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 145 
Summary  146 
Growth faltering (low length-for-age or weight-for-length) in the first 1000 days — from conception to 147 
two years of age — influences short and long-term health and survival.  Interventions such as 148 
nutritional supplementation during pregnancy and the postnatal period could help prevent growth 149 
faltering, but programmatic action has been insufficient to eliminate the high burden of stunting and 150 
wasting in low- and middle-income countries. Future preventive efforts will benefit from 151 
understanding age-windows and population subgroups in which to focus. Here, we use a population 152 
intervention effects analysis of 33 longitudinal cohorts (83,671 children, 662,763 measurements) and 153 
30 separate exposures to show that improving maternal anthropometry and child condition at birth 154 
accounted for population increases in length-for-age Z of up to 0.40 and weight-for-length Z of up to 155 
0.15 by age 24 months. Boys had consistently higher risk of all forms of growth faltering than girls. 156 
Early post-natal growth faltering predisposed children to subsequent and persistent growth faltering. 157 
Children with multiple growth deficits had higher mortality rates from birth to two years than those 158 
without deficits (hazard ratios 1.9 to 8.7). The importance of prenatal causes, and severe 159 
consequences for children who experienced early growth faltering, support a focus on pre-conception 160 
and pregnancy as key opportunities for new preventive interventions. 161 
 162 
Introduction  163 

Child growth faltering in the form of stunting, a marker of chronic malnutrition, and wasting, a 164 
marker of acute malnutrition, is common among young children in low-resource settings, and may 165 
contribute to child mortality and adult morbidity.1,2 Worldwide, 22% of children under age 5 years are 166 
stunted and 7% are wasted, with most of the burden occurring in low- and middle-income counties 167 
(LMIC).3 Current estimates attribute >250,000 deaths annually to stunting and >1 million deaths 168 
annually to wasting.2 Stunted or wasted children also experience worse cognitive development4–6  and 169 
adult economic outcomes.7  170 

Despite widespread recognition of the importance of growth faltering to global public health, 171 
preventive interventions in LMICs have had limited success.8 A range of nutritional interventions 172 
targeting various life stages of the fetal and childhood periods, including nutrition education, food and 173 
micronutrient supplementation during pregnancy, promotion of exclusive breastfeeding for 6 months 174 
and continued breastfeeding for 2 years, and food and micronutrient supplementation during 175 
complementary feeding, have all had a beneficial effect on child growth.9–11 However, postnatal 176 
breastfeeding interventions and nutritional interventions delivered to children who have begun 177 
complementary feeding have only had small effects on population-level stunting and wasting burdens, 178 
and implementation remains a substantial challenge.9,12,13 Additionally, water, sanitation, and hygiene 179 
(WASH) interventions, which aim to reduce childhood infections that may heighten the risk of wasting 180 
and stunting, have had no effect on child growth in several recent large randomized control trials.14–16  181 
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Modest effects of interventions to prevent stunting and wasting may reflect an incomplete 182 
understanding of the optimal way and time to intervene.17 This knowledge gap has spurred renewed 183 
interest in recent decades to combine rich data sources with advances in statistical methodology18 to 184 
more deeply understand the key causes of growth faltering.19  Understanding the relationship between 185 
the causes and timing of growth faltering is also crucial because children who falter early could be at 186 
higher risk for more severe growth faltering later. In companion articles, we report that the highest rates 187 
of incident stunting and wasting occur by age 3 months.20,21  188 

 189 
Pooled longitudinal analyses  190 

Here, we report a pooled analysis of 33 longitudinal cohorts in 15 low- and middle-income countries 191 
in South Asia, Sub-Saharan Africa, Latin America, and Eastern Europe, with data collection initiated 192 
between 1987 and 2014. Our objective was to estimate relationships between child, parental, and 193 
household characteristics and measures of child anthropometry, including length-for-age Z-scores (LAZ), 194 
weight-for-length Z-scores (WLZ), weight-for-age Z-scores (WAZ), stunting, wasting, underweight, and 195 
length and weight velocities from birth to age 24 months. Details on the estimation of growth faltering 196 
outcomes are included in companion articles.20,21  We also estimated associations between early growth 197 
faltering and more severe growth faltering or mortality by age 24 months. 198 

Cohorts were assembled as part of the Bill & Melinda Gates Foundation's Knowledge Integration (ki) 199 
initiative, which included studies of growth and development in the first 1000 days, beginning at 200 
conception.22 We selected longitudinal cohorts from the database that met five inclusion criteria: 1) 201 
conducted in low- or middle-income countries; 2) enrolled children between birth and age 24 months 202 
and measured their length and weight repeatedly over time; 3) did not restrict enrollment to acutely ill 203 
children; 4) enrolled children with a median year of birth after 1990; and 5) collected anthropometric 204 
status measurements at least every 3 months (Extended Data Fig 1). Inclusion criteria ensured we could 205 
rigorously evaluate the timing and onset of growth faltering among children who were broadly 206 
representative of populations in low- and middle-income countries. Thirty-three cohorts from 15 207 
countries met inclusion criteria, and 83,671 children and 592,030 total measurements were included in 208 
this analysis (Fig 1). Child mortality was rare and not reported in many of the ki datasets, so we relaxed 209 
inclusion criteria for studies used in the mortality analysis to include studies that measured children at 210 
least twice a year. Four additional cohorts met this inclusion criterion, and 14,317 children and 70,733 211 
additional measurements were included in mortality analyses (97,988 total children, 662,763 total 212 
observations, Extended Data Table 1). Cohorts were distributed throughout South Asia, Africa, and Latin 213 
America, with a single European cohort from Belarus.  214 
 215 
Population intervention effects on growth faltering  216 

In a series of analyses, we estimated population intervention effects, the estimated change in 217 
population mean Z-score if all individuals in the population had their exposure shifted from observed 218 
levels to the lowest-risk reference level.23 The PIE is a policy-relevant parameter; it estimates the 219 
improvement in outcome that could be achievable through intervention for modifiable exposures, as it 220 
is a function of the degree of difference between the unexposed and the exposed in a children’s 221 
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anthropometry Z-scores, as well as the observed distribution of exposure in the population. We selected 222 
exposures that were measured in multiple cohorts, could be harmonized across cohorts for pooled 223 
analyses, and had been identified as important predictors of stunting or wasting in prior literature (Fig 1, 224 
Extended Data Table 2).  Exposure measurement varied by cohort, but all estimates were adjusted for all 225 
other measured exposures that we assumed were not on the causal pathway between the exposure of 226 
interest and the outcome. For example, the association between maternal height and stunting was not 227 
adjusted for child birth weight, because low maternal height could increase stunting risk through lower 228 
child birth weight.24 Parameters were estimated using targeted maximum likelihood estimation, a 229 
doubly-robust, semiparametric method that allows for valid inference while adjusting for potential 230 
confounders using ensemble machine learning (details in Methods).18,25 We estimated cohort-specific 231 
parameters, adjusting for measured covariates within each cohort, and then pooled estimates across 232 
cohorts using random effects models (Extended data Fig 1).26 We chose as the reference exposure for 233 
PIEs the level of lowest risk across cohorts. We also estimated the effects of optimal dynamic 234 
interventions, where each child’s individual low-risk level of exposure was estimated from potential 235 
confounders (details in Methods). Timing of exposures varied, from parental and household 236 
characteristics present before birth, to fetal or at-birth exposures, and postnatal exposures. We 237 
estimated associations with growth faltering that occurred after exposure measurements to ensure 238 
time-ordering of exposures and outcomes.  239 

Population level improvements in maternal height and birth size would be expected to improve 240 
child LAZ and WLZ at age 24 months substantially, owing to both the high prevalence of suboptimal 241 
anthropometry in the populations and their strong association with attained growth at 24 months (Fig 2, 242 
Fig 3). Beyond anthropometry, key predictors of higher Z-scores included markers of better household 243 
socioeconomic status (e.g., number of rooms in the home, parental education, clean cooking fuel use, 244 
household wealth index). The pooled, cross-validated R2 for models that included the top 10 245 
determinants for each Z-score, plus child sex, was 0.25 for LAZ (N= 20 cohorts, 25,647 children) and 0.07 246 
for WLZ (N=18 cohorts, 17,853 children). The population level impact of season on WLZ was large, with 247 
higher WLZ in drier periods (Fig 3), consistent with seasonal differences shown in a companion article.21 248 
Exclusive or predominant breastfeeding before 6 months of age was associated with higher WLZ but not 249 
LAZ at 6 months of age and was not a major predictor of Z-scores at 24 months (Extended Data Figs 250 
2,3,4).27 Girls had consistently better LAZ and WLZ than boys, potentially from sex-specific differences in 251 
immunology, nutritional demands, care practices, and intrauterine growth.28  252 

The findings underscore the importance of prenatal exposures for child growth outcomes, and 253 
at the population-level growth faltering may be difficult to shift without broad improvements in 254 
standard of living.7,29   Maternal anthropometric status can influence child Z-scores by affecting fetal 255 
growth and birth size.30,31 Maternal height and BMI could directly affect postnatal growth through 256 
breastmilk quality, or could reflect family poverty, genetics, undernutrition, or food insecurity, or family 257 
lifestyle and diet.32,33 In a secondary analysis, we estimated the associations between parental 258 
anthropometry and child Z-scores controlling for birth characteristics, and found the associations were 259 
only partially mediated by birth size, order, hospital delivery, and gestational age at birth, with adjusted 260 
Z-score differences attenuated by a median of 30% (Extended data Fig 5). 261 

  The strongest predictors of stunting and wasting estimated through population attributable 262 
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fractions closely matched those identified for child LAZ and WLZ at 24 months (Extended Data Figs 6, 7), 263 
suggesting that information embedded in continuous and binary measures of child growth provide 264 
similar inference with respect to identifying public-health relevant causes. Potential improvements 265 
through population interventions were relatively modest. For example, if all children were born to 266 
higher BMI mothers (≥ 20) compared to the observed distribution of maternal BMI, one of the largest 267 
predictors of wasting, we estimate it would reduce the incidence of wasting by age 24 months by 8.2% 268 
(95% CI: 4.4, 12.0; Extended Data Fig 7). Patterns in associations across growth outcomes were broadly 269 
consistent, except for preterm birth, which had a stronger association with stunting outcomes than 270 
wasting outcomes, and rainy season, which was strongly associated with wasting but not stunting 271 
(Extended Data Fig 2). Direction of associations did not vary across regions, but magnitude did, notably 272 
male sex was less strongly associated with low LAZ in South Asia (Extended Data Figs 8,9). 273 
 274 
Age-varying effects on growth faltering 275 

We estimated trajectories of mean LAZ and WLZ stratified by maternal height and BMI. We 276 
found that maternal height strongly influenced at-birth LAZ, but that LAZ progressed along similar 277 
trajectories through age 24 months regardless of maternal height (Fig 4a), with similar though slightly 278 
less pronounced differences when stratified by maternal BMI (Fig 4b). By contrast, children born to taller 279 
mothers had similar WLZ at birth and WLZ trajectories until age 3-4 months, when they diverged 280 
substantially (Fig 4a); WLZ trajectory differences were even more pronounced when stratified by 281 
maternal BMI (Fig 4b). The findings illustrate how maternal status strongly influences where child 282 
growth trajectories start, but that growth trajectories evolve in parallel, seeming to respond similarly to 283 
postnatal insults independent of their starting point.  284 

We hypothesized that causes of growth faltering could differ by age of growth faltering onset — 285 
for example, we expected children born preterm would have higher risk of incident growth faltering 286 
immediately after birth, while food insecurity might increase risk at older ages, after weaning. For 287 
exposures studied in the population intervention effect analyses, we conducted analyses stratified by 288 
age of onset and in many cases found age-varying effects (Fig 4c). For example, most measures of 289 
socioeconomic status were associated with incident wasting or stunting only after age 6 months, and 290 
higher birth order lowered growth faltering risk under age 6 months, but increased risk thereafter. First 291 
born babies are born thin and show rapid postnatal catch up in WLZ (Extended data Fig 10). This is likely 292 
because first-born babies suffer uterine constraint caused by a less developed uterine-placental-vascular 293 
supply34,35 resulting in birth weights being lower by 100-200g in most cohorts studied; weight is 294 
generally more compromised than height.36 The switch from a constrained uterine-placental nutrient 295 
supply line to oral nutrition permits post-natal catch up. Stronger relationships between key socio-296 
demographic characteristics and wasting and stunting as children age likely reflects the accumulation of 297 
insults that result from household conditions, particularly as complementary feeding is initiated, and 298 
children begin exploring their environment and potentially face higher levels of food insecurity 299 
especially in homes with multiple children.37 When viewed across multiple definitions of growth 300 
faltering, most exposures had stronger associations with severe stunting, severe wasting, or persistent 301 
wasting (> 50% of measurements < –2 WLZ), rarer but more serious outcomes, than with incidence of 302 
any wasting or stunting (Fig 4d). Additionally, the characteristics strongly associated with lower wasting 303 
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recovery by 90 days (birth size, small maternal stature, lower maternal education, later birth order, and 304 
male sex) increased risk of wasting prevalence and cumulative incidence (Extended data Fig 2). 305 
 306 
Consequences of early growth faltering  307 

We documented high incidence rates of wasting and stunting from birth to age 6 months in 308 
companion papers.20,21 Based on previous studies, we hypothesized that early wasting could contribute 309 
to subsequent linear growth restriction, and early growth faltering could be consequential for persistent 310 
growth faltering and mortality during the first 24 months of life.38–40  Among cohorts with monthly 311 
measurements, we examined age-stratified linear growth velocity by quartiles of WLZ at previous ages. 312 
We found a consistent exposure-response relationship between higher mean WLZ and faster linear 313 
growth velocity in the following 3 months (Fig 5a). Persistent wasting from birth to 6 months (defined as 314 
>50% of measurements wasted) was the wasting exposure most strongly associated with incident 315 
stunting at older ages (Fig 5b).  316 

We next examined the relationship between measures of growth faltering in the first 6 months 317 
and serious growth-related outcomes: persistent wasting from 6-24 months and concurrent wasting and 318 
stunting at 18 months of age, both of which put children at high risk of mortality.1,38  Concurrent wasting 319 
and stunting was measured at 18 months because stunting prevalence peaked at 18 months and the 320 
largest number of children were measured at 18 months across cohorts.20 All measures of early growth 321 
faltering were significantly associated with later, more serious growth faltering, with measures of 322 
ponderal growth faltering amongst the strongest predictors (Fig 5c). 323 

Finally, we estimated hazard ratios (HR) of all-cause mortality by 2 years of age associated with 324 
measures of growth faltering within eight cohorts that reported ages of death, which included 1,689 325 
child deaths by age 24 months (2.4% of children in the eight cohorts). Included cohorts were highly 326 
monitored, and mortality rates were lower than in the general population in most cohorts (Extended 327 
Data Table 3). Additionally, data included only deaths that occurred after anthropometry 328 
measurements, so many neonatal deaths may have been excluded, and without data on cause-specific 329 
mortality, some deaths may have occurred from causes unrelated to growth faltering. Despite these 330 
caveats, growth faltering increased the hazard of death before 24 months for all measures except 331 
stunting alone, with strongest associations observed for severe wasting, stunting, and underweight 332 
(HR=8.7, 95% CI: 4.7 to 16.4) and severe underweight alone (HR=4.2, 95% CI: 2.0 to 8.6) (Fig 5d). 333 

 334 
Discussion 335 

This synthesis of LMIC cohorts during the first 1000 days of life has provided new insights into the 336 
principal causes and near-term consequences of growth faltering. Our use of a novel, semi-parametric 337 
method to adjust for potential confounding provided a harmonized approach to estimate population 338 
intervention effects that spanned child-, parent-, and household-level exposures with unprecedented 339 
breadth (30 exposures) and scale (662,763 anthropometric measurements from 33 cohorts). Our focus 340 
on effects of shifting population-level exposures on continuous measures of growth faltering reflect a 341 
growing appreciation that growth faltering is a continuous process.41 Our results show children in LMICs 342 
stand to benefit from interventions to support optimal growth in the first 1000 days. Combining 343 
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information from high-resolution, longitudinal cohorts enabled us to study critically important outcomes 344 
not possible in smaller studies or in cross-sectional data, such as persistent wasting and mortality, as 345 
well as examine risk-factors by age.   346 

Maternal, prenatal, and at-birth characteristics were the strongest predictors of growth faltering 347 
across regions in LMICs. Our results underscore prenatal exposures as key determinants of child growth 348 
faltering.42 Limited impact of exclusive or predominant breastfeeding through 6 months (+0.01 LAZ) 349 
aligns with a meta-analysis of breastfeeding promotion,27 but our finding of limited impact of reducing 350 
diarrhea through 24 months (+0.05 LAZ) contrasts with some observational studies.43,44 Many predictors, 351 
like child sex, birth order, or season, are not modifiable but could guide interventions that mitigate their 352 
effects, such as seasonally targeted supplementation or enhanced monitoring among boys. Strong 353 
associations between maternal anthropometry and early growth faltering highlight the role of 354 
intergenerational transfer of growth deficits between mothers and their children.32 Shifting several key 355 
population exposures (maternal height or BMI, education, birth length) to their observed low-risk level 356 
would improve LAZ by up to 0.40 z and WLZ by up to 0.15 z in target populations and could be expected 357 
to prevent 8% to 32% of incident stunting and wasting (Figs 2,3 Extended Data Figs 6,7). Maternal 358 
anthropometric status strongly influenced birth size, but the parallel drop in postnatal Z-scores among 359 
children born to different maternal phenotypes was much larger than differences at birth, indicating 360 
that growth trajectories were not fully “programmed” at birth (Fig 4a-b). This accords with the transition 361 
from a placental to oral nutrient supply at birth. 362 

The analyses have caveats. Population intervention effects were based on exposure distributions in 363 
the 33 cohorts, which were not necessarily representative of the general population in each setting. Use 364 
of external exposure distributions from population-based surveys would be difficult because many key 365 
exposures we considered, such as at-birth characteristics or longitudinal diarrhea prevalence, are not 366 
measured in such surveys. In some cases, detailed exposure measurements like longitudinal 367 
breastfeeding or diarrhea history were coarsened to simpler measures to harmonize definitions across 368 
cohorts, potentially attenuating their association with growth faltering. Other key exposures such as 369 
dietary diversity, nutrient consumption, micronutrient status, maternal and child morbidity indicators, 370 
pathogen-specific infections, and sub-clinical inflammation and intestinal dysfunction were measured in 371 
only a few cohorts, so were not included.45,46 The absence of these exposures in the analysis, some of 372 
which have been found to be important within individual contributed cohorts,46,47 means that our 373 
results emphasize exposures that were more commonly collected, but likely exclude some additional 374 
causes of growth faltering. A final caveat is that we studied consequences through age 24 months — the 375 
primary age range of contributed ki cohort studies — and thus have not considered effects on longer-376 
term outcomes. Several studies have suggested that puberty could be another potential window for 377 
intervention to enhance catch-up growth.48 Improving girls’ stature at any point through puberty could 378 
help blunt the intergenerational transfer of growth faltering by improving maternal height,49 which in 379 
turn could improve outcomes among their children (Figs 2, 3, 4a, 4b).    380 

Countries that have reduced stunting most have undergone improvements in maternal education, 381 
nutrition, reductions in number of pregnancies, and maternal and newborn health care,50 reinforcing the 382 
importance of interventions during the window from conception to one year, when fetal and infant 383 
growth velocity is high and energy expenditure for growth and development is about 50% above adult 384 
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values (adjusted for fat-free mass).51 A stronger focus on prenatal interventions should not distract from 385 
renewed efforts for postnatal prevention. The observed pre- and postnatal growth faltering we 386 
observed reinforce the need for sustained support of mothers and children throughout the first 1000 387 
days. Efficacy trials that delivered prenatal nutrition supplements to pregnant mothers,52–54 therapeutics 388 
to reduce infection and inflammation for pregnant mothers,55–59 and nutritional supplements to children 389 
6-24 months11,60 have reduced child growth faltering but have fallen short of completely preventing it. 390 
Our results suggest that the next generation of preventive interventions should focus on the early 391 
period of a child’s first 1000 days — from preconception through the first months of life —because 392 
maternal status and at-birth characteristics are key determinants of growth faltering through 24 393 
months. Halting the cycle of growth faltering early should reduce the risk of its severe consequences, 394 
including mortality, during this formative window of child development. Long-term investments and 395 
patience may be required, as it will take decades to eliminate the intergenerational factors limiting 396 
mothers’ size. 397 
 398 
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 546 
Figure 1. Cohort sample sizes and exposures measured. (a) Total number of 547 
children with each measured exposure, sorted from left to right by number of cohorts 548 
measuring the exposure. (b) Presence of 30 exposure variables in the ki data by within 549 
each included cohort. Cohorts are sorted by geographic region and sample size. (c) 550 
Number child anthropometry observations contributed by each cohort.    551 
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Figure 2. Population intervention effects and mean differences of child, parental, 553 
and household exposures on length-for-age z-scores at age 24 months. 554 
Lighter points show adjusted mean differences (average treatment effects, ATEs) between the labeled 555 
higher-risk levels of exposures and reference levels, and black points show population intervention effects 556 
(PIEs), the estimated difference in length-for-age z-scores (LAZ) after shifting exposure levels for all 557 
children to the reference level. The number of children that contributed to each analysis is listed by 558 
exposure. The colored Y-axis label is either the level of exposure contrasted against the reference level to 559 
estimate the ATE, or the percentage of the population shifted to the lowest-risk level to estimate the PIE. 560 
Cohort-specific estimates were adjusted for all measured confounders using ensemble machine learning 561 
and TMLE, and then pooled using random effects (Methods). Estimates are shown only for exposures 562 
measured in at least 4 cohorts. 563 
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Figure 3. Population intervention effects and mean differences of child, parental, 565 
and household exposures on weight-for-length z-scores at age 24 months. 566 
Lighter points show adjusted mean differences (average treatment effects, ATEs), between higher-risk 567 
exposure levels and reference levels, and black points show population intervention effects (PIEs), the 568 
estimated difference in weight-for-length z-scores (WLZ) after shifting exposure levels for all children to 569 
the reference level. The number of children that contributed to each analysis is listed by exposure. The 570 
colored Y-axis label is either the level of exposure contrasted against the reference level to estimate the 571 
ATE, or the percentage of the population shifted to the lowest-risk level to estimate the PIE. Cohort-572 
specific estimates were adjusted for all measured confounders using ensemble machine learning and 573 
TMLE, and then pooled using random effects (Methods). Estimates are shown only for exposures 574 
measured in at least 4 cohorts.  575 
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 576 
Figure 4. Effect of key exposures on the trajectories, timing, and severity of child 577 
growth faltering  578 
(a) Child length-for-age Z-score (LAZ) and weight-for-length Z-score (WLZ) trajectories, stratified by 579 
categories of maternal height (N=413,921 measurements, 65,061 children, 20 studies).  (b) Child LAZ 580 
and WLZ, stratified by categories of maternal BMI (N=373,382 measurements, 61,933 children, 17 581 
studies). Growth trajectories stratified by all risk factors examined beyond maternal height and BMI are 582 
available online (https://child-growth.github.io/causes/rf-splines.html). (c) Associations between key 583 
exposures and wasting cumulative incidence, stratified by the age of the child during wasting incidence.  584 
Gray points indicate cohort-specific estimates. (d) Associations between key exposures and growth 585 
faltering of different severity. Cumulative incidence ratios contrast the highest and lowest risk categories 586 
of each exposure, which are printed in each panel title. Gray points indicate cohort-specific estimates. 587 
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 588 
Figure 5. Early life growth faltering increases risk of more severe growth faltering 589 
and mortality.  590 
(a) Adjusted differences in linear growth velocity (in centimeters) across 3-month age bands, by quartile 591 
of weight-for-length z-score (WLZ) in the preceding three months. The reference group is children in the 592 
first quartile of WLZ in the previous age period. The panel with black points on the far right shows the 593 
pooled estimates, unstratified by child age. Velocity was calculated from the closest measurements within 594 
14 days of the start and end of the age period. (b) Relative risk of stunting onset between ages 6-24 595 
months among children who experienced measures of early wasting before age 6 months compared to 596 
children who did not. Gray points indicate cohort-specific estimates. (c) Association between cumulative 597 
incidence of mutually exclusive definitions of growth faltering before age 6 months (reference: children 598 
with no measure of growth failure) and persistent wasting from ages 6-24 months (33 cohorts, 6,046 599 
cases, and 68,645 children) or concurrent wasting and stunting at 18 months. (31 cohorts, 1,447 cases, 600 
and 22,565 children). Growth faltering definitions are sorted by estimates in panel d. (d) Hazard ratios 601 
between mutually exclusive definitions of growth faltering (reference: children with no measure of growth 602 
failure) and mortality before 24 months (8 cohorts, 1,689 deaths with ages of death, and 63,812 children). 603 
Gray points indicate cohort-specific estimates. 604 
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 605 
 606 
Extended Data Figure 1. Example forest plot of cohort-specific and pooled 607 
parameter estimates 608 
Cohort-specific estimates of the cumulative incidence ratio of stunting are plotted on each row, comparing 609 
the risk of any stunting from birth to 24 months among boys compared to a reference level of girls. Below 610 
the solid horizontal line are region-specific pooled measures of association, pooled using random-effects 611 
models. Below the dashed line are overall pooled measures of association, comparing pooling using 612 
random or fixed effects models. The primary results reported throughout the manuscript are overall (not 613 
region stratified) estimates pooled using random effects models.  614 
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 615 
Extended Data Figure 2. Heatmap of significance and direction across exposure-616 
outcome combinations.  617 
The heatmap shows the significance and direction of estimates through the cell colors, separated across 618 
primary outcomes by child age. Red and orange cells are exposures where the outcome is estimated 619 
have an increased probability of occurring compared to the reference level (harmful exposures except for 620 
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recovery outcomes), while blue and green cells are exposures associated with a decreased probability of 621 
the outcome (protective exposures except for recovery outcomes). The outcomes are labeled at the top of 622 
the columns, with each set of three columns the set of three ages analyzed for that outcome.  Each row is 623 
a level of an exposure variable, with reference levels excluded.  Rows are sorted top to bottom by 624 
increasing average p-value. Grey cells denote comparisons that were not estimated or could not be 625 
estimated because of data sparsity in the exposure-outcome combination. All point estimates and 626 
confidence intervals for exposure-outcome pairs with P-values plotted in this figure are viewable online at 627 
(https://child-growth.github.io/causes).  628 
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Extended Data Figure 3. Age-stratified population intervention effects in length-630 
for-age Z-scores. 631 
Exposures, rank ordered by population intervention effect on child LAZ, stratified by the 632 
age of the child at the time of anthropometry measurement. The population intervention 633 
effect is the expected difference in mean Z-score if all children had the reference level 634 
of the exposure rather than the observed exposure distribution. Reference levels are 635 
printed in the exposure label. Cohort-specific estimates were adjusted for all measured 636 
confounders using ensemble machine learning and TMLE, and then pooled using 637 
random effects (Methods). Estimates are shown only for exposures measured in at least 638 
4 cohorts. 639 
 640 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


26 
 

 641 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


27 
 

Extended Data Figure 4. Age-stratified population intervention effects in weight-642 
for-length Z-scores. 643 
Exposures, rank ordered by population intervention effects on child WLZ,, stratified by 644 
the age of the child at the time of anthropometry measurement. The population 645 
intervention effect is the expected difference in population mean Z-score if all children 646 
had the reference level of the exposure rather than the observed distribution. For all 647 
plots, reference levels are printed next to the name of the exposure. Cohort-specific 648 
estimates were adjusted for all measured confounders using ensemble machine 649 
learning and TMLE, and then pooled using random effects (Methods). Estimates are 650 
shown only for exposures measured in at least 4 cohorts.  651 
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 652 
Extended Data Figure 5. Mediation of parental anthropometry effects by birth size 653 
on child Z-scores at 24 months. 654 
Mediating effect of adjusting for birth anthropometry and at-birth characteristics on the estimated Z-score 655 
differences between levels of parental anthropometry. Primary estimates were adjusted for all other 656 
measured exposures not on the causal pathway, while the mediation analysis estimates were additionally 657 
adjusted for birthweight, birth length, gestational age at birth, birth order, small-for-gestational age status, 658 
and home vs. hospital delivery. Only estimates from cohorts measuring at least 3 of the 6 at-birth 659 
characteristics were used to estimate the pooled Z-score differences (n = 6 cohorts, 17,124 660 
observations). Mediation estimates were slightly attenuated toward the null, and only in the case of 661 
maternal height and child WLZ were they statistically different from the primary analysis. These results 662 
imply that the causal pathway between parental anthropometry and growth faltering operates through its 663 
effect on birth size, but most of the effect is through other pathways. 664 
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Extended Data Figure 6. Rank-ordered associations between child, parental, and 666 
household characteristics and adjusted relative risks or population attributable 667 
fractions of stunting by age 24 months. 668 
Blue points in the left panel show adjusted cumulative incidence ratios (CIRs) between higher-risk 669 
exposure levels and reference levels, and black points in the right panel show population attributable 670 
fractions (PAFs), the estimated proportion of the risk in the whole population that would be removed if the 671 
exposure were set to its indicated reference level.  The number of children that contributed to each 672 
analysis is listed by exposure. The colored Y-axis label is either the level of exposure contrasted against 673 
the reference level to estimate the CIR, or the percent of the population shifted to the lowest-risk level to 674 
estimate the PAF. For at-birth exposures, at-birth stunting and wasting were excluded to focus on 675 
incidence of new (postnatal) cases, and for postnatal exposures (breastfeeding practice and diarrheal 676 
disease), the cumulative incidence of stunting from 6-24 months was used. Cohort-specific estimates 677 
were adjusted for all measured confounders using ensemble machine learning and TMLE, and then 678 
pooled using random effects (Methods). Estimates are shown only for exposures measured in at least 4 679 
studies. 680 
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Extended Data Figure 7. Rank-ordered associations between child, parental, and 682 
household characteristics and adjusted relative risks or population attributable 683 
fractions of wasting by age 24 months. 684 
Blue points in the left panel show adjusted cumulative incidence ratios (CIRs) between higher-risk 685 
exposure levels and reference levels, and black points in the right panel show population attributable 686 
fractions (PAFs), the estimated proportion of the risk in the whole population that would be removed if the 687 
exposure were set to its indicated reference level.  The number of children that contributed to each 688 
analysis is listed by exposure. The colored Y-axis label is either the level of exposure contrasted against 689 
the reference level to estimate the CIR, or the percent of the population shifted to the lowest-risk level to 690 
estimate the PAF. For at-birth exposures, at-birth stunting and wasting were excluded, and for postnatal 691 
exposures (breastfeeding practice and diarrheal disease), the cumulative incidence of wasting from 6-24 692 
months was used. Cohort-specific estimates were adjusted for all measured confounders using ensemble 693 
machine learning and TMLE, and then pooled using random effects (Methods). Estimates are shown only 694 
for exposures measured in at least 4 studies. The PAF for diarrhea under 6 months was not calculable or 695 
plotted due to the unexpected CIR <1 for estimated higher diarrheal disease burden. 696 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


33 
 

 697 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


34 
 

Extended Data Figure 8. Regionally-stratified population intervention effects for 698 
length-for-age Z-scores at age 24 months. 699 
Exposures, rank ordered by population intervention effect on child length-for-age z-score (LAZ) at age 24 700 
months, stratified by region. The population intervention effect is the expected difference in population 701 
mean Z-score if all children had the reference level of the exposure rather than the observed distribution. 702 
For all plots, reference levels are printed next to the name of the exposure. Cohort-specific estimates 703 
were adjusted for all measured confounders using ensemble machine learning and TMLE, and then 704 
pooled using random effects (Methods). Estimates are shown only for exposures measured in at least 4 705 
cohorts. 706 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


35 
 

 707 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2020.06.09.20127100doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127100
http://creativecommons.org/licenses/by/4.0/


36 
 

Extended Data Figure 9. Regionally-stratified population intervention effects for 708 
weight-for-length Z-scores at age 24 months. 709 
Exposures, rank ordered by population attributable difference on child weight-for-length z-score (WLZ) at 710 
age 24 months, stratified by region. The population intervention effect is the expected difference in 711 
population mean Z-score if all children had the reference level of the exposure rather than the observed 712 
distribution. For all plots, reference levels are printed next to the name of the exposure. Cohort-specific 713 
estimates were adjusted for all measured confounders using ensemble machine learning and TMLE, and 714 
then pooled using random effects (Methods). Estimates are shown only for exposures measured in at 715 
least 4 cohorts.  716 
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 717 
Extended Data Figure 10. Child growth trajectories stratified by birth order 718 

(a) Child weight-for-length Z-score (WLZ) trajectories, stratified by categories of child birth order.  719 
(b) Child length-for-age Z-score (LAZ) trajectories, stratified by categories of child birth order. Details 720 

on the estimation of growth trajectories are in the Methods. Child growth trajectories stratified by 721 
categories of all risk factors are available online (https://child-growth.github.io/causes/rf-722 
splines.html).  723 
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 724 
Extended Data Figure 11 Comparing fixed-reference and optimal intervention 725 
estimates of the population intervention effect.  726 
Pooled population intervention effects on child LAZ and WHZ at 24 months, with the X-axis showing 727 
attributable differences using a fixed, and the Y-axis showing the optimal intervention attributable 728 
difference, where the level the exposure is shifted to can vary by child. Points are labeled with the specific 729 
risk factor. Estimates farther from the diagonal line have larger differences between the static and optimal 730 
intervention estimates. The optimal intervention attributable differences, which are not estimated with an 731 
a-priori specified low-risk reference level, were generally close to the static attributable differences, 732 
indicating that the chosen reference levels were the lowest risk strata in most or all children.  733 
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 734 
Extended Data Figure 12 | Difference between adjusted and unadjusted Z-score 735 
effects by number of selected adjustment variables.  736 
Points mark the difference in estimates unadjusted and adjusted estimates of the difference in average Z-737 
scores between exposed and unexposed children across 33 cohorts, 30 exposures and length-for-age 738 
and weight-for-length Z-score outcomes included in the analysis. Different cohorts measured different 739 
sets of exposures, and a different number of adjustment covariates were chosen for each cohort-specific 740 
estimate based on outcome sparsity, so cohort-specific estimates adjust for different covariates and 741 
numbers of covariates. The plot shows no systematic bias between unadjusted and adjusted estimates 742 
based on number of covariates chosen. The blue line shows the average difference between adjusted 743 
estimates from unadjusted estimates, fitted using a cubic spline. 744 
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 745 
Extended Data Figure 13 | Assessing sensitivity of estimates to unmeasured 746 
confounding using E-values  747 
An E-value is the minimum strength of association in terms of relative risk that an unmeasured 748 
confounder would need to have with both the exposure and the outcome to explain away an estimated 749 
exposure–outcome association.1 Orange points mark the E-values for the pooled estimates of relative risk 750 
for each exposure. Grey points are cohort-specific E-values for each exposure-outcome relationship. 751 
Non-significant pooled estimates have points plotted at 1.0. Orange points are median E-values among 752 
statistically significant estimates for each exposure. As an example, an unmeasured confounder would on 753 
average need to almost double the risk of both the exposure and the outcome to explain away observed 754 
significant associations for the birth length exposure. 755 
 756 
 757 
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Extended data table 1 758 

Region, Study ID Country 
Study 
Years Design 

Childre
n 
Enrolle
d* 

Anthropometry 
measurement ages 
(months) 

Total 
measure
ments* 

Primary 
References 

South Asia 

Biomarkers for EE Pakistan 
2013-
2015 

Prospec
tive 
cohort 380 Birth, 1, 2, ..., 18 8918 

Iqbal et al 2018 
Nature Scientific 
Reports2 

Resp. Pathogens Pakistan 
2011 - 
2014 

Prospec
tive 
cohort 284 Birth, 1, 2, ..., 17 3177 

Ali et al 2016 
Journal of Medical 
Virology3 

Growth Monitoring 
Study Nepal 

2012 - 
Ongoi
ng 

Prospec
tive 
cohort 698 Birth, 1, 2, …, 24 13487 Not yet published 

MAL-ED Nepal 
2010 - 
2014 

Prospec
tive 
cohort 240 Birth, 1, 2, …, 24 5936 

Shrestha et al 
2014 Clin Infect 
Dis4 

CMC Birth Cohort, 
Vellore India 

2002 - 
2006 

Prospec
tive 
cohort 373 Birth, 0.5, 1, 1.5, ..., 24 9131 

Gladstone et al. 
2011 NEJM5 

MAL-ED India 
2010 - 
2012 

Prospec
tive 
cohort 251 Birth, 1, 2, ..., 24 5947 

John et al 2014 
Clin Infect Dis6  

Vellore Crypto Study India 
2008 - 
2011 

Prospec
tive 
cohort 410 Birth, 1, 2, ..., 24 9825 

Kattula et al. 2014 
BMJ Open7  

CMIN 
Banglad
esh 

1993 - 
1996 

Prospec
tive 
Cohort 280 Birth, 3, 6, ..., 24  5399 

Pathela et al 2007 
Acta Paediatrica8  

TDC India 2008-
2011 

Quasi-
experim
ental 

160 Birth, 1, 2, ..., 24 3723 Sarkar et al. 2013 
BMC Public Health  

MAL-ED 
Banglad
esh 

2010 -
2014 

Prospec
tive 
cohort 265 Birth, 1, 2, ..., 24 5816 

Ahmed et al 2014 
Clin Infect Dis9  

PROVIDE RCT 
Banglad
esh 

2011 -
2014 

Individu
al RCT 700 

Birth, 6, 10, 12, 14. 17, 
18, 24, 39, 40, 52, 53 
(weeks) 12165 

Colgate et al 2016 
Clin Infect Dis10  

Food Suppl RCT India 
1995 - 
1996 

Individu
al RCT 418 Baseline, 6, 9, 12  2242 

Bhandari et al 
2001 J Nutri11  

Optimal Infant 
Feeding India 

1999 - 
2001 

Cluster 
RCT 1535 Birth, 3, 6, ..., 18 9539 

Bhandari et al 
2004 J Nutri12  

        

NIH Birth Cohort 
Banglad
esh 

2008 - 
2009 

Prospec
tive 
Cohort 629 Birth, 3, 6, ..., 12 6216 

Korpe et al. 2016 
PLOS NTD13  

JiVitA-4 Trial 
Banglad
esh 

2012 - 
2014 

Cluster 
RCT 5444 6, 9, 12, 14, 18 36167 

Christian et al 2015 
IJE14  

JiVitA-3 Trial 
Banglad
esh 

2008 - 
2012 

Cluster 
RCT 27342 Birth, 1, 3, 6, 12, 24 109535 

West et al JAMA 
201415  

NIH Cryptosporidium 
Study 

Banglad
esh 

2014 - 
2017 

Prospec
tive 
cohort 758 Birth, 3, 6, ..., 24 9774 

Steiner et al 2018 
Clin Infect Dis16  

        

Africa 

MAL-ED 
Tanzani
a 

2009 - 
2014 

Prospec
tive 
cohort 262 Birth, 1, 2, ..., 24 5857 

Mduma et al 2014 
Clin Infect Dis17   

Tanzania Child 2 
Tanzani
a 

2007 - 
2011 

Individu
al RCT 2400 1, 2, ..., 20  32198 

Locks et al Am J 
Clin Nutr 201618  

MAL-ED 
South 
Africa 

2009 - 
2014 

Prospec
tive 
cohort 314 Birth, 1, 2, ..., 24 6478 

Bessong et al 2014 
Clin Infect Dis19  

MRC Keneba Gambia 
1987 - 
1997 Cohort 2931 Birth, 1, 2, ..., 24 40952 

Schoenbuchner et 
al. 2019, AJCN20  
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ZVITAMBO Trial 
Zimbab
we 

1997 - 
2001 

Individu
al RCT 14104 Birth, 6 wks, 3, 6, 9, 12 73651 

Malaba et al 2005 
Am J Clin Nutr21  

Lungwena Child 
Nutrition RCT Malawi 

2011 - 
2014 

Individu
al RCT 840 Birth, 1-6 wk, 6, 12 18 4346 

Mangani et al. 
2015, Mat Child 
Nutr22   

iLiNS-Zinc Study 
Burkina 
Faso 

2010 - 
2012 

Cluster 
RCT 3266 9, 12, 15, 18 10552 

Hess et al 2015 
Plos One23  

CMIN GB94 Guinea 
Bissau 

1994 - 
1997 

Prospec
tive 
Cohort 

870 Enrollment and every 3 
months after 

6459 Valentiner-Branth 
2001 Am J Clin 
Nutr 

Latin America 

MAL-ED Peru 
2009 - 
2014 

Prospec
tive 
cohort 303 Birth, 1, 2, ..., 24 6442 

Yori et al 2014 Clin 
Infect Dis24  

CONTENT Peru 
2007 - 
2011 

Prospec
tive 
cohort 215 Birth, 1, 2, ..., 24 8339 

Jaganath et al 
2014 
Helicobacter25  

Bovine Serum RCT 
Guatem
ala 

1997 - 
1998 

Individu
al RCT 315 Baseline, 1, 2, ...,8 2551 

Begin et al. 2008, 
EJCN26   

MAL-ED Brazil 
2010 - 
2014 

Prospec
tive 
cohort 233 Birth, 1, 2, ..., 24 5092 

Lima et al 2014 
Clin Infect Dis27  

CMIN Brazil89 Brazil 1989-
2000 

Prospec
tive 
Cohort 

119 Birth, 1, 2, ..., 24 889 Moore et al. 2001 
Int J Epidemiol. 

CMIN Peru95 Peru 1995 - 
1998 

Prospec
tive 
Cohort 

224 Birth, 1, 2, ..., 24 3979 Checkley et al. 
2003 Am J 
Epidemiol.  

CMIN Peru89 Peru 1989 - 
1991 

Prospec
tive 
Cohort 

210 Birth, 1, 2, ..., 24 2742 Checkley et al. 
1998 Am J 
Epidemiol.  

        

Europe 

PROBIT Study Belarus 
1996 - 
1997 

Cluster 
RCT 16898 1, 2, 3, 6, 9, 12  124509 

Kramer et al 2001 
JAMA28  

Mortality analysis only 
Burkina Faso Zinc 
trial 

Burkina 
Faso 

2010-
2011 

Cluster 
RCT 7167 6, 10, 14, 17, 22 15155 

Becquey et al 2016 
J Nutr29  

Vitamin A Trial India 
1995-
1996 

Cluster 
RCT 3983 1, 3, 6, 9, 12  32570 

WHO CHD Vitamin 
A Group 1998 
Lancet30  

iLiNS-DOSE Malawi 
2009-
2011 

Individu
al RCT 1932 6, 9, 12, 18 13801 

Maleta et al. 2015 
J Nutr22  

iLiNS-DYAD-M Malawi 
2011-
2015 

Individu
al RCT 1235 1, 6, 12, 18 9207 

Ashorn et al 2015 
J. Nutr22  

*Children enrolled is for children with measurements under 2 years of age. Total measurements are number of measurements of 
anthropometry on children under 2 years of age. 
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Extended data table 2 759 
All exposures included in the analysis, as well as the categories the exposures were classified into across all cohorts, categorization rules, the 760 

total number of children, the percentage of children in each category, select evidence from prior literature, and comparisons to our results. We 761 
selected the exposures of interest based on variables present in multiple cohorts that met our inclusion criteria, were found to be important 762 
determinants of stunting and wasting in prior literature, and could be harmonized across cohorts for pooled analyses.  Where possible, we cite 763 
findings from recent randomized controlled trials and systematic reviews. All referenced results from this manuscript are available here: 764 
https://child-growth.github.io/causes/RR-forest.html. *Bracketed codes at the end of each cell in the “Comparison to results in this analysis” 765 
indicate limitations to comparisons with previous evidence due to differences in: P=population, CA=child age, AV=adjustment variables used in the 766 
analysis, MOA=measure of association, SD=study design, EC=exposure classification. 767 
 768 
Exposure 
variable 

0BN 
children 
under 24 
months 
with both 
measured 
exposure 
and 
length 

1BExposure levels [N 
(%)] 

 

2BCategorization rules 3BPrevious published evidence 4BComparison to results in this analysis 

 
 

Sex 78751 Female: 38444 (48.8%) 
Male: 40307 (51.2%) 

 In a meta-analysis of cohorts and surveys, boys had 
higher odds of being wasted and stunted than girls 
(pooled wasting OR 1.2, 95% CI 1.13 to 1.40, pooled 
stunting OR 1.29 95% CI 1.22 to 1.37). There was 
some evidence that the sex difference is smaller in 
South Asia.31 

 

Supports our finding of increased risk of 
stunting (prevalence ratio (PR) of 1.15 (95% CI: 
1.06, 1.26) at 24 months for wasting, 1.26 (95% 
CI: 1.13, 1.39) at 24 months for stunting), and 
slightly smaller prevalence ratios in South Asia 
(stunting PR: 1.06 [95% CI: 1.02, 1.09, wasting 
PR: 1.22 [95% CI: 1.10, 1.35]). [Different P, CA]* 

Birth weight (kg) 65041 Normal or high birth 
weight: 50940 (78.3%) 
Low birth weight: 
14101 (21.7%) 
 

 A meta-analysis of 19 birth cohorts found a stunting 
PR of 2.92 (95% CI: 2.56, 3.33) associated with low 
birth weight (LBW) in children 1-5 years old, and a 
wasting PR of 2.68 (95% CI: 2.23, 3.21).32 A meta-
analysis of sub-Saharan African DHS datasets found 
LBW was strongly associated with stunting (adjusted 
OR: 1.68 [95% CI: 1.58–1.78]) and wasting (aOR: 1.35 
[95% CI: 1.20–1.38]) in children under 5. A systematic 
review of growth failure in sub-Saharan Africa 
consistently found LBW as a top risk factor for later 
wasting and stunting.33 

Birthweight was also one of the strongest risk 
factors (PR of stunting at 24 months: 1.49 [95% 
CI: 1.37, 1.62], PR of wasting at 24 months: 
1.87 [95% CI: 1.70, 2.06]), though with lower 
magnitude point estimates compared the 
cohort meta-analysis and more aligned with 
the DHS analysis of older children. [Different P, 
CA, AV, MOA, SD]* 

Birth length (cm) 61703 >=50 cm: 23313 
(37.5%) 

[48-50) cm: 14136 
(39.6%) 

<48 cm: 24426 (22.9%) 

 Birth length was the strongest predictor of stunting 
at in 2-year old children in the four country-specific 
cohorts included in the Women First trial (adjusted 
PR of 1.62 [95% CI: 1.39, 1.88] comparing children 
stunted at birth to children with a LAZ > -1 at birth).34  

There was a very similar risk of low birth 
length. Children born with a length <48 cm 
(close to the stunting cutoff at birth) had 1.52 
times the risk of stunting compared to children 
born with a length >50 cm (95% CI: 1.66, 2.58). 
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Wasting risk was also increased (PR: 1.52 [95% 
CI: 1.21, 1.92]). [Different P, CA, AV]* 

Gestational age 
at birth 

45269 Full or late term: 
23313 (51.5%) 
Preterm: 6328 (14%) 
Early term: 15628 
(34.5%) 

<260 days is preterm, [260-274) 
days is early term, >= 274 is full 
term 

In a meta-analysis of 19 birth cohorts, infants born 
preterm had 1.69 times the odds (95% CI: 1.48, 1.93) 
of stunting and 1.55 times the odds (95% CI: 1.21, 
1.97) of wasting from 1 to 5 years of age.32 

The estimates are higher than in our study (PR 
of stunting at 24 months: 1.21 [95% CI: 1.13, 
1.29], PR of wasting at 24 months: 1.13 [95% 
CI: 1.01, 1.26]), but support our finding of a 
significant increase in growth failure risk with 
preterm birth. [Different P, CA, AV, MOA]* 

 

Small for 
gestational age 

39934 Not small for 
gestational age 27161 
(68%) 
Small for gestational 
age 12773 (32%) 

Children were classified as small-
for gestational age if they had 
birthweights below the 10th 
percentile based on 
INTERGROWTH gestational age 
adjusted weight-for-age Z-scores 
(< -1.282 WAZ).35 

In a meta-analysis of 19 birth cohorts, infants born 
small for gestational age (SGA) had 2.32 times the 
odds (95% CI: 2.12, 2.54) of stunting from 1 to 5 
years of age compared to children not SGA, and they 
had 2.36 times the odds (95% CI: 2.14, 2.60) of 
wasting. 32 

 

The estimates are higher than in our study (PR 
of stunting at 24 months: 1.33 [95% CI: 1.22, 
1.46], PR of wasting at 24 months: 1.83 [95% 
CI: 1.51, 2.21]), but support our finding of a 
significant increase in growth failure risk with 
SGA [Different P, CA, AV, MOA]* 

Birth order 46099 1: 17294 (37.5%) 
2: 14107 (30.6%) 
3+: 14698 (31.9%) 

 A systematic review found that later birth order was 
consistently associated with a higher risk of stunting 
and wasting in the 16% of studies that identified 
birth order as an important risk factor for 
malnutrition.36 In an analysis of 35 country-specific 
DHS analyses, birth order had an inconsistent 
relationship with stunting and wasting, with a 
decreased risk in second and third-born children 
compared to firstborn, but an increased risk in 
fourth-born or later.37 In the four country-specific 
cohorts included in the Women First trial, second-
born or later children had an increased Z-score 
trajectory from birth to 24 months, but a lower LAZ 
and higher risk of stunting at 24 months (PR: 1.12 
[95% CI: 1.02, 1.24]).34 

Our results were somewhat incongruous with 
the previous research. Birth order had a 
complex association with child growth failure, 
with a decreased risk of wasting and stunting in 
thirdborn or later children before 6 months of 
age (compared to firstborn children), and an 
increased risk after 6 months (Figure 4c). 
Stunting risk was similarly increased at 24 
months (PR: 1.11 [95% CI: 1.01, 1.22]), but Z-
score trajectories were also lower, in contrast 
to the Women First trial. [Different P, AV]* 

Delivery location 8487 0: 2793 (32.9%) 
1: 5694 (67.1%) 

 In an urban matched case-control study of infants 0-
3 months old in Nigeria, the adjusted odds ratio 
associated with home delivery was 2.33 for severe 
stunting (95% CI: 1.50–3.60) and 2.90  for severe 
wasting (95% CI: 1.32–6.37) compared to delivery in 
public hospitals.38 In a cohort in Malawi, home 
delivery was associated with 1.7 times the odds of 
severe stunting at 1 year of age after confounder 
adjustment (95% CI: 1.1 to 2.7).39 

Home delivery had a significant but smaller 
association with any wasting (PR: 1.34 [95% CI: 
1.03, 1.74]) or stunting (PR: 1.14 [95% CI: 1.06, 
1.23]) at 6 months, but a null association with 
severe stunting. Home delivery was still 
associated with stunting (PR: 1.14 [95% CI: 
1.04, 1.24]) but not wasting or severe stunting 
at 24 months. Severe wasting was too rare 
among the cohorts that measured home 
delivery to estimate the association at either 
age. [Different P, CA, AV, MOA, SD, EC]* 

Maternal height 60742 >=150 cm: 44831 
(73.8%) 

<150 cm: 15911 

Cutoff chosen because a 150cm 
tall, 19-year-old woman has a 
HAZ of -2 

An analysis of 109 DHS surveys found a 1-cm 
increase in maternal height was associated with a 
decreased risk of child  stunting (OR, 0.968; 95% CI, 

Maternal height was also consistently and 
strongly associated with all measures of child 
growth failure at the different examined ages. 
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(26.2%) 0.967-0.968), and wasting (OR, 0.994; 95% CI, 0.993-
0.995).40 An analysis of 35 DHS surveys also found 
consistent, significant, exposure-response curve 
between categories of maternal height and risk of 
stunting and wasting.37 

For example, the risk of stunting at 24 months 
was 1.63 times higher (95% CI: 1.46, 1.82) for 
children of stunted mothers compared to non-
stunted mothers, and the risk of wasting was 
1.18 time higher (95% CI: 1.09, 1.29).  
[Different P, CA, AV, MOA, SD, EC]* 

Maternal body 
mass index (BMI) 

57627 >=20 BMI: 34952 
(60.7%) 
< 20 BMI: 22675 
(39.3%) 

 

Calculated from maternal height 
and weight. Excludes mothers 
whose only weight measurement 
was taken during pregnancy. A 
45 kg, 150 cm woman (the 
cutoffs for height and weight) 
has a BMI of 20.  

A pooled analysis of 35 DHS cohorts found a 
significant increase in child stunting (OR: 1.64, p-
value: <0.001) and wasting (OR: 1.64, p-value: 
<0.001) when mothers had BMI < 18.5 during 
pregnancy compared to mothers with a BMI > 25.37 

 

Maternal BMI was also consistently and 
strongly associated with all measures of child 
growth failure at the different examined ages. 
The risk of stunting at 24 months was 1.21 
times higher (95% CI: 1.06, 1.38) for children of 
lower weight mothers and the risk of wasting 
was 1.81 time higher (95% CI: 1.33, 2.47).  
[Different P, CA, AV, MOA, SD]* 

Maternal weight 59256 >=45 kg: 40338 (68.1%) 

<45 kg: 18918 (31.9%) 
 

Cutoff chosen because a 45kg 
heavy, 19-year-old woman has a 
WAZ of -2 

No studied examining maternal weight in kg were 
found; the studies identified all used BMI to examine 
associations between maternal weight and child 
growth failure. 

 

Mother's age 70548 [20-30): 41707 (59.1%) 
<20: 17826 (25.3%) 
>=30: 11015 (15.6%) 

 A systematic review found that children born to 
women under the age of 20 had a consistently 
greater risk of stunted children compared to women 
aged ≥ 20 years (OR from 1.37 to 7.56).41 

We observed a similar increased risk of stunted 
children (at 24 months) born to teenage 
mothers (PR: 1.07 [95% CI: 1.02, 1.12] but a 
less consistent association with wasting (PR: 
1.07 [95% CI: 0.83, 1.37]. However, the pooled 
risk in this study was much smaller, possibly 
because the children were younger than 
average, or a more complete control of 
confounding by SES and maternal size. 
[Different P, CA, AV, MOA, SD, EC]* 

Maternal 
education 

69971 High: 23013 (32.9%) 
Low: 23702 (33.9%) 
Medium: 23256 
(33.2%) 

Classified by splitting distribution 
of numbers of years of 
educations into thirds within 
each cohort, or grouping ordered 
categories of educational 
attainment into three levels. 

Multiple systematic reviews have found maternal 
education to be the most frequently reported 
significant factor associated with child malnutrition 
(reported in >50% of studies).36,42 A meta-analysis of 
182 DHS datasets found a strong association 
between maternal education and wasting and 
stunting.43 At a country level, a systematic review 
found improvements in maternal educational 
attainment predicted 17% of the total HAZ change in 
Pakistan (49), between 11% and 14% in Nepal (33, 
49–51), 10% in Guinea (29) and India (49), and 7% in 
Cambodia (55).44 However, a SRMA found that, while 
several included studies found inconsistent 
associations between maternal education and 
wasting and stunting, the pooled estimates were 
insignificant for both.45 

After tertiling years of education within 
studies, low and medium maternal education 
was significantly associated with prevalence of 
stunting at 24 months compared to children of 
high-education mothers (low education PR: 
1.21 [95% CI: 1.13, 1.30], medium education 
PR: 1.10 [95% CI: 1.04, 1.17]). Education was 
not associated with wasting at 24 months, but 
it was associated with the cumulative incidence 
of wasting between birth and 2 years (low 
education CIR: 1.09 [95% CI: 1.05, 1.13], 
medium education CIR: 1.08 [95% CI: 1.04, 
1.11]) as well as with the cumulative incidence 
of stunting. The inconsistent associations in 
this and prior studies may be due to 
inconsistent coding of maternal education and 
differences in educational systems. [Different 
P, CA, AV, MOA, SD, EC]* 
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Paternal height 15772 >=162 cm: 15079 
(95.6%) 
<162 cm: 693 (4.4%)  
 

Cutoff chosen because a 162cm 
tall, 19 year old man has a HAZ of 
-2 

A meta-analysis of 14 DHS studies found a significant 
increase in the risk of child stunting (in children 
under 5 years) comparing the shortest to tallest 
quintiles of fathers (adjusted RR = 1.56 [95% CI: 1.47, 
1.65]), though the association was stronger when 
using mother’s heights. In a sensitivity analysis as 
part of a meta-analysis of 35 DHS studies, low 
paternal height (<155cm) was significantly associated 
with stunting (1.9 [95% CI: 1.7, 2.2]) and wasting (1.7 
[95% CI: 1.4, 2.0]), but also less strongly than 
maternal height.37 

We utilized a different cutoff than either study, 
comparing stunted fathers to non-stunted 
fathers, and found a significant, but smaller, 
association with the cumulative incidence of 
stunting in younger children than the DHS 
analysis (CIR: 1.12 [95% CI: 1.02, 1.23]). This 
was also smaller than the association between 
maternal stunting and child stunting, but the 
association with wasting was significant and of 
similar magnitude (CIR: 1.16 [95% CI: 1.04, 
1.30]). [Different P, CA, AV, MOA, SD, EC]* 

Paternal age 18976 >=35: 2289 (12.1%) 
<30: 13002 (68.5%) 
[30-35): 3685 (19.4%) 

 No meta-analyses examining this risk factor were 
found, and in general there were limited studies 
analyzing the association between father’s age and 
child growth failure. A repeated cross-sectional 
survey in Indonesia found no association with 
father’s age and stunting, wasting, or underweight.46 

Children of fathers older than 35 had higher 
WLZ’s at 24 months than children of fathers 
younger than 30 after adjusting for potential 
confounders, but there were no other growth 
associations. [Different P, CA, AV, MOA, SD, 
EC]* 

Paternal 
education 

65728 High: 12684 (19.3%) 
Low: 23089 (35.1%) 
Medium: 29955 
(45.6%) 

Classified by splitting distribution 
of numbers of years of 
educations into thirds within 
each cohort, or grouping ordered 
categories of educational 
attainment into three levels. 

A meta-analysis of 182 DHS datasets found a 
similarly strong association between paternal and 
maternal education and child growth failure after 
confounder adjustment.43 

  

  We also found a similar association between 
paternal and maternal education and growth 
failure, with a null association with wasting and 
24 months and significantly higher risk of 
stunting in children of low and medium 
education mothers compared to high 
education mothers. (Low education PR: 1.30 
[95% CI: 1.08, 1.57], medium education PR: 
1.26 [95% CI: 1.07, 1.47]). [Different P, CA, AV, 
MOA, SD, EC]* 

Caregiver partner 
status 

38222 0: 36393 (95.2%) 
1: 1829 (4.8%) 

Caregivers were classified as 
single if they were unmarried, 
widowed, or with a long-term 
long-distance partner. 

A meta-analysis found that single mothers had a 
higher risk of infant low birth weight (OR 1.54 [95%CI 
1.39–1.72]).47 

Caregiver status was not associated with child 
stunting at 24 months (wasting was too rare to 
examine) or wasting at 6 months, but children 
of unpartnered mothers were significantly 
more likely to be stunted at 6 months  (PR: 
1.25 [95% CI: 1.08, 1.44]) and the cumulative 
incidence of wasting before 2 years of age  
(CIR: 1.12 [95% CI: 1.02, 1.24]).  [Different P, 
CA, AV, MOA, SD, EC]* 

Asset based 
household 
wealth index 

36754 WealthQ4: 9618 
(26.2%) 
WealthQ3: 9165 
(24.9%) 
WealthQ2: 9012 
(24.5%) 
WealthQ1: 8959 
(24.4%) 

First principal component of a 
principal components analysis of 
all recorded assets owned by the 
household (examples: cell phone, 
bicycle, car). 

A meta-analysis of 35 DHS surveys from sub-Saharan 
Africa examined the associations between household 
wealth indices computed by principal components 
analyses and stunting in children under 5 years. It 
found an OR of 1.34 (95% CI: 1.27, 1.42) when 
comparing the lowest versus highest wealth 
quintile.48 Related, a meta-analysis of cash transfer 
programs found significant effects on height-for-age 
z-scores (of 0.03 5% CI  0.00 to 0.06) and a 2.1% 
decrease in stunting (95% CI -3.5% to -0.7%). 49 

Asset based household wealth was significantly 
associated with stunting at 24 months (PR: 1.26 
[95% CI: 1.17, 1.36]) but not wasting (PR: 1.12 
[95% CI: 0.98, 1.27]). [Different P, CA, AV, 
MOA, SD, EC]* 
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Household food 
security 

24461 Food Secure: 12534 
(51.2%) 
Mildly Food Insecure: 
7921 (32.4%) 
Food Insecure: 4006 
(16.4%) 

Combination of three food 
security scales: 

1. The Household 
Hunger Scale (HHS)50 

2. Food Access Survey 
Tool (FAST)51 

3. USAID Household 
Food Insecurity 
Access Scale (HFIAS), 
with middle 2 
categories classified 
as mildly food 
insecure.52 

And one survey question from 
the NIH Bangladesh birth cohort 
and NIH Bangladesh 
Cryptosporidium cohort: 

“In terms of household food 
availability, how do you classify 
your household?“                                                                                             

1. Deficit in whole year  
2. Sometimes deficit 
3. Neither deficit nor 

surplus 
4. Surplus 

Where the middle two categories 
were classified as mildly food 
insecure. 

A systematic review and meta-analysis of 21 studies 
found that food insecurity increased the risk of 
stunting (odds ratio [OR] = 1.17; 95% CI: 1.09–1.25) 
but not of wasting (OR = 1.04; 95% CI: 0.96–1.12). 
The associations were stronger in children older than 
5 years old than those younger than 5 years, and in 
LMIC’s.53 Related to household food security, a 
recent meta-analysis of randomized controlled trials 
of small-quantity lipid-based nutrient supplements 
(SQ-LNSs) found a significant reduction in both 
stunting and wasting.54 

Higher food insecurity was consistently but not 
significantly associated with wasting and 
stunting (PR of stunting at 24 months between 
food insecure and secure: 1.17 [95% CI: 0.96, 
1.44] and PR of wasting 1.07 [95% CI: 0.95, 
1.20], with similar associations with prevalence 
at 6 months and the cumulative incidence). 
[Different P, CA, AV, MOA, SD, EC]* 

   

Improved 
flooring  

35354 1: 4693 (13.3%) 
0: 30661 (86.7%) 

 No meta-analyses examining this risk factor were 
found. Overall, there are limited studies specifically 
intervening to improve flooring or on the 
associations between improved flooring and growth, 
but an Ethiopian DHS analysis found an increased risk 
of stunting among children in households with 
natural/earth/sand floors versus cement/wood 
floors (OR: 1.33 [95% CI:1.08, 1.64]).55 Additional 
research in two cohorts found improved flooring 
reduces soil-transmitted helminth and Giardia 
infections, which are associated with reduced 
growth.56 

We also found an increased risk of stunting in 
younger children than the DHS analysis (PR at 
24 months: 1.17 [95% CI: 1.08, 1.28]), and a 
reduction in LAZ and WLZ, but no effect on 
wasting. [Different P, CA, AV, MOA, SD, EC]* 

Improved 
sanitation 

35086 1: 24119 (68.7%) 
0: 10967 (31.3%) 

WHO Joint Monitoring program 
definition 

Two large trials of individual and combined WASH 
interventions (WASH Benefits Kenya and Bangladesh) 
found no effect of improved sanitation interventions 
on HAZ, WHZ, stunting, or wasting.57,58 In contrast, a 
pooled meta-analysis of 35 DHS studies found an 

Similar to the DHS analysis but in contrast to 
evidence from recent randomized trials, 
unimproved sanitation was associated with 
increased prevalence of stunting (PR: 1.09, 
[95% CI: 1.04, 1.14]) and wasting (PR: 1.22, 
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effect on stunting (PR: 1.10, [95% CI: 1.06, 1.13]) and 
wasting PR: 1.07, [95% CI: 1.02, 1.12]), potentially 
indicating residual confounding in observational 
analyses of WASH condition.37 

[95% CI: 1.08, 1.38]) at 24 months. This 
potentially indicated either residual 
confounding from wealth and health seeking 
behavior of those with improved sanitation, or 
increased density of improved sanitation 
around household in observational studies 
compared to intervention studies. [Different P, 
CA, AV, MOA, SD, EC]* 

Improved water 
source 

35284 1: 33777 (95.7%) 
0: 1507 (4.3%) 

WHO Joint Monitoring program 
definition 

Two large trials of individual and combined WASH 
interventions (WASH Benefits Kenya and Bangladesh) 
found no effect of improved water interventions on 
HAZ, WHZ, stunting, or wasting.57,58 A pooled meta-
analysis of 35 DHS studies also found no effect on 
stunting, but did find an association with wasting 
(PR: 1.07, [95% CI: 1.02, 1.12]).37 

Improved water source was not associated 
with wasting or stunting, aligned with the 
randomized trial findings. [Different P, CA, AV, 
MOA, SD, EC]* 

 

Clean cooking 
fuel usage 

1401 1: 407 (29.1%) 
0: 994 (70.9%) 

 A meta-analysis of clean cookstove interventions 
found a reduction in stunting in children ages 0-59 
months (Odds Ratio: 0.79 [95% CI: 0.70–0.89].59 A 
different meta-analysis found a similar reduction in 
low birthweight (Odds Ratio: 0.73 [95% CI: 0.61–
0.87], but did not examine growth in older children.60 

Like the meta-analysis, clean cooking fuel use 
also associated with reduced stunting (PR at 24 
months: 0.81, [95% CI: 0.68, 0.97]), and was 
also associated with reduced wasting at 24 
months (PR: 0.59, [95% CI: 0.43, 0.83]). Clean 
cooking fuel use was also associated with the 
cumulative incidence of stunting in the first 6 
months, but the studies with cooking fuel data 
didn’t measure children at birth. [Different P, 
CA, AV, MOA, SD, EC]* 

Number of 
children <5 in the 
household 

31610 1: 18963 (60%) 
2+: 12647 (40%) 

 No meta-analyses or systematic reviews examining 
this risk factor were found. A case-control study from 
Malaysia found an increased risk of any form of 
growth failure in children under 5 years old with 
more children in the household (PR comparing  
households 4 or more children to three or less: 5.86 
[95% CI: 1.96-17.55]).61 

 

Other children in the household were 
associated with increased stunting (PR: 1.19 
[9%% CI: 1.04, 1.35]) but not wasting at 24 
months. [Different P, CA, AV, SD]* 

Number of 
individuals in the 
household 

1805 3 or less: 363 (20.1%) 
4-5: 745 (41.3%) 
6-7: 452 (25%) 
8+: 245 (13.6%) 

 No meta-analyses or systematic reviews examining 
this risk factor were found. A cross-sectional study 
from Madagascar found an increased risk of stunting 
and wasting in children 5-14 years with more people 
in the household (stunting PR comparing  
households with 5 or more people children to four or 
less: 1.17 [95% CI: 1.03-1.33], wasting PR: 1.24 [95% 
CI: 1.04–1.48).62 

There was a small but non-significant increase 
in risk of stunting and wasting with more 
individuals in the household. [Different P, CA, 
AV, SD]* 

Number of 
rooms in 
household 

35929 4+: 2492 (6.9%) 
1: 20210 (56.2%) 
2: 9484 (26.4%) 
3: 3743 (10.4%) 

 No meta-analyses examining this risk factor were 
found, and DHS surveys generally measure the 
number rooms used for sleeping, not the total 
number of rooms.  

The number of rooms in the household was not 
associated with increased risk of stunting or 
wasting.  
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Rain season 9769 Opposite max rain: 
2469 (25.3%) 

Pre max rain: 2248 
(23.0%) 

Max rain: 2718 (27.8%) 

Post max rain: 2334  

(23.9%)  

 

 

Rainfall data was extracted from 
Terraclimate, a dataset that 
combines readings from 
WorldClim data, CRU Ts4.0, and 
the Japanese 55-year Reanalysis 
Project.63 For each study region, 
we averaged all readings within a 
50 km radius from the study 
coordinates. If GPS locations 
were not in the data for a cohort, 
we used the approximate 
location of the cohort based on 
the published descriptions of the 
cohort. The three-month period 
opposite the three months of 
maximum rainfall was used as 
the reference level (e.g., if June-
August was the period of 
maximum rainfall, the reference 
level is child mean WLZ during 
January-March). Due to the time-
varying nature of this exposure, 
N’s are reported for children with 
length measures at 24 months 
and measures of rain season. 

In a SRMA, drought conditions were significantly 
associated with wasting (OR: 1.46 [95% CI: 1.05, 
2.04]).64 A meta-analysis of 55 DHS datasets found 
that both abnormally high and low rainfall was 
associated with reduced HAZ and WHZ.65  A 
systematic review found extreme rainfall was 
associated with an increased risk of wasting, but 
found crop growing season rainfall was protective for 
wasting.66 A different systematic review found 
consistent associations between rainfall and HAZ, but 
the magnitude and direction of effect varied by study 
and the timing of the rainfall that the study 
examined.67 

 

WHZ was significantly lower and wasting 
significantly higher during the three months of 
highest rainfall and the three months after the 
highest rainfall period, but there was no 
significant association between rain and 
stunting of HAZ. [Different P, CA, AV, MOA, SD, 
EC]* 

Breastfed in the 
hour after birth 

49168 1: 11609 (23.6%) 
0: 37559 (76.4%) 

 Early initiation of breastfeeding was significantly 
associated with stunting in most cross-sectional 
studies evaluated in a systematic review, but most of 
these estimates were not adjusted for confounding.68  
A cohort study found no association with stunting 
and wasting,69 while a pooled analysis of 35 DHS 
surveys found an increase in stunting odds (OR: 
1.037, P-value <0.001) but a decreased risk of 
wasting (OR: 0.937, P-value <0.001).37    

Early breastfeeding was not significantly 
associated with reduced stunting or wasting, in 
contrast to prior cross-sectional studies but 
aligned with prior evidence from analyses of 
cohorts. [Different P, CA, AV, MOA, SD]* 

Exclusive or 
predominant 
breastfeeding in 
the first 6 
months of life 

26173 1: 18285 (69.9%) 
0: 7888 (30.1%) 

Exclusive breastfeeding: mother 
reported only feeding child 
breastmilk on all dietary surveys 

Predominant breastfeeding: 
mother reported only feeding 
child breastmilk, other liquids, or 
medicines on all dietary surveys 

A SRMA of studies of exclusive breastfeeding found a 
reduction in stunting (OR = 0.73 [95% CI = 0.55, 
0.95]),70 but a SRMA of breastfeeding promotion 
interventions found no impact on LAZ and an 
unexpected reduction in WLZ.71 

Non-exclusive breastfeeding was associated 
with a smaller but still significant increase in 
the prevalence of stunting at 6 months (PR: 
1.11 [95% CI: 1.03, 1.21]) and 24 months (PR: 
1.05 [95% CI: 1.00, 1.10]), but there was no 
association with wasting. [Different P, CA, AV, 
MOA, SD, EC]* 

Cumulative 
percent of days 
with diarrhea 
under 6 months 

3735 [0%, 2%]: 2245 (60.1%) 
>2%: 1490 (39.9%) 

Percent days defined as 
proportion of disease 
surveillance days a child had 
diarrhea during the time interval. 
Diarrhea defined by 3 or more 

 A pooled analysis of nine cohorts and trials found 
that the adjusted odds of stunting at 24 months 
increased by 1.16 for every 5% absolute increase in 
longitudinal prevalence of diarrheal disease prior to 
24 months (95% CI 1.07–1.25).72 A separate analysis 

We found a similar magnitude in the reduction 
of LAZ at 24 months (-0.14 z [95% CI: -0.21 -
0.06]) associated with increased diarrhea, but 
no association with WLZ, stunting, or wasting. 
[Different P, AV, EC]* 
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loose stools, or bloody stool, in a 
24 hour period. Only included 
studies with at least 100 disease 
surveillance measurements 
during age range. 

of 7 cohorts found WHZ, but not LAZ was reduced 30 
days after diarrheal disease, while a higher 
cumulative burden of diarrhea reduced linear growth 
at 24 months (-0.1 LAZ per 10 days of diarrhea.73 

Cumulative 
percent of days 
with diarrhea 
under 24 months 

12639 [0%, 2%]: 6133 (48.5%) 
>2%: 6506 (51.5%) 

Same as above. In the second study detailed above, it was estimated 
that a child with the average diarrhea burden during 
the first 6 months of life who then went on to have 
no diarrhea did not have a significantly lower LAZ at 
24 months than a child with no diarrhea.73 Because 
there was an overall effect of diarrhea on LAZ at 24 
months, this indicated the potential for catch-up 
growth, or a lower impact of infant diarrhea on 
growth. 

 

We also found no association between 
diarrhea before 6 months and growth at 24 
months, and there was also no association with 
growth outcomes at 6 months. [Different P, AV, 
EC]* 
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Extended data table 3 769 
Under 1-year country-specific mortality rate is from UNICEF (https://data.unicef.org/country), and is 770 
higher than the cohort-specific under 2-year mortality rate for all cohorts used in the mortality analysis. 771 

Study 5BCountry Number of 
deaths under 2 

6BUnder 2 mortality 
rate in cohort (%) 

7BInfant (Under 1)  mortality rate in 
cohort (%) 

Infant (Under 1) mortality 
country rate (UNICEF 

Burkina 
Faso Zn 

Burkina 
Faso 

39 0.54   0.42 5.4 

iLiNS-DOSE Malawi 53 2.74 1.92 3.1 

iLiNS-
DYAD-M 

Malawi 54 4.37 3.48 3.1 

JiVitA-3 Bangladesh 934 3.41 2.85 2.6 

JiVitA-4 Bangladesh 49 0.9 0.39 2.6 

Keneba The 
Gambia 

65 2.22 1.52 3.6 

VITAMIN-A India 108 2.70 2.7 2.8 

ZVITAMBO Zimbabwe 1113 7.89 6.57 3.8 

  772 
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 954 
Materials and Methods 955 

1. Study designs and inclusion criteria 956 
We included all longitudinal observational studies and randomized trials available through the ki project 957 
on April 1, 2018 that met five inclusion criteria: 1) conducted in low- or middle-income countries; 2) 958 
enrolled children between birth and age 24 months and measured their length and weight repeatedly 959 
over time; 3) did not restrict enrollment to acutely ill children; 4) enrolled children with a median year of 960 
birth after 1990; 5) collected anthropometry measurements at least quarterly. We included all children 961 
under 24 months of age, assuming months were 30.4167 days, and we considered a child’s first measure 962 
recorded by age 7 days as their anthropometry at birth. Four additional studies with high-quality 963 
mortality information that measured children at least every 6 months were included in the mortality 964 
analyses (The Burkina Faso Zinc trial, The Vitamin-A trial in India, and the iLiNS-DOSE and iLiNS-DYAD-M 965 
trials in Malawi). 966 
 967 

2. Statistical analysis 968 
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Analyses were conducted in R version 4.0.5. All pooled, regional, and cohort-specific results, results for 969 
secondary outcomes, and sensitivity analyses are available online at (https://child-970 
growth.github.io/causes). 971 
 972 

3. Outcome definitions 973 
We calculated length-for-age Z-scores (LAZ), weight-for-age Z-scores (WAZ), and weight-for-length Z-974 

scores (WLZ) using WHO 2006 growth standards.1 We used the medians of triplicate measurements of 975 
heights and weights of children from pre-2006 cohorts to re-calculate Z-scores to the 2006 standard. We 976 
dropped 1,190 (0.2%) unrealistic measurements of LAZ (>+6 or <–6 Z), 1,330  (0.2%) measurements of 977 
WAZ (> 5 or < –6 Z),  and 1,670  (0.3%) measurements of WLZ (>+5 or –5 Z), consistent with WHO 978 
recommendations.2 See Benjamin-Chung (2020) for more details on cohort inclusion and assessment of 979 
anthropometry measurement quality.3 We also calculated the difference in linear and ponderal growth 980 
velocities over three-month periods. We calculated the change in LAZ, WAZ, length in centimeters, and 981 
weight in kilograms within 3-month age intervals, including measurements within a two-week window 982 
around each age in months to account for variation in the age at each length measurement. 983 

 We defined stunting as LAZ < –2, severe stunting as LAZ < –3, underweight as WAZ < –2, severe 984 
underweight as WAZ < –3, wasting as WLZ < –2, severe wasting as WLZ < –3, concurrent stunting and 985 
wasting as LAZ < –2 and WLZ < –2. Children with ≥ 50% of WLZ measurements < –2 and at least 4 986 
measurements over a defined age range were classified as persistently wasted (e.g., birth to 24 months, 987 
median interval between measurements: 80 days, IQR: 62-93). Children were assumed to never recover 988 
from stunting episodes, but children were classified as recovered from wasting episodes (and at risk for 989 
a new episode of wasting) if their measured WLZ was ≥ –2 for at least 60 days (details in Mertens et. al 990 
(2020)).4  Stunting reversal was defined as children stunted under 3 months whose final two 991 
measurements before 24 months were non-stunted. Child mortality was all-cause and was restricted to 992 
children who died after birth and before age 24 months. For child morbidity outcomes (Figure 4c), 993 
concurrent wasting and stunting prevalences at age 18 months were estimated using the 994 
anthropometry measurement taken closest to age 18 months, and within 17-19 months of age, while 995 
persistent wasting was estimated from child measurements between 6 and 24 months of age. We chose 996 
18 months to calculate concurrent wasting and stunting because it maximized the number of child 997 
observations at later ages when concurrent wasting and stunting was most prevalent, and used ages 6-998 
24 months to define persistent wasting to maximize the number of anthropometry measurements taken 999 
after the early growth faltering exposure measurements.4 1000 
 1001 

4. Estimating relationships between child, parental, and household exposures and measures of 1002 
growth faltering 1003 
 1004 
4.1 Exposure definitions  1005 

We selected the exposures of interest based on variables present in multiple cohorts that 1006 
met our inclusion criteria, were found to be important predictors of stunting and wasting in 1007 
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prior literature and could be harmonized across cohorts for pooled analyses. Extended Data 1008 
Table 2 lists all exposures included in the analysis, as well as exposure categories used across 1009 
cohorts, and the total number of children in each category. For parental education and asset-1010 
based household wealth, we categorized to levels relative to the distribution of educational 1011 
attainment within each cohort. Continuous biological characteristics (gestational age, birth 1012 
weight, birth height, parental weight, parental height, parental age) were classified based on a 1013 
common distribution, pooling data across cohorts. Our rationale was that the meaning of socio-1014 
economic variables is culturally context-dependent, whereas biological variables should have a 1015 
more universal meaning. 1016 

 1017 
4.2 Risk set definition 1018 
      For exposures that occur or exist before birth, we considered the child at risk of incident 1019 
outcomes at birth. Therefore, we classified children who were born stunted (or wasted) as 1020 
incident episodes of stunting (or wasting) when estimating the relationship between household 1021 
characteristics, paternal characteristics, and child characteristics like gestational age, sex, birth 1022 
order, and birth location.  1023 

For postnatal exposures (e.g., breastfeeding practices, WASH characteristics, birth weight), 1024 
we excluded episodes of stunting or wasting that occurred at birth. Children who were born 1025 
wasted could enter the risk set for postnatal exposures if they recovered from wasting during 1026 
the study period (see Mertens et al. 2020 for details).4 This restriction ensured that for postnatal 1027 
exposures, the analysis only included postnatal, incident episodes. Children born or enrolled 1028 
wasted were included in the risk set for the outcome of recovery from wasting within 90 days 1029 
for all exposures (prenatal and postnatal).  1030 

 1031 
 1032 

4.3 Estimating differences in outcomes across categories of exposures 1033 
We estimated measures of association between exposures and growth faltering outcomes by 1034 
comparing outcomes across categories of exposures in four ways:  1035 
Mean difference of the comparison levels of the exposure on LAZ, WLZ at birth, 6 months, and 1036 
24 months. The Z-scores used were the measures taken closest to the age of interest and within 1037 
one month of the age of interest, except for Z-scores at birth which only included a child’s first 1038 
measure recorded by age 7 days. We also calculated mean differences in LAZ, WAZ, weight, and 1039 
length velocities. 1040 
Prevalence ratios (PR) between comparison levels of the exposure, compared to the reference 1041 
level at birth, 6 months, and 24 months. Prevalence was estimated using anthropometry 1042 
measurements closest to the age of interest and within one month of the age of interest, except 1043 
for prevalence at birth which only included measures taken on the day of birth.  1044 
Cumulative incidence ratios (CIR) between comparison levels of the exposure, compared to the 1045 
reference level, for the incident onset of outcomes between birth and 24 months, 6-24 months, 1046 
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and birth-6 months.   1047 
Mean Z-scores by continuous age, stratified by levels of exposures, from birth to 24 months 1048 
were fit within individual cohorts using cubic splines with the bandwidth chosen to minimize the 1049 
median Akaike information criterion across cohorts.5 We estimated splines separately for each 1050 
exposure category. We pooled spline curves across cohorts into a single prediction, offset by 1051 
mean Z-scores at one year, using random effects models.6 1052 

 1053 
4.4 Estimating population attributable parameters 1054 

We estimated three measures of the population-level effect of exposures on growth faltering 1055 
outcomes:  1056 
Population intervention impact (PIE), a generalization of population attributable risk, was 1057 
defined as the change in population mean Z-score if the entire population’s exposure was set to 1058 
an ideal reference level. For each exposure, we chose reference levels based on prior literature  1059 
or as the category with the highest mean LAZ or WLZ across cohorts. 1060 
Population attributable fraction (PAF) was defined as the proportional reduction in cumulative 1061 
incidence if the entire population’s exposure was set to an ideal low risk reference level. We 1062 
estimated the PAF for the prevalence of stunting and wasting at birth, 6, and 24 months and 1063 
cumulative incidence of stunting and wasting from birth to 24 months, 6-24 months, and from 1064 
birth to 6 months. For each exposure, we chose the reference level as the category with the 1065 
lowest risk of stunting or wasting. 1066 
Optimal individualized intervention impact We employed a variable importance measure (VIM) 1067 
methodology to estimate the impact of an optimal individualized intervention on an exposure.7 1068 
The optimal intervention on an exposure was determined through estimating individualized 1069 
treatment regimes, which give an individual-specific rule for the lowest-risk level of exposure 1070 
based on individuals’ measured covariates. The covariates used to estimate the low-risk level 1071 
are the same as those used for the adjustment documented in section 6 below. The impact of 1072 
the optimal individualized intervention is derived from the VIM, which is the predicted change in 1073 
the population-mean outcome from the observed outcome if every child’s exposure was shifted 1074 
to the optimal level. This differs from the PIE and PAF parameters in that we did not specify the 1075 
reference level; moreover, the reference level could vary across participants. 1076 
PIE and PAF parameters assume a causal relationship between exposure and outcome. For some 1077 
exposures, we considered attributable effects to have a pragmatic interpretation — they 1078 
represent a summary estimate of relative importance that combines the exposure’s strength of 1079 
association and its prevalence in the population.8  Comparisons between optimal intervention 1080 
estimates and PIE estimates are shown in Extended Data Fig 11. 1081 

 1082 
5. Estimation approach 1083 

Estimation of cohort-specific effects 1084 
For each exposure, we used the directed acyclic graph (DAG) framework to identify potential 1085 
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confounders from the broader set of exposures used in the analysis.9 We did not adjust for 1086 
characteristics that were assumed to be intermediate on the causal path between any exposure and the 1087 
outcome, because while controlling for mediators may help adjust for unmeasured confounders in some 1088 
conditions, it can also lead to collider bias.10,11 Detailed lists of adjustment covariates used for each 1089 
analysis are available online (https://child-growth.github.io/causes/dags.html). Confounders were not 1090 
measured in every cohort, so there could be residual confounding in cohort-specific estimates. 1091 
 Analyses used a complete case approach that only included children with non-missing exposure 1092 
and outcome measurements. For additional covariates in adjusted analyses, we used the following 1093 
approach to impute missing covariate values.12 Within each cohort, if there was <50% missingness in a 1094 
covariate, we imputed missing measurements as the median (continuous variables) or mode (categorical 1095 
variables) among all children, and analyses included an indicator variable for missingness in the 1096 
adjustment set. Covariates with >50% missingness were excluded from the potential adjustment set. 1097 
When calculating the median for imputation, we used children as independent units rather than 1098 
measurements so that children with more frequent measurements were not over-represented.  1099 

Unadjusted PRs and CIRs between the reference level of each exposure and comparison levels 1100 
were estimated using logistic regressions.13 Unadjusted mean differences for continuous outcomes were 1101 
estimated using linear regressions.   1102 
 To flexibly adjust for potential confounders and reduce the risk of model misspecification, we 1103 
estimated adjusted PRs, CIRs, and mean differences using targeted maximum likelihood estimation 1104 
(TMLE), a two-stage estimation strategy that incorporates state-of-the-art machine learning algorithms 1105 
(super learner) while still providing valid statistical inference. 14,15 The effects of covariate adjustment on 1106 
estimates compared to unadjusted estimates is shown  in Extended Data Fig 12, and E-values, summary 1107 
measures of the strength of unmeasured confounding needed to explain away observed significant 1108 
associations, are plotted in Extended Data Fig 13.16 The super learner is an ensemble machine learning 1109 
method that uses cross-validation to select a weighted combination of predictions from a library of 1110 
algorithms.17 We included in the library simple means, generalized linear models, LASSO penalized 1111 
regressions,18 generalized additive models,19 and gradient boosting machines.20 The super learner was fit 1112 
to maximize the 10-fold cross-validated area under the receiver operator curve (AUC) for binomial 1113 
outcomes, and minimize the 10-fold cross-validated mean-squared error (MSE) for continuous 1114 
outcomes. That is, the super learner was fit using 9/10 of the data, while the AUC/MSE was calculated 1115 
on the remaining 1/10 of the data. Each fold of the data was held out in turn and the cross-validated 1116 
performance measure was calculated as the average of the performance measures across the ten folds. 1117 
This approach is practically appealing and robust in finite samples, since this cross-validation procedure 1118 
utilizes unseen sample data to measure the estimator’s performance. Also, the super learner is 1119 
asymptotically optimal in the sense that it is guaranteed to outperform the best possible algorithm 1120 
included in the library as sample size grows. The initial estimator obtained via super learner is 1121 
subsequently updated to yield an efficient double-robust semi-parametric substitution estimator of the 1122 
parameter of interest.14 To estimate the R2 of models including multiple exposures, we fit super learner 1123 
models, without the targeted learning step, and within each cohort measuring the exposures. We then 1124 
pooled cohort-specific R2 estimates using fixed effects models.   1125 
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We estimated influence curve-based, clustered standard errors to account for repeated 1126 
measures in the analyses of recovery from wasting or progression to severe wasting. We assumed that 1127 
the children were the independent units of analysis unless the original study had a clustered design, in 1128 
which case the unit of independence in the original study were used as the unit of clustering. We used 1129 
clusters as the unit of independence for the iLiNS-Zinc, Jivita-3, Jivita-4, Probit, and SAS Complementary 1130 
Feeding trials. We estimated 95% confidence intervals for incidence using the normal approximation. 1131 

Mortality analyses estimated hazard ratios using Cox proportional hazards models with a child’s 1132 
age in days as the timescale, adjusting for potential confounders, with the growth faltering exposure 1133 
status updated at each follow-up that preceded death or censoring by age 24 months. Growth faltering 1134 
exposures included moderate (between –2 Z and –3 Z) wasting, stunting, and underweight, severe 1135 
(below –3 Z) wasting, stunting, and underweight, and combinations of concurrent wasting, stunting, and 1136 
underweight. Growth faltering categories were mutually exclusive within moderate or severe 1137 
classifications, so children were classified as only wasted, only stunted, or only underweight, or some 1138 
combination of these categories. We estimated the hazard ratio associated with different 1139 
anthropometric measures of CGF in separate analyses, considering each as an exposure in turn with the 1140 
reference group defined as children without the deficit. For children who did not die, we defined their 1141 
censoring date as the administrative end of follow-up in their cohort, or age 24 months (730 days), 1142 
whichever occurred first. Because mortality was a rare outcome, estimates are adjusted only for child 1143 
sex and trial treatment arm. To avoid reverse causality, we did not include child growth measures 1144 
occurring within 7 days of death. Extended Data Table 3 lists the cohorts used in the mortality analysis, 1145 
the number of deaths in each cohort, and a comparison to country-level infant mortality rates.  1146 
 1147 
Data sparsity 1148 
We did not estimate relative risks between a higher level of exposure and the reference group if there 1149 
were 5 or fewer cases in either stratum. In such cases, we still estimated relative risks between other 1150 
exposure strata and the reference strata if those strata were not sparse. For rare outcomes, we only 1151 
included one covariate for every 10 observations in the sparsest combination of the exposure and 1152 
outcome, choosing covariates based on ranked deviance ratios.  1153 
  1154 

6. Pooling parameters 1155 
We pooled adjusted estimates from individual cohorts using random effects models, fit using restricted 1156 
maximum likelihood estimation. The pooling methods are detailed in Benjamin-Chung (2020).1  All 1157 
parameters were pooled directly using the cohort-specific estimates of the same parameter, except for 1158 
population attributable fractions. Pooled PAFs were calculated from random-effects pooled population 1159 
intervention impacts (PIEs), and pooled outcome prevalence in the population using the following 1160 
formulas:21 1161 
 1162 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑂𝑂𝑂𝑂 × 100        (1) 1163 
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𝑃𝑃𝑃𝑃𝑃𝑃 95%𝐶𝐶𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃 95% 𝐶𝐶𝐶𝐶
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑂𝑂𝑂𝑂 × 100       (2) 1164 

 1165 
For PAFs of exposures on the cumulative incidence of wasting and stunting, the pooled cumulative 1166 
incidence was substituted for the outcome prevalence in the above equations. We used this method 1167 
instead of direct pooling of PAFs because, unlike PAFs, PIEs are unbounded with symmetrical confidence 1168 
intervals.  1169 

For figures 3a-c, mean trajectories estimated using cubic splines in individual studies and then 1170 
curves were pooled using random effects.6 Curves estimated from all  anthropometry  measurements of 1171 
children taken from birth to 24 months of age within studies that measured the measure of maternal 1172 
anthropometry. 1173 
 1174 

7. Sensitivity analyses 1175 
We compared estimates pooled using random effects models, which are more conservative in the 1176 
presence of heterogeneity across studies, with estimates pooled using fixed effects, and we compared 1177 
adjusted estimates with estimates unadjusted for potential confounders. We estimated associations 1178 
between growth faltering and mortality at different ages, after dropping the trials measuring children 1179 
less frequently than quarterly, and using TMLE instead of Cox proportional hazard models, and we 1180 
plotted Kaplan Meier curves of child mortality, stratified by measures of early growth faltering. We also 1181 
conducted a sensitivity analysis on methods of pooling splines of child growth trajectories, stratified by 1182 
maternal anthropometry. We re-estimated the attributable differences of exposures on WLZ and LAZ at 1183 
24 months, dropping the PROBIT trial, the only European study. Results from secondary outcomes and 1184 
sensitivity analyses are viewable online at https://child-growth.github.io/causes. 1185 
 1186 
Data and code availability 1187 
The data that support the findings of this study are available from the Bill & Melinda Gates Foundation 1188 
Knowledge Integration project upon reasonable request. Replication scripts for this analysis are 1189 
available here: https://osf.io/9xyqv/. 1190 
 1191 
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