and τ is the number of time points in the time window of interest.
τ will depend on whether we are computing the Brier score for the calibration
period, the forecast period, or the combination of the two.

For computational efficiency, instead of lining up the set of 1s and 0s for
each lineage for each sequence collected each day, we can use the fact that and∑

Ψ and
∑

Ψ2 are sufficient statistics for
∑

(p−Ψ)2 to evaluate the Brier score
for each lineage at each time point. If we expand the above equation:

BS =
1∑τ

t=1 Nt

τ∑
t=1

l∑
i=1

N∑
k=1

(p̂2t,i − 2p̂t,iΨi,t,k +Ψ2
i,t,k)

Which is equivalent to:

BS =
1∑τ

t=1 Nt

τ∑
t=1

l∑
i=1

(Np̂2t,i − 2p̂t,i

N∑
k=1

Ψi,t,k +

N∑
k=1

Ψ2
i,t,k)

Replacing the sum of the binary (1,0) Ψi,t,k with the number of sequences
of each lineage, ni,t , as such,

∑
Ψ2

i,t,k = ni,t we can write the Brier score in
terms of the number of observed sequences of the ith lineage (ni,t) and the total
number of sequences, Nt collected each day.

BS =
1∑τ

t=1 Nt

τ∑
t=1

l∑
i=1

(Ntp̂t,i − 2p̂t,ini,t + ni,t)

The Brier score is calculated for each draw from the multinomial output for
each country and each time period evaluated.
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3 Case studies

3.1 Identifying hemispheric drivers of influenza dynamics

Figure S7: Application of the framework to Influenza dynamics
in both hemispheres. (A) Flu variant dynamics for a subset of Southern
Hemisphere countries. (B) Flu variant dynamics for a subset of Northern Hemi-
sphere countries. (C) Country-specific fitness advantages relative to A / H3N2
for selected subtypes. (D) Expected fitness advantages relative to A / H3N2

We apply this approach to influenza dynamics, estimating fitness and sub-
type dynamics separately for the Northern and Southern hemispheres. In Figure
S7A, we show estimates of influenza subtype prevalence from July, 2021 to July,
2022, identifying diverse dynamics across the selected countries from the South-
ern Hemisphere. In Australia and South Africa, prevalence of the B subtype
steadily declines over the observed year and is replaced by a combination of A
/ H1N1 and A / H3N2. These dynamics differ from those of Brazil, where the
dominant A / H3N2 subtype is replaced by A / H3 and B subtypes. Dynamics
in the DRC are estimated imprecisely, but suggest that the A / H3N2 is dom-
inant on July 1, 2022 — matching overall influenza dynamics in the Southern
Hemisphere and the data observed from within the DRC.

In Figure S7B, we present estimated influenza subtype dynamics in the
Northern Hemisphere from July 1, 2021 to July 2022. We find the A / H3N2
subtype increased in prevalence in the United States, Ghana, and Panama over
the observed year. In all the selected countries, A / H1N1 prevalence declined
or remained negligible. Notably, however, India’s dynamics were meaningfully
different from those of the other selected countries: the relative proportion of
the B subtype increased from July, 2021 to July, 2022. It displaced both A /
H1N1 and A / H3N2, unlike in the other selected countries. We note that in
many of these cases, influenza dynamics in the Northern Hemisphere appear to
lag those of the Southern Hemisphere. In much of the Southern Hemisphere, the
A / H3N2 and B subtypes are initially dominant and replaced over the observed
year. In the Northern Hemisphere, the A / H3N2 and B subtypes are a small
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proportion of initial observations and increase in relative proportion throughout
the observed year.

In Figures S7C and S7D, we present estimates of country-specific and overall
hemispheric mean fitness advantages for selected influenza subtypes. Because
separate models are fit to the Northern and Southern Hemispheres, we present
estimates for subtype fitness advantage relative to A / H3N2 separately for
each hemisphere. We find that estimates of country-specific fitness advantage
for the A / H3N2 are more diffuse in the Northern Hemisphere than in the
Southern Hemisphere for all 3 subtypes. Except one outlier, estimated fitness
advantages for all lineages are tightly clustered in the Southern Hemisphere.
The Northern Hemisphere’s more diffuse estimates have epidemiological impli-
cations: the estimates are scattered on either side of 0, indicating that the
variance in country-specific fitness relative to A / H3N2 is high and any naive
estimate for an unobserved country will be highly uncertain. The mean fit-
ness advantages are similar for the B, A / H3, and A / H1N1 subtypes across
hemispheres. For all three, estimates are either so close that the difference of
means is statistically indistinguishable or close enough to not be epidemiolog-
ically meaningful. These results indicate that the country-specific differences
are more important to influenza dynamics than hemisphere-level differences in
subtype fitness.

3.2 Estimating SARS-CoV-2 dynamics at administration
level 1.

We apply the method described here to estimate SARS-CoV-2 dynamics
at the AL0 and AL1 methods to demonstrate the flexibility of this modeling
approach. We aggregate SARS-CoV-2 sequencing counts in GISAID from the
states of Brazil and the provinces of Argentina (i.e., AL1 units) as well as
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combining sequences from all of Paraguay. These selections demonstrate how
one might apply this method to estimate sub-national dynamics, where such
data exist, and illustrate that the modeling approach remains coherent when
estimating AL1 and AL0 spatial units together.

In Figure S8A and S8B, we show SARS-CoV-2 dynamics in these spatial
units across time. We find that the BA.5 variant was uncommon across all the
selected spatial units on June 6, 2022. Estimated variant prevalence was below
1% in all the modeled spatial units (Figure S8A). The expected prevalence of
BA.5 rose over the course of the time period, increasing steadily through mid-
June and into July (Figure S8B). We found, however, marked heterogeneity
in the expected prevalence of BA.5 across the spatial units. BA.5 increased
most quickly in Rio de Janeiro, approaching fixation by July 1, 2022. Although
BA.5 prevalence was expected to have been increasing in all spatial units, BA.5
prevalence was below 50% on July 1, 2022 in most other regions in Brazil and
Argentine.

In Figure S8C, we show prevalence over the observed time period for selected
variants in three selected spatial units (CABA: Buenos Aires, Paraguay, and
Rio de Janeiro). We identify the decline of BA.1 in all three of the spatial units
during the time period. We find that BA.2 and BA.2.12.1 peaked in late May
and early June and that it beginning to be outcompeted by BA.4 and BA.5.
We also find that BA.4 had an earlier foothold in the region than BA.5.

This example demonstrates the ability of this applied method to be applied
across heterogeneous spatial units. It identifies dynamics of SARS-CoV-2 vari-
ants and allows for variation across the spatial units in its estimates.

3.3 Data/code availability

All code is made publicly available at this Github repository Github repository.
We do not include any data in the repository, but all results can be reproduced
using the GISAID SARS-CoV-2 and flu metadata for authenticated users.

4 Applications

In addition to developing the method presented here so that others can ap-
ply it sequencing data across diseases and geographic regions, The Pandemic
Prevention Initiative at The Rockefeller Foundation is committed to applying
the methods to real-world data, in real-time, and making all relevant outputs
public so that others may leverage them for their specific needs. As a result of
and alongside this investigation, two separate data tools have been created and
are or will be made public via dashboards – the Next Generation Sequencing
Capacity Map and the Global Covid-19 Variant Tracker.

The Next Generation Sequencing (NGS) Capacity Map, developed and hosted
by our collaborators at FIND, is a dashboard that has provided real-time global
genomic surveillance capacity since 2021. It includes country-level data on
SARS-CoV-2 genomic sequencing levels, diagnostic capacity, NGS facilities, and
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investments in different aspects of capacity building. Users can look at the cur-
rent state of diagnostic and sequencing capacity levels in each country and can
also assess how these have changed over time globally and by income group.
The tool also provides data-driven ”archetypes” which provide recommenda-
tions around the coordination of capacity building efforts globally. The tool is
intended to illuminate the disparities in sequencing capacity across the globe,
which give rise to the need for the method proposed in this manuscript. All
code used to build the dashboard metrics and corresponding archetypes, as well
as a detailed description of the methods, are provided at the PPI NGS Github
page.

The second tool, the Global Covid-19 Variant Tracker, is a direct applica-
tion of the described method here. This live dashboard will provide estimates
of the global fitness advantage of novel variants as they emerge throughout the
globe, and will highlight key trends throughout different geographic regions for
these variants of interest. We envision these estimates, which give a sense of
the overall risk posed by emerging variants, will be most useful for the research
community, in particular, those interested in identifying the biological charac-
teristics of novel variants (i.e. the degree to which they evade immunity from
certain vaccines/prior infections with past variants), as well as guiding in the
development of variant-targeted vaccines and antibody therapies. Additionally,
the dashboard will also provide country-specific variant prevalence dynamics,
including nowcasts of variant prevalence and inferred cases with each variant
using OWID case data Mathieu2020-ka, for all countries with data available
in GISAID in the past 90 days. Additionally, because countries have divergent
immune landscapes, we provide an estimate of the country-specific variant fit-
ness advantage so that individual countries can plan for the variants expected
to circulate in their area. The goal of these outputs will be to provide situa-
tional awareness and inform decision-making for public health officials deciding
on treatment recommendations that vary with variants, preparing for variant-
driven surges, and catering the development of novel vaccines and therapeutics
to the local variants. Additionally, we think this information can be useful to
the general public to help them gain situational awareness around the shift-
ing variant landscape. Lastly, we believe the combination of variant prevalence
estimates and variant fitness advantages can help guide disease forecasting ef-
forts, providing infectious disease modellers with critical input data needed to
project future epidemiological indicators that will be affected by variants. Be-
cause of this use-case, we have made all data available on public S3 buckets in
the form of machine readable csvs to facilitate their use in subsequent analyses.
In the spirit of open science and transparency, all code used in the development
of the Global Covid-19 Variant Tracer pipeline is available on the PPI Variant
Tracker Github page. We encourage individuals to reach out with any questions
regarding the methods or its applications.
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