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Supplementary Figures 

Figure S1. Manhattan plot of genome-wide association study of 

coronary artery disease 

 

Chromosomal variant positions are plotted on the x-axis. The -log10(P values) are plotted on the 

y-axis. The genome-wide significance threshold (5×10−8) is indicated by the horizontal dotted 

line.  



Figure S2. LocusZoom plot of significant risk locus in the atrial 

fibrillation GWAS 



Figure S3. LocusZoom plot of significant risk loci in the type 2 diabetes GWAS 

 

  



Figure S4. LocusZoom plot of significant loci in the low-density lipoprotein GWAS 

 

 





Supplementary Tables 

Table S1. Phenotype definition for atrial fibrillation 

ICD codes ICD 9: 427.3, 427.31, 427.32 

ICD 10: I48, I48.0, I48.1, I48.2, I48.3, I48.4, I48.9 

Self-reported medical history Circulatory Conditions: Atrial Fibrillation 

(Concept id: 43528442) 

Procedures/Operations 1. Cardioversion, elective, electrical 

conversion of arrhythmia; external (CPT4 

Code: 92960; Concept Id: 2313791) 

2. Cardioversion (SNOMED Code: 

250980009; Concept Id: 4353741) 

3. Atrial cardioversion (SNOMED Code: 

26879000; Concept Id: 4098410) 

4. External electrode cardioversion 

(SNOMED Code: 275148007; Concept 

Id: 4166447) 

5. Cardioversion, elective, electrical 

conversion of arrhythmia; internal 

(separate procedure) (CPT4 Code:  92961, 

Concept Id: 2313792) 

6. Comprehensive electrophysiologic 

evaluation including transseptal 

catheterizations, insertion and 

repositioning of multiple electrode 

catheters with induction or attempted 

induction of an arrhythmia including left 

or right atrial pacing/recording when nec 



(CPT4 Code: 93656; Concept Id: 

43528008) 

 

Concept IDs are codes specific to the All of Us database and can be used to query data. 

Participants with any of these codes in their electronic health records (EHR) were identified as 

cases for atrial fibrillation.



Table S2. Summary statistics of the lead common variants identified in the All of Us 

GWAS and in prior GWAS 

Genetic variants in 
the AoU GWAS 
[ref/effect] 
(GRCh38) 

Effect size [95% CI] 
in the AoU GWAS 

P-value in the AoU 
GWAS 

Genetic variants in 
prior GWAS 
[ref/effect] 
(GRCh37) 

Effect size [95% CI] 
in prior GWAS 

P-value in the 
GWAS 

Atrial Fibrillation      

chr4:110743002 
[G/A] 

1.26 [1.18, 1.34] 2.40×10-13 chr4:111664158 
[G/A] 

1.56 [1.53, 1.59] 8.80×10-453 

Type 2 Diabetes      

chr6:26276061 [T/G] 0.79 [0.73, 0.86] 4.22×10-8 Not in prior GWAS   

chr9:22136441 [G/C] 1.11 [1.07, 1.16] 3.39×10-8 Not in prior GWAS   

chr10:113039134 
[T/A] 

1.19 [1.15, 1.24] 4.87×10-20 Not in prior GWAS   

chr12:4275678 [T/G] 0.66 [0.57, 0.77] 4.23×10-8 chr12:4384844 [T/G] 0.66 [0.63, 0.68] 1.20×10-96 

chr16:53773852 
[A/G] 

1.12 [1.08, 1.16] 1.33×10-11 chr16:53807764 
[A/G] 

1.08 [1.05, 1.10] 2.70×10-9 

Low-density lipoprotein     

chr1:55055522 [C/T] -0.09 [-0.11, -0.06] 1.71×10-12 chr1:55521195 [C/T] -0.08 [-0.06, -0.09] 3.70×10-20 



chr1:109274968 
[G/T] 

-0.12 [-0.13, -0.10] 3.49×10-38 chr1:109817590 
[G/T] 

-0.12 [-0.12, -0.11] 9.58×10-411 

chr2:21040767 [T/G] 0.10 [0.08, 0.12] 1.59×10-21 chr2:21263639 [T/G] 0.10 [0.09, 0.11] 3.53×10-195 

chr2:21072960 [G/A] 0.07 [0.06, 0.09] 7.75×10-20 chr2:21295832 [G/A] 0.06 [0.06, 0.07] 1.34×10-174 

chr5:75360714 [T/C] 0.06 [0.04, 0.07] 1.18×10-12 chr5:74656539 [T/C] 0.06 [0.06, 0.06] 5.46×10-173 

chr6:160589086 
[A/G] 

0.12 [0.09, 0.16] 2.94×10-12 chr6:161010118 
[A/G] 

0.08 [0.07, 0.09] 4.80×10-79 

chr19:11085680 
[AC/A] 

-0.13 [-0.15, -0.10] 3.73×10-27 Not in prior GWAS   

chr19:44908684 
[T/C] 

0.18 [0.16, 0.20] 9.51×10-62 chr19:45411941 
[T/C] 

0.18 [0.18, 0.19] 9.12×10-828 

chr19:44908822 
[C/T] 

-0.40 [-0.42, -0.37] 2.03×10-181 chr19:45412079 
[C/T] 

-0.48 [-0.48, -0.47] 2.91×10-3040 

chr19:44935906 
[C/G] 

-0.03 [-0.05, -0.02] 1.46×10-4 chr19:45439163 
[C/G] 

-0.02 [-0.03, -0.01] 1.96×10-10 

 

The summary statistics in prior GWAS were extracted from the GWAS used in genetic correlation analysis. When the SNV was not 

available in the reference GWAS, the summary statistics were obtained from the GWAS catalog. SNVs were noted as not available if 

it has not been reported in the GWAS catalog. Effect size: odds ratios (OR) for disease phenotypes, beta for continuous traits.



Supplementary Methods 

Study population 

One of the goals set by the All of Us research program was to recruit individuals that have been 

and continue to be underrepresented in biomedical research due to limited access to health care. 

Therefore, All of Us takes demographics, including race, ethnic group, age, sex, gender identity, 

income, educational attainment, and geographic location, into account when enrolling 

participants.1 For the first release of the genomic data, All of Us prioritized historically 

underrepresented individuals in the sequencing procedure, resulting in a 51% percentage of 

participants in racial and ethnic minorities among the 98,622 sequenced individuals. The detailed 

ancestry summary statistics (both genetically predicted and self-reported) are presented in Table 

1. All participants completed electronic consent modules and health questionnaires upon 

enrollment, and the study protocol has been published previously.2 In the current release, all 

samples with genetic data have at least one other type of data that can be used for research 

purposes. Approval to use the dataset for the specified demonstration projects was obtained from 

the All of Us Institutional Review Board. 

Cardiometabolic phenotypes 

The cardiometabolic traits included in the present study were atrial fibrillation (AF), coronary 

artery disease (CAD), type 2 diabetes (T2D), body height, and low-density lipoprotein (LDL). 

AF was defined using a combination of International Classification of Diseases (ICD) codes, 

self-reported personal medical history, and procedure and operation codes. The detailed 



algorithm for AF is described in Table S2. For CAD and T2D, we used published phenotype 

algorithms obtained from the eMERGE network to define the disease phenotypes using 

electronic health records (EHR) data.3,4 The CAD algorithm was based on ICD and CPT codes, 

and the T2D algorithm used information from ICD codes, medication use, and laboratory test 

results. Body height was extracted from the program’s physical measurements data section, 

which includes data for blood pressure, height, weight, waist circumference, hip circumference, 

and heart rate, all were measured at enrollment by the program. LDL cholesterol levels were 

extracted from EHR with the unit of mg/dL. When there were multiple laboratory results for 

LDL in a participant’s EHR, the most recent record was used. Rank-based inverse normal 

transformation was applied to continuous traits before association testing. 

Whole-Genome Sequencing and variant calling 

Each Genome Center performed quality control (QC) of the specimens obtained from the All of 

Us Biobank. Sample preparation and normalization and DNA library construction have been 

reported previously.5 The Illumina NovaSeq 6000 instrument was used to conduct the whole-

genome sequencing (WGS) procedure following the manufacturer’s best practices. Post-

sequencing analysis was performed using Illumina’s DRAGEN pipeline, which was harmonized 

(v3.4.12) between different Genome Centers. The GRCh38 reference genome was used in the 

alignment step. The single sample QC processes checked fingerprint concordance (array vs. 

WGS data), sex concordance (genetically determined vs. self-reported), cross-individual 

contamination rate and coverage to detect major errors, such as sample swaps or contamination. 

Participants who failed these tests were removed from the current release. The WGS variants 

were called jointly to reduce systematic biases. Additional sample QC procedures were then 

performed on the joint callsets, including hard threshold flagging (e.g., number of SNPs: < 2.4M 



and > 5.0M) and population outlier flagging. Variants QC was performed after sample QC, 

flagging specific variants from a callset. Processes included hard threshold filters (e.g., 

ExcessHet, QUAL score) and Allele-Specific VariantQualityScoreRecalibration (AS-VQSR or 

VQSR, a machine learning technique for identifying variants that are likely artifacts). 

Variant-level and sample-level quality control 

In addition to the QC procedures performed by the program when producing the genomic data, 

we applied several variant-level and sample-level filterings to keep only high-quality data in the 

present analysis. For genetic variants that passed internal QC, we further filtered out 

monomorphic variants, variants in low-complexity regions, variants with call rate < 95%, and 

variants with Hardy-Weinberg equilibrium P value < 1×10-15. We conducted sample QC by 

excluding samples with call rate < 95%, Ti/Tv ratio, het/hom ratio, SNP/Indel ratio, or number of 

singletons > 8 standard deviation (SD) from the population mean. We performed the QC 

procedures using PLINK 2.0 [https://www.coggenomics.org/plink/2.0/]. 

Principal components 

Population structure inference on the entire study population was obtained by implementing an 

algorithm (PC-AiR) that accounts for relatedness in the sample.6 This method takes the kinship 

inference obtained using the KING software7 as input, which assigns negative estimates to pairs 

of individuals with different ancestry backgrounds. PC-AiR uses these negative kinship estimates 

to identify groups of participants with different ancestry backgrounds and performs principal 

component analysis (PCA) on unrelated samples who are representative of the ancestries 

presented in the entire sample. For the related subset, the algorithm predicts PC values for them 

based on their genetic similarities with the unrelated subset. Genetic similarities were also 



estimated using the kinship inference algorithm that accounts for unknown population 

substructure.7 We followed a 2-step method presented in the TOPMed analysis pipeline 

(https://uw-gac.github.io/topmed_workshop_2017/index.html) to calculate the principal 

components. R package GENESIS was used to implement the PC-AiR and PC-Relate algorithms 

needed for this analysis. 

Common variant analysis and genetic correlation 

We performed association testing for phenotypes and individual genetic variants with minor 

allele frequencies (MAF) > 1% using a whole-genome regression approach implemented in the 

REGENIE8 software assuming an additive genetic model. This method first generates LOCO 

(leave-one-chromosome-out) predictions of trait values in step 1 using a set of high-quality 

genetic variants that provide whole-genome information. We used genetic variants with a MAF > 

1%, minor allele count (MAC) > 100, missingness rate < 1%, Hardy-Weinberg equilibrium test 

P value > 1×10-15 and linkage-disequilibrium (LD) pruning (r2 < 0.1). The resulting LOCO 

predictions are then used in step 2 to test the associations between phenotypes and each 

individual genetic variant. The covariates adjusted in all statistical models were: (1) age (age at 

enrollment for disease phenotypes, age at measurement for continuous traits), (2) sex, (3) 20 

principal components of ancestry. Age at enrollment was calculated using birthdate and program 

consent date. When consent date was missing from the database, we used median consent date 

among the samples to calculate the enrollment age. 57,239 participants have consent date 

information available in the database, ranging from 2017-05-31 to 2021-04-01 (median date: 

2019-03-08). 

We fitted linear regression models for continuous traits and logistic regression models for 

binary traits with a saddle point approximation (SPA) method9 accounting for case-control 



imbalance. Genome-wide significant variants were considered those with P < 5×10-8. We also 

conducted conditional analyses10 using the GCTA software to select secondary independent 

significant SNVs at each locus. The mapped gene at each locus was either the nearest gene or the 

phenotype-associated gene within 500 kb range of the lead variant reported in the GWAS 

catalog. We then estimated genetic correlation using GWAS summary statistics to evaluate how 

consistent our GWAS results were with corresponding previously published GWAS results. We 

used the LD score regression approach11 implemented in the LDSC software and pre-computed 

LD-scores provided by the software for this analysis. LDSC is not a bounded estimator and thus 

may generate estimates less than -1 or greater than 1 due to sampling variation. Also, a genetic 

correlation estimate that is greater than 1 may indicate that the true genetic correlation is high 

and there are some samples that overlap between the two studies. All correlation estimates for 

disease phenotypes were converted from observed scale to liability scale using sample 

prevalence and population prevalence estimates. 

Rare variant analysis using burden test 

To test the association between each phenotype and the burden of rare variants (MAF < 0.1%) of 

their known associated genes, we first annotated the protein consequences of rare variants using 

the Loss-of-Function Transcript Effect Estimator (LOFTEE)12 plug-in implemented in the 

Variant Effect Predictor105 (VEP; v.95) (https://github.com/konradjk/loftee) software to identify 

high-confidence loss-of-function (LoF) variants, including frameshift indels, stop-gain variants 

and splice site disrupting variants. Furthermore, we checked the continental allele frequencies 

using gnomAD v2 to make sure the maximum population frequency (POPMAX) for each of the 

rare variations was also < 0.1% since ancestral allele frequencies can be different from the 

pooled ones. We identified 597 LoF variants within TTN, 38 within GIGYF1, 32 within APOB, 



17 within LDLR, 14 within PCSK9, 49 within ADAMTS17, 15 within ACAN, and 32 within 

NPR2. We then tested the association between the burden of selected rare variants in each gene 

and its corresponding reported phenotype using a burden test implemented in the REGENIE 

software.8 Specifically, for each gene, we counted the number of alternative allele copies each 

individual carries and treated this number as a single burden genotype. This genotype was then 

used in a regression model (linear models for continuous traits, logistic models for binary traits) 

to associate with the phenotype, adjusting for age (age at enrollment for disease phenotypes, age 

at measurement for continuous traits), sex, and 20 principal components of ancestry. The LOCO 

predictions obtained from common variant analysis were used in step 2 for this analysis. We also 

applied the saddle point approximation (SPA) method9 to account for case-control imbalance. 
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