Research article: Ageing Increases the Incidence Rate of Post Coronary Artery Shunt Complications

Running title: Current surgical management advances

Authors’ list: Basheer Abdullah Marzoog1,*

1 National Research Mordovia State University. Address: Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005. Postal address: Mordovia republic, Saransk, Bolshevitskaya Street, 31.

*Corresponding author: Basheer Abdullah Marzoog, undergraduate medical school student at National Research Mordovia State University (marzug@mail.ru, +79969602820). Address: Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005. Postal address: Mordovia republic, Saransk, Bolshevitskaya Street, 31. ORCID: 0000-0001-5507-2413, Scopus ID: 57486338800

Competing interests: No competing interests regarding the publication.
Abstract:

Background: Post-coronary artery shunt remains one of the most frequently used revascularization in emergency.

Aims: Asses the role of age advancement in the incidence rate of post coronary artery shunt complications.

Objectives: Several complications are reported after coronary artery bypass graft (CABG) surgery, such as postoperative arrythmia and postoperative stroke. However, the risk factors for the development remain not elaborated.

Materials and methods: Retrospective analysis of the 290 patients who underwent coronary artery bypass graft from the Mordovia republic hospital for the period of 2017-2021. The results of the descriptive statistics demonstrated age dependent complications. Therefore, the sample subdivided into two groups, first group 126 patients (mean age: min; max, 55.21:41.00;60.00) and the second group 163 (M age: min; max, 66.11: 61.00; 80.00). For statistical analysis, we used the T test, one-way ANOVA test, and Pearson correlation test by using the Statistica 12 programme.

Results: Post-CABG arrythmia developed in elderly patients, t-value -2.51307, p<0.012528. Subsequently, post-CABG arrythmia increased ICU and total hospitalisation days, t value -5.83306, p< 0.000000; t-value -4.02907, p< 0.000072, respectively. Elderly people are at higher risk of psychosis after CABG surgery, t value 2.69885, p <0.007379. psychosis significantly increases hospitalisation days in the ICU, t-value 3.86094, p < 0.000140. Postoperative stroke occurs more frequently in elderly people, t-value 2.087585, p < 0.037736. Subsequently, postoperative stroke increases the ICU hospitalization days, t-value 3.409293, p <0.000747. The number of ITAs used is less in the elderly people, t-value 2.41992, p < 0.016145. In terms of correlation, exist a direct association between age and ICU / total hospitalization days/number of complications, r= 0.189046, 0.141415, 0.138565; respectively.

Conclusions: The number of complications is determined by age increase, CPB time, aortic cross-clamp time, the days of hospitalization in the ICU and total hospitalization days. Elderly people undergoing CABG are at higher risk of psychosis, arrythmia, longer total and ICU hospitalization days, and stroke.

Others: Total hospitalization days depend on the presence of arrythmia, which is commonly seen in elderly patients > 63 years old.

Keywords: Surgery; Myocardial Infarction, Angioplasty; CABG; CVD & CVS; progressive Angina;
Introduction

Coronary artery graft surgery (CABG) performed on patients with ischemic heart disease to relieve the discrepancy between demand and supply of heart tissue. CABG surgery is performed in two versions, with stopped heart (on-pump) or working heart (off-pump) with cardiopulmonary bypass (CPB). CABG surgery involves revascularization of the coronary arteries through grafting of vessels from the saphenous vein, brachial vein, internal thoracic arteries, internal mammary arteries, and intercostal thoracic arteries [1]. The surgical approach to CABG is performed endoscopically or by thoracotomy. Recent surgeries are performed using the Da-Venice robot to minimize the risk of complications and improve prognosis by reducing the recovery period [2,3].

Post CABG complications are frequent and seen in all types of CABG surgery, off-pump and on-pump. The remarkable advancement in the current CABG techniques reduced the complications frequency, but the underlying risk factors and pathophysiological mechanisms of development of each complication remain unclear. Depending on the type of surgery, the risk of development of complication is different. Several complications are reported after the postoperative period, such as postoperative arrhythmia, post-operative psychosis, postoperative stroke, postoperative myocardial infarction, postoperative hydrothorax, re- sternotomy, postoperative dyspnea, and sternal wound infection [3,4]. The risk factors for development of post CABG include diabetes mellitus, arterial hypertension, dyspnea, progressive angina, and post myocardial infarction (MI) sclerosis, advanced age, long CPB time, prolonged Aortic cross-clamp time, long ICU hospitalization days, and long total hospitalization days [5,6].

Materials and methods

According to the descriptive statistics, age dependent post-operative complications have been observed. Therefore, the sample has been divided by age into two groups, the first group included 126 patients (mean age: min; max, 55.21:41.00;60.00) and the second group 163 (mean age: min; max, 66.11: 61.00; 80.00). The data were collected from the archive of the hospital for the period 2017-2021. Retrospective analysis has been carried out to assess the role of age advancement on the post operative complications. The mean age of the sample by year is presented in Figure 1.

For statistical analysis, we used the T test, one-way ANOVA test, and Pearson correlation test by using the Statistica 12 programme. (StatSoft, Inc. (2014). STATISTICA (data analysis software system), version 12. www.statsoft.com.)
Results

In 2017, 33 (11.37931 %) patients performed coronary bypass surgery. In 2018, the number increased to 35 (12.06897 %) patients. In 2019, the number significantly increased to 61 (21.03448 %) patients. In 2020, the highest number of bypass surgeries performed, 84 (28.96552 %) patients. In 2021, 77 (26.55172 %) patients underwent coronary bypass surgery.

Body mass index (BMI) range from 16.360-45.350 Kg/m² (mean; standard error: 45.350; 0.241918). Ejection fraction ranged from 29.000-77.000 ml/min (mean; standard error: 55.772; 0.438403). 278 (95.86207 %) patients underwent on-pump CABG surgery and 12 (4.13793 %) patients underwent off-pump CABG surgery. The period of artificial circulation in surgeries with CPB ranged from 0.000-431.000 min (M; ±m: 431.000; 2.661081). The time of ischemia ranged from 0.000-147.000 min (M; ±m: 55.466; 1.341570). Postoperative hospitalisation (hereafter, postoperative and post-CABG will be used interchangeably) in the intensive care unit ranged from 1.000 to 27.000 days (M; ±m: 2.821; 0.140122). The total hospitalization days (ICU hospitalization days plus recovery hospitalization days) after surgery ranged 7.000-50.000 days (M; ±m: 11.722; 0.292762).

In the first group, mean age is 55.21 years (min; max, 41,00; 60,00) and mean BMI is 28,8208 kg/m2 (min; max, 16,36; 45,35). Moreover, in the first group, mean ejection fraction is 54,85% (min; max, 29,00; 76,00) and the mean CPB 101,19 mints (min; max, 0,00; 270,00). Furthermore, the mean XCL time is 56,29 min (min; max, 0,00; 105,00) and the mean hospitalisation days in the intensive care unit is 2,4758 days (min; max, 1,00; 6,00). Furthermore, the mean total hospitalization days after surgery is 10,96 days (min; max, 7,00000; 26,0000) and the mean number of complications is 0,2857 (min; max, 0,00; 3,00).

Non-parametric parameters have been evaluated in table 1. With age number of shunts increases in the first group. However, a reduction in the incidence rate of complications has been observed in the second group (Figure 2,3)

Table 1: Age in the determination of preoperative conditions and post coronary artery shunt surgery complications. *The missed data are treated as part of the of the relative value but not the absolute value. **values in bold are statically significant.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Index</th>
<th>Group A (40-60 years old); 126 patients</th>
<th>Group B (61-80 years old); 164 patients</th>
<th>X²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M</td>
<td>121 (96.03 %)</td>
<td>123 (75.00%)</td>
<td>23.616</td>
<td><0.001**</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>5 (3.96 %)</td>
<td>41 (25.00 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress, Angina</td>
<td>Yes</td>
<td>50 (39.68 %)</td>
<td>62 (37.80 %)</td>
<td>0.081</td>
<td>0.776</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>76 (60.31 %)</td>
<td>101 (61.58 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>Yes</td>
<td>21 (16.66 %)</td>
<td>45 (27.43 %)</td>
<td>4.827</td>
<td>0.029**</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>t-value</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>DM complication</td>
<td>9 (7.14 %)</td>
<td>117 (92.85 %)</td>
<td>1.655</td>
<td>0.199</td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>25 (19.84 %)</td>
<td>101 (80.15 %)</td>
<td>0.095</td>
<td>0.758</td>
<td></td>
</tr>
<tr>
<td>Aarythmia before surgery</td>
<td>20 (15.87 %)</td>
<td>106 (84.12 %)</td>
<td>7.871</td>
<td>0.006**</td>
<td></td>
</tr>
<tr>
<td>Post mi sclerosis</td>
<td>84 (66.66 %)</td>
<td>42 (33.33 %)</td>
<td>2.432</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>Aneurysm LV</td>
<td>7 (5.55 %)</td>
<td>119 (94.44 %)</td>
<td>4.413</td>
<td>0.036**</td>
<td></td>
</tr>
<tr>
<td>Type of surgery</td>
<td>On-pump</td>
<td>Off-pump</td>
<td>0.016</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>Number of used internal thoracic arteries</td>
<td>One</td>
<td>Two</td>
<td><0.001**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary artery shunts and plastic surgery of the LV aneurism</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-op. aneurism LV</td>
<td>1 (0.79 %)</td>
<td>120 (95.23 %)</td>
<td>0.126</td>
<td>0.723</td>
<td></td>
</tr>
<tr>
<td>Post-op. arrythmia</td>
<td>8 (6.35 %)</td>
<td>118 (93.65 %)</td>
<td>6.597</td>
<td>0.011**</td>
<td></td>
</tr>
<tr>
<td>Post-op. psychosis *</td>
<td>3 (2.38 %)</td>
<td>118 (93.65 %)</td>
<td>2.999</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>post-op. Stroke *</td>
<td>1 (0.79 %)</td>
<td>118 (93.65 %)</td>
<td>0.584</td>
<td>0.445</td>
<td></td>
</tr>
<tr>
<td>Post-operative MI *</td>
<td>1 (0.79 %)</td>
<td>123 (97.61 %)</td>
<td>0.031</td>
<td>0.860</td>
<td></td>
</tr>
<tr>
<td>post-op. hydrothorax *</td>
<td>13 (10.31 %)</td>
<td>111 (88.09 %)</td>
<td>0.489</td>
<td>0.485</td>
<td></td>
</tr>
<tr>
<td>Re-sternotomy *</td>
<td>5 (3.96 %)</td>
<td>119 (94.44 %)</td>
<td>0.520</td>
<td>0.471</td>
<td></td>
</tr>
<tr>
<td>Post operative dyspnea *</td>
<td>4 (3.17 %)</td>
<td>120 (95.23 %)</td>
<td>0.258</td>
<td>0.612</td>
<td></td>
</tr>
<tr>
<td>Postoperative superficial sternum infection *</td>
<td>Yes</td>
<td>No</td>
<td>3.634</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>Postoperative deep sternum infection *</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status after surgery</td>
<td>Alive</td>
<td>Dead</td>
<td>1.138</td>
<td>0.286</td>
<td></td>
</tr>
</tbody>
</table>

In terms of post-operative complications, patients with coronary artery bypass graft (CABG) and plastic surgery repair of the left ventricle aneurysm had longer Aortic cross-clamp time, t-value -2.20413, p <0.028306. Additionally, patients with CABG have less ejection fraction, t-value 5.10667, p < 0.000001. Patients with post-CABG left ventricle (LV) aneurysm had less ejection fraction, t-value -2.01070, p <0.045292. Furthermore, patients with post-CABG
LV aneurysm had a longer CPB time, t-value -5.58113, p < 0.000000. Furthermore, patients with LV aneurysm had longer Aortic cross-clamp time, t-value -4.72802, p < 0.000004. Post-CABG arrhythmia developed in elderly patients, t-value -2.51307, p<0.012528. Subsequently, post-CABG arrhythmia increased ICU and total hospitalisation days, t value -5.83306, p< 0.000000; t-value -4.02907, p< 0.000072, respectively. Elderly people are at higher risk of psychosis after CABG surgery, t-value 2.69885, p <0.007379. Postoperative psychosis significantly increases ICU hospitalization days, t-value 3.86094, p < 0.000140. Postoperative stroke occurs more frequently in elderly people, t-value 2.087585, p < 0.037736. Subsequently, postoperative stroke increases the ICU hospitalization days, t-value 3.409293, p <0.000747.

The incidence rate of complications in the first and second groups is shown in figure 4. The number of ITAs used is less in the elderly people, t-value 2.41992, p < 0.016145. In terms of correlation, we found a direct association between age and ICU / total hospitalisation days/number of complications, r= 0.189046, 0.141415, 0.138565; respectively. No statistical significance in the correlation between number of the complications and the number of the shunts as well as between the number of used internal thoracic arteries and number of complications.

Discussion

In light of results, prolonged Aortic cross-clamp time is observed in coronary artery bypass graft (CABG) and plastic surgery repair of the left ventricle aneurysm and patients with preoperative LV aneurysm. The prolonged Aortic cross-clamp time results in the use of two internal thoracic arteries. The prolonged aortic cross-clamp time increases the risk of hydrothorax and number of shunts which subsequently increases the CPB time. Patients with low BMI are at high risk of hydrothorax. Furthermore, hydrothorax and the use of two internal thoracic arteries increase the time of the CPB. The coexistence of CABG and left ventricle aneurysm increases the time required for CPB.

The post CABG ICU hospitalization days is related with the presence of post-operative arrhythmia, post-operative psychosis, post-operative stroke, post-operative hydrothorax, post-operative dyspnea, and superficial sternal wound infection. Total hospitalization days depend on the presence of arrythmia, which is commonly seen in elderly patients > 63 years old. Additionally, deep sternal wound infection increases total hospitalisation days and hospitalization days. The ejection fraction and the days of hospitalisation in the ICU are closely associated with the total days of hospitalization. Ejection fraction is age, sex, and presence of CABG and or CABG with LV aneurysm plastic repair dependent.
Age is a crucial factor in terms of postoperative complications. Where advancement in age increases the days of hospitalization in the ICU, the total days of hospitalisation, and the number of complications. Elderly people are at high risk for stroke, psychosis, and arrhythmia [4,7–14]. However, elderly people passed one internal thoracic artery CABG.

The number of complications is not associated with the death and alive status of the patients or with the number of shunts. Furthermore, there was no statistical difference in the number of complications and the number of shunts used in the number of the used internal thoracic arteries used. However, the number of complications depends on the existence of preoperative progressive angina and PMIMS. In addition, the number of complications is determined by age increase, CPB time, the Aortic cross-clamp time, the days of hospitalization in the ICU, and total hospitalization days.

The results of our study are consistent with those of other studies. Several studies reported that post-CABG complications include arrhythmia, particularly atrial fibrillation [4,15–21]. However, the potential underlying pathophysiological mechanisms remain unclear and further elaboration is required. However, the potential pathophysiological pathway is multifactorial and involves autophagy dysfunction, upregulated sympathetic tone, mitochondrial dysfunction, inflammation, abnormal atrial conduction, and systemic inflammatory response indicated by elevated C-reactive protein and leukocytes [22–31]. Some studies showed that on-pump CABG surgery has higher risk of atrial fibrillation than off-pump [32–35].

Conclusions

Hydrothorax is seen in a low BMI and a long Aortic cross-clamp time which leads to longer CPB time. Progressive angina and PMIMS increase the risk of postoperative complications, particularly hydrothorax. Elderly people undergoing CABG are at higher risk of psychosis, arrhythmia, longer total and ICU hospitalization days, and stroke.

List of abbreviations

CVD; Cardiovascular disease, COVID-19; Corona virus infectious disease-19, CABG; coronary artery bypass graft, CPB; cardiopulmonary bypass, BMI; body mass index, MI; myocardial infarction, DM; Diabetes mellitus, ICU; intensive care unit, PMIMS; post-myocardial infarction myocardial sclerosis, LV; left ventricle, ITA; internal thoracic artery, MI

Declarations

1. Ethics approval and consent to participate: applicable.
2. Consent for publication: applicable on reasonable request.
3. Availability of data and materials: The data are applicable.

4. Competing interests: The authors declare that they have no competing interests regarding the publication.

5. Funding: Not applicable (This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors).

6. Authors' contributions: MB analyzed the statistical data, wrote the draft, and revised the final version of the paper. All authors have read and approved the manuscript.

9. The paper has not been submitted elsewhere.

10. The study approved by the National Research Mordovia State University, Russia, from “Ethics Committee Requirement N8/2 from 30.06.2021”. Written informed consent was obtained from the patients for publication of study results and any accompanying images.

Reference

Figure legend

Figure 1: Mean age of the patients who passed coronary artery shunt surgery (whole sample).
Figure 2: Reduction in the incidence rate of complications in the second group > 60 years.

Figure 3: With age, the number of shunts increases in the first group < 60 years.
Figure 4: The incidence rate of complications in the first (<60 years) and second group (> 60 years), respectively. (H; hydrothorax, R; resternotomy, A; arrhythmia, P; psychosis, MI; myocardial infarction, D; dyspnea, deep sternum infection, SSI; superficial sternum wound infection)
Figure 1: Mean age of the patients who passed coronary artery shunt surgery (whole sample).
Year: LS Means
Wilks lambda=73405, F(32, 543,7)=1.4858, p=0.04397
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

Figure 2: Reduction in the incidence rate of complications in the second group > 60 years
Figure 3: With age, the number of shunts increases in the first group < 60 years.
Figure 4: The incidence rate of complications in the first (<60 years) and second group (> 60 years), respectively. (H; hydrothorax, R; resternotomy, A; arrythmia, P; psychosis, MI; myocardial infarction, D; dyspnea, deep sternum infection, SSI; superficial sternum wound infection).