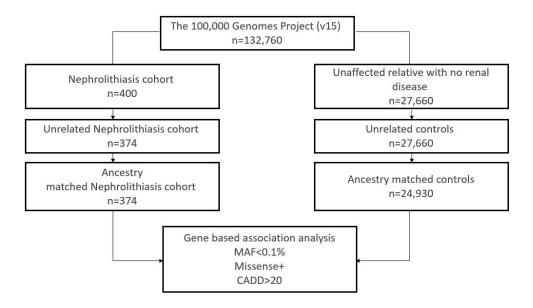
Variants in *SLC34A3* are a major contributor to urolithiasis – Supplementary appendix and figures Authors: Omid Sadeghi-Alavijeh¹, Melanie MY Chan¹, Shabbir Moochhala¹, Genomics England Research Consortium², Sarah Howles³, Daniel P. Gale^{1*}, Detlef Böckenhauer^{1*}

Affiliations: 1- Department of Renal Medicine, University College London, London UK

- 2- Genomics England, London, UK
- 3- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

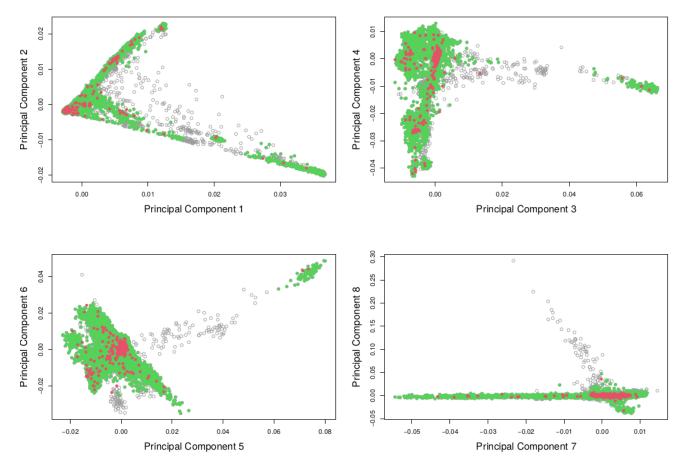
Corresponding author: Detlef Böckenhauer <u>d.bockenhauer@ucl.ac.uk</u>

*DPG and DB contributed equally

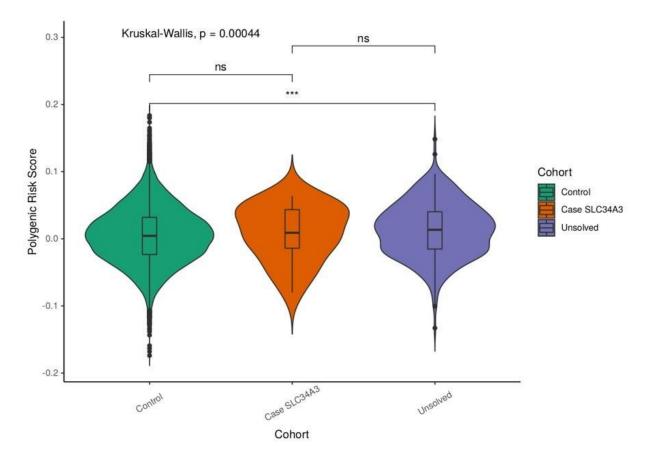

Genomics England Research Consortium

John C. Ambrose¹; Prabhu Arumugam¹; Roel Bevers¹; Marta Bleda¹; Freya Boardman-Pretty¹,2; Christopher R. Boustred¹; Helen Brittain¹; Mark J. Caulfield^{1,2}; Georgia C. Chan¹; Greg Elgar^{1,2}; Tom Fowler¹; Adam Giess¹; Angela Hamblin¹; Shirley Henderson¹,2; Tim J. P. Hubbard¹; Rob Jackson¹; Louise J. Jones¹,2; Dalia Kasperaviciute^{1,2}; Melis Kayikci¹; Athanasios Kousathanas¹; Lea Lahnstein¹; Sarah E. A. Leigh¹; Ivonne U. S. Leong¹; Javier F. Lopez¹; Fiona Maleady-Crowe¹; Meriel McEntagart¹; Federico Minneci¹; LoukasMoutsianas^{1,2}; Michael Mueller^{1,2}; Nirupa Murugaesu¹; Anna C.Need^{1,2}; Peter O'Donovan¹; Chris A.Odhams¹; Christine Patch^{1,2}; Mariana Buongermino Pereira¹; Daniel PerezGil¹; John Pullinger¹; Tahrima Rahim¹; Augusto Rendon¹; Tim Rogers¹; Kevin Savage¹; Kushmita Sawant¹; Richard H. Scott¹; Afshan Siddiq¹; Alexander Sieghart¹; Samuel C. Smith¹; Alona Sosinsky^{1,2}; Alexander Stuckey¹; Mélanie Tanguy¹; Ana Lisa Taylor Tavares¹; Ellen R. A. Thomas¹,2; Simon R. Thompson¹; Arianna Tucci^{1,2}; Matthew J. Welland¹; Eleanor Williams¹; Katarzyna Witkowska^{1,2}; Suzanne M.Wood^{1,2}.

1. Genomics England, London, UK


2. William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.

Supplementary figure 1


Supplementary figure 1 – Study Workflow. The flowchart shows the number of samples included at each stage of filtering and the analytical strategies employed. MAF, minor allele frequency; Missense+, variants as least as damaging as a missense as per Ensembl's the variant effect predictor tool; CADD, combined annotation dependent depletion score.

Supplementary figure 2

Supplementary figure 2 – Ancestry matching. Principal component analysis showing the first eight principal components for matched cases (red) and controls (green) and unmatched controls (grey). This highlights that cases are taken from multiple different ancestries with the appropriate matched controls.

Supplementary figure 3

Supplementary figure 3 - Violin and boxplot showing the polygenic risk score (PRS) distributions between controls (those with qualifying SLC34A3 variants removed), cases with qualifying SLC34A3 variants and unsolved patients who have neither a reportable variant or a qualifying SLC34A3. The means of the three PRS were compared with a Kruskal-Wallis test ($p=4.4 \times 10^{-04}$) with the signal being driven by the difference between unsolved cases and controls (paired Willcox =3.1 $\times 10^{-04}$). *** = statistical significance, ns = no significant difference