

Figure S1. Levels of epithelial cell death markers in BALF samples, Related to Figure 2. Levels of (A) CK18-M30, an epithelial apoptosis marker; (B) CK18-M65, an epithelial total cell death marker; (C) CK18-M30/M65 ratio, an indicator of the fraction of epithelial cells undergoing apoptosis versus all types of cell death in BALF samples of COVID-19 patients with ARDS

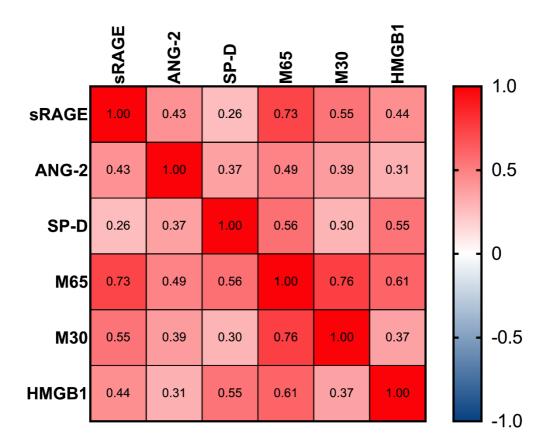


Figure S2. Pearson correlation coefficients among circulating markers, Related to Figure 1 and 2. The serum levels of each marker were log-transformed and then Pearson's correlation analyses were performed.

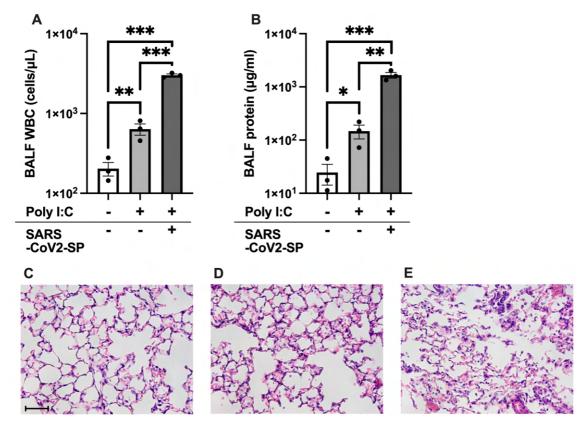
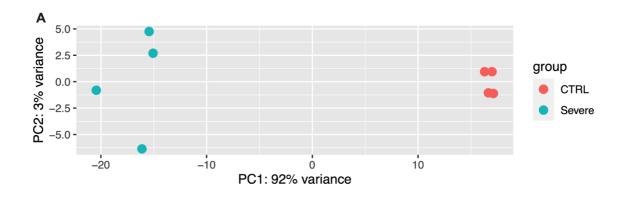



Figure S3. Effects of intratracheal administration of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein combined with polyinosinic:polycytidylic acid (poly (I:C)), Related to Figure 3. Levels of (A) white blood counts and (B) total proteins in the bronchoalveolar lavage fluid of mice intratracheally injected with phosphate buffered saline, poly (I:C) or SARS-CoV-2 spike proteins combined with poly (I:C) are shown. (C) Representative images of lung tissue sections stained with hematoxylin and eosin. Scale Bar = 50μ m. The values are presented as means \pm standard error. *p<0.05, **p<0.01, ***p<0.0001

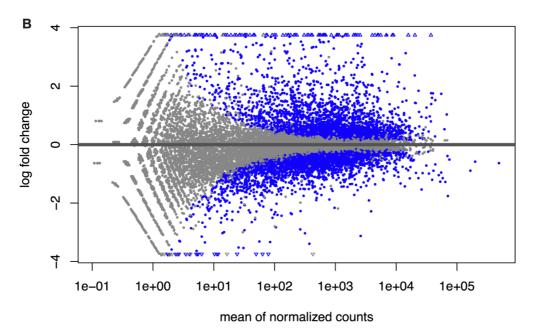
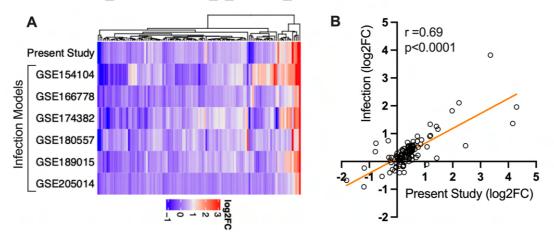
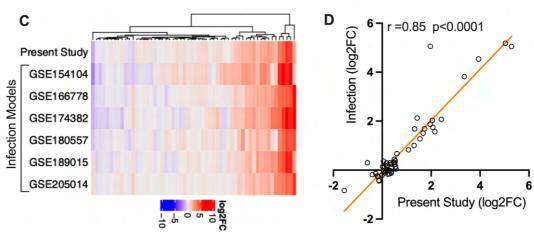




Figure S4. Analysis of RNA-seq data of the COVID-19 model using SARS-CoV-2 spike protein and poly (I:C) in the present study, Related to Figure 4. (A) Principal component analysis and (B) MA-plot comparing the severe COVID-19 model and the control

REACTOME_INTERLEUKIN_1_FAMILY_SIGNALING

REACTOME_INTERFERON_SIGNALING

REACTOME_TNFR2_NON_CANONICAL_NF_KB_PATHWAY

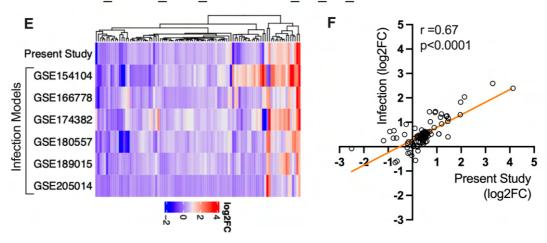


Figure S5 (continued on next page, legend follows).

Figure S5. Analysis of gene expression patterns in the Reactome, Related to Figure 4. (A, B) Interleukin-1 family signaling, (C, D) interferon signaling, (E, F) TNFR2 non-canonical NFκB pathway, (G, H) regulated necrosis, and (I, J) apoptosis pathways. Heatmaps of gene expression patterns (A, C, E, G, and I) and correlation analysis between the log₂ fold-changes in the present study model and mean log₂ fold-changes in the infection models (B, D, F, H, and J) are shown

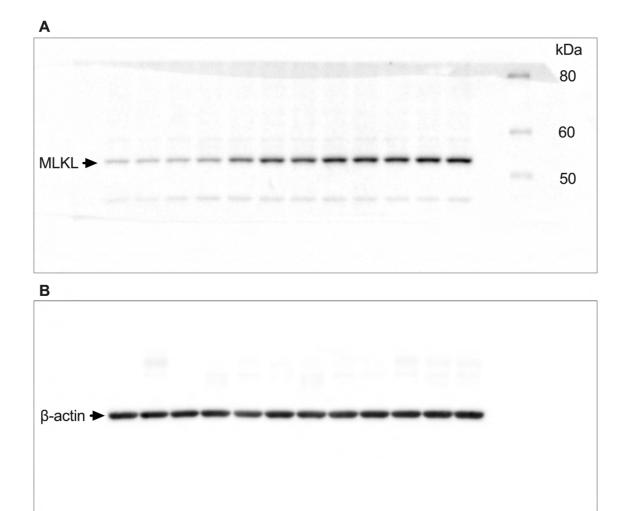
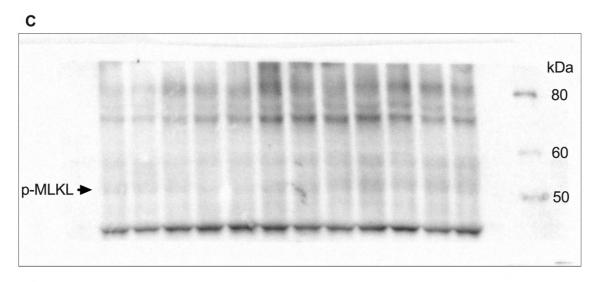



Figure S6 (continued on next page, legend follows).

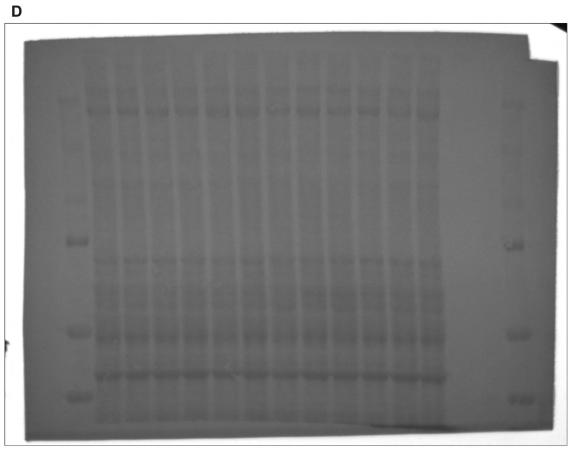
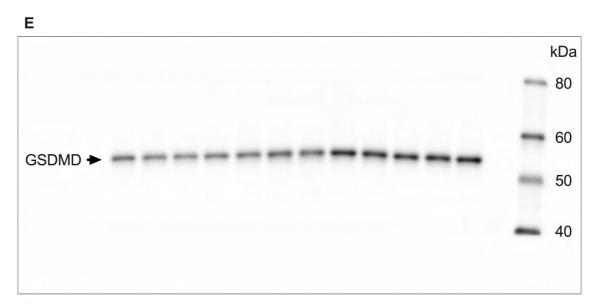



Figure S6 (continued on next page, legend follows).

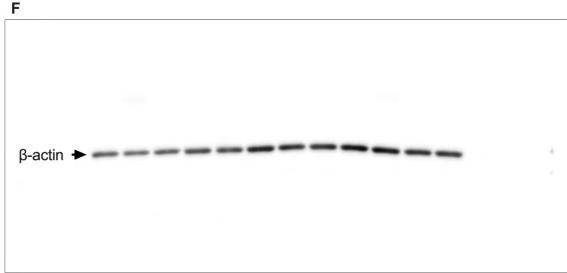


Figure S6 (continued on next page, legend follows).

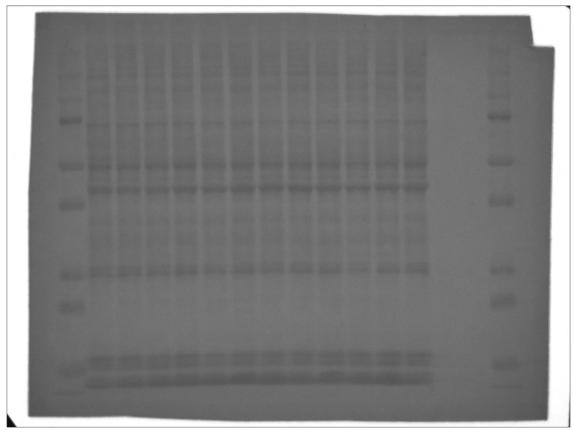
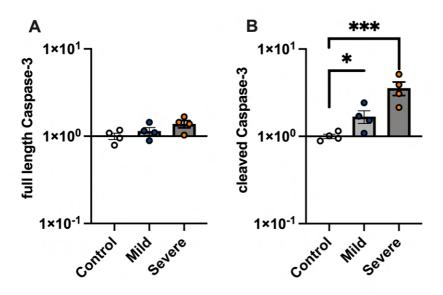



Figure S6. Uncropped images of immunoblots of target proteins and loading controls, Related to Figure 5. Equality of protein loading was confirmed by beta-actin staining (in case of protein amounts <10 μ g) after quenching horseradish peroxidase using hydrogen peroxide or total protein staining (in case of protein amounts >10 μ g). Membranes of (A, B) mixed lineage kinase domain-like (MLKL) and (C, D) phosphorylated MLKL, (E, F) gesdermin D (GSDMD), and (G, H) cleaved GSDMD are shown

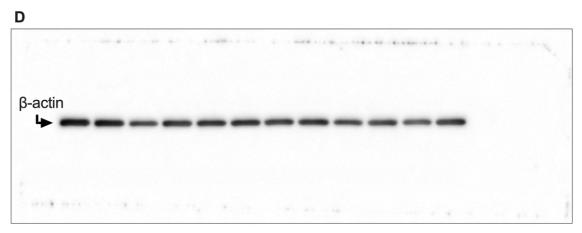
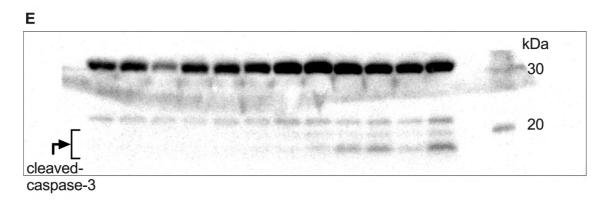



Figure S7 (continued on next page, legend follows).

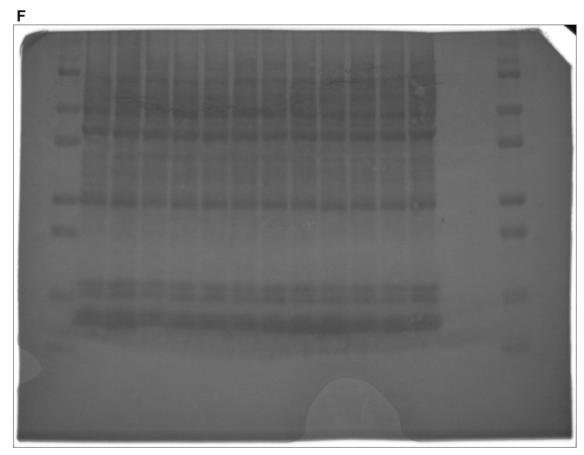


Figure S7. Immunoblot analysis of full length and cleaved caspase-3, Related to Figure 5.

(A, B) Densitometry and (C-F) Uncropped images of full length and cleaved caspase-3 immunoblots of the protein extracted from the lung tissue of a COVID-19 mouse model. Equality of protein loading was confirmed by beta-actin staining (full length caspase-3) after quenching horseradish peroxidase using hydrogen peroxide or total protein staining (cleaved caspase-3).

Age (years)	58 (55-71)		
Males/Females	5/1		
APACHE2 score	14.0(10.0-15.5)		
P/F ratio at admission	154.5 (132.0-215.2)		
Mechanical ventilation use	6 (100.0%)		
In hospital mortality	1 (16.7%)		
Laboratory data on admission			
WBC count (/μL)	8950 (3300-13700)		
Lymphocyte count (/μL)	563 (435-916)		
Platelet count (×10³/ μL)	165.5 (110.3-195.0)		
D-dimer (μg/mL)	1.30(1.14-3.32)		
CRP (mg/dL)	4.69 (3.73-17.12)		
Creatinine (mg/dL)	0.81 (0.57-4.23)		
Total bilirubin (mg/dL)	0.40 (0.28-0.45)		

Table S1. Clinical characteristics in ARDS patients (n=6) with COVID-19 whose BALF samples were collected, Related to Figure 2 and Figure S1. Data are presented as count (%) or median (IQR).

Accession Number	Strain	Age	Sex	Disease Tissue	Control Tissue	
GSE216644 (The Present Study)	C57BL/6J	8 weeks	Male	Instillation of SARS-CoV-2 spike protein and poly(I:C)	Instillation of Phosphate-buffered saline	
GSE154104	K18-hACE2	8 weeks	Male/ Female	SARS-CoV-2- infected lung	Non-infected lung	
GSE166778	BALB/c	6 weeks	Male	Mouse-adapted SARS-CoV-2- infected lung	Non-infected lung	
GSE174382	K18-hACE2	8-10 weeks	Male	SARS-CoV-2- infected lung	Non-infected Lung	
GSE180557	K18-hACE2	8-16 weeks	Male	SARS-CoV-2- infected lung	Non-infected Lung	
GSE189015	CD-1	8-10 weeks	Female	SARS-CoV-2- infected lung	Non-infected Lung	
GSE205014	K18-hACE2	9 weeks	Female	SARS-CoV-2- infected lung	Non-infected Lung	

Table S2. Details of the mouse models of COVID-19 datasets, Related to Figure 4.

	Present Data	GSE 154104	GSE 166778	GSE 174382	GSE 180557	GSE 189015	GSE 205014	
Un DECo								
Up DEGs	3487	674	3145	4825	3219	1712	520	
Dn DEGs	3174	305	2976	4204	2910	1318	174	
Overlapped DEGs								
Present		510	1203	1793	1690	837	423	
Data		(14.0%)	(22.2%)	(27.5%)	(33.7%)	(19.2%)	(11.8%)	
GSE	154		388	475	445	347	259	
154104	(4.6%)		(11.3%)	(9.5%)	(12.9%)	(17.0%)	(27.7%)	
GSE	817	136		1457	929	936	316	
166778	(15.3%)	(4.3%)		(22.4%)	(17.1%)	(23.9%)	(9.4%)	
GSE	1361	146	1374		1433	1240	343	
174382	(22.6%)	(3.3%)	(23.7%)		(21.7%)	(23.4%)	(6.9%)	
GSE	1471	156	746	1370		785	365	
180557	(31.9%)	(5.1%)	(14.5%)	(23.9%)		(18.9%)	(10.8%)	
GSE	372	46	635	782	458		290	
189015	(9.0%)	(2.9%)	(17.4%)	(16.5%)	(12.1%)		(14.9%)	
GSE	96	13	40	55	55	31		
205014	(3.0%)	(2.8%)	(1.3%)	(1.3%)	(1.8%)	(2.1%)		

Table S3. Overlap of differentially expressed genes (DEGs) among mouse COVID-19 models, Related to Figure 4.