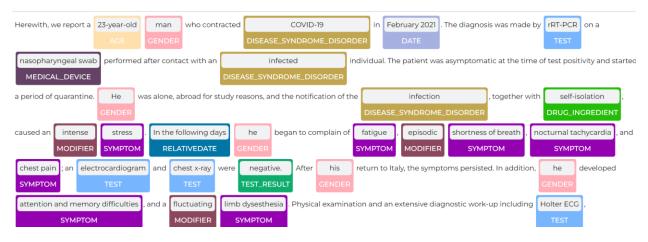
Discovering Social Determinants of Health from Case Reports using Natural Language Processing: Algorithmic Development and Validation

Shaina Raza 1,2*; Elham Dolatabadi 1,3, Nancy Ondrusek1,2, , Laura Rosella2, Brian Schwartz1,2

- ¹ Public Health Ontario (PHO), Toronto, ON, Canada.
- ² Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- ³ Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.

Corresponding Author:

Shaina Raza, PhD


Email: shaina.raza@oahpp.ca

Appendix 1

Table S1: *Named entities*

Clinical entities	Non-clinical entities (including SDoHs)
1. HEART_DISEASE	27. GENDER
2. CLINICAL_DEPARTMENT	28. HEIGHT
3. BLOOD_PRESSURE	29. AGE
4. DISEASE_SYNDROME	30. DATE
5. DOSAGE	31. RACE_ETHNICITY
6. TREATMENT	32. EMPLOYMENT
7. TEST	33. SMOKING
8. PSYCHOLOGICAL_CONDITION	34. ADMISSION_DISCHARGE
9. SYMPTOM	35. ALCOHOL
10. RESPIRATION	36. SUBSTANCE
11. INTERNAL_ BODY_PART	37. WEIGHT
12. EXTERNAL_BODY_PART	38. RELATIVE_DATE
13. ONCOLOGICAL	39. DURATION
14. PROCEDURE	40. TIME
15. DIABETES	
16. DRUG_NAME	
17. VACCINE	
18. HYPERLIPIDEMIA	
19. HYPERTENSION	
20. DEATH_ENTITY	
21. RESPIRATION	
22. KIDNEY_DISEASE	
23. OBESITY	
24. BMI	
25. PULSE	
26. INJURY_OR_POISONING	

Figure S1: Named entities extracted from the case report.

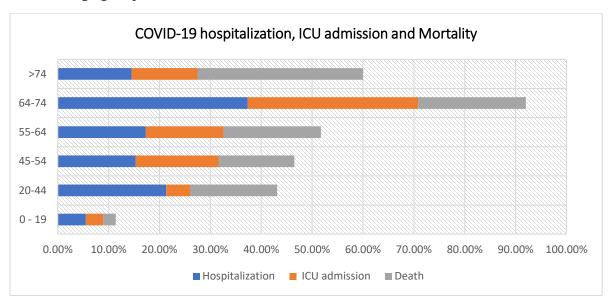


Table S2: General Hyperparameters used along with best value and range in parenthesis.

Hyperparameter	Value
LSTM state size	200 [200 - 300]
dropout rate	0.5 [0.2 - 0.7]
Epochs	40 [20- 80]
Batch size	16 [8 - 128]
Learning rate (lr)	1.e-05 [1.e-9 - 1.e-2]
lr decay coefficient (po)	0.005 [0.001, 0.01]
Warmup steps	10,000
Optimizer	ADAM ⁵⁸ , β1=0.9 and β2=0.999
Word dimension	300 [50 – 450]
Hidden size LSTM	300
Gradient clipping	5.0

The fine-tuning transformer-based architectures (BioBERT and others) are maximum sequence length of 128, number of layers as 12, number of attention heads also 12 and embedding size as 768. For different datasets, the fine-tuning takes different hours (2 hours, 3 hours, 4 hours and 10 hours for our dataset). In the NER task, we fixed the length of sentences to 512. Other hyperparameters used in the paper are given in Table 2.

Figure S2: Hospitalization, ICU admission, and morality in COVID-19 patients with different age groups.

In Figure S2, we observe that, while the mortality rate in older adults (age>74) is 32.50%, the hospitalization and ICU admission rates (14.50% and 12.98%, respectively) are lower than in other age groups.