
Spatial Dynamics of Malaria Transmission

Supplement 5 - Human Travel and Mobility

Human Mobility

In developing a framework for modeling parasite dispersal by moving humans, we were

motivated by a concept of location and risk based on exposure patterns in sub-Saharan

Africa, where exposure tends to occur indoors at night. The conceptual model for

human travel we use is herein called the domestic modality for travel and mobility. In

the domestic modality, people have a home, the place where they return home to sleep

most nights. Time spent is subdivided into three classes: travel, which is defined by a

night spent away from home; time spent at home; and mobility, which includes locations

around home, not counting home or travel. In malaria, substantial research has focused

on travel and malaria [1–3], particularly in malaria elimination settings [4]. Human

mobility has been of greater interest in the study of dengue transmission dynamics [5,6],

and substantially less attention in malaria has been given to mobility patterns (but

see [7]). Clearly, even areas where transmission mostly occurs at night, some biting

occurs away from home during the day, or at dawn or dusk, when night biting

mosquitoes are active [8, 9].

In developing a mathematical framework to model human travel and mobility based

on the domestic modality, we assume there is some underlying model describing humans’

locations as they move around inside a spatial domain [10,11]. We assume mobility

within the spatial domain is occurring over comparatively fast time scales, as people

move around the area every day for work, school, shopping, church, or various other

activities, perhaps even a short overnight trip to an urban center, or to visit relatives.

We further assume exposure to the bites of infective mosquitoes at a place is roughly

proportional to the amount of time spent there, and since the generation time of

malaria is quite long – the shortest possible serial interval for malaria is approximately

25-30 days – we have formulated a model in terms of the average time spent among a

set of patches [10,12]. For diseases with shorter generation times, it may be useful to

model the dynamics of human travel explicitly.

The domestic modality could apply to other sub-populations whose travel patterns

differ from the defined type. Obviously, there are some people who have multiple homes,

or who spend their nights at work and sleep during the day. In this framework, travel

and mobility by these sub-populations would differ from the rest of the population, so

they could be segmented into a separate stratum. With some care, the same framework

might be adaptable to model transmission in populations with other modalities for

travel and mobility:

• Nomadism is defined for populations that move around without establishing a

home.
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• Migration includes all mobility related to moving a household, permanently

changing a home base.

• Seasonal Labor Migration is defined for populations that have two or more homes

that they use in an alternating pattern at different times of the year.

• Forest Malaria is a modality that applies to populations where there is a

comparatively low risk of malaria at home, but the risk of malaria is high for

travel or mobility away from home. In models of forest malaria, steady state

assumptions are likely to give a misleading picture.

The list is far from exhaustive, and there may be many situations where travel and

mobility shape transmission in some particular ways that are important for both the

epidemiology and control.

Simple Trip

One way to develop a time spent for mobility in the domestic modality is by modifying

the “simple trip model,” which describes how hosts travel temporarily to other locations

before returning home [10,13]. Here, we define the model for time spent by a single

stratum.

Let Hj denote the density of humans in the jth patch who reside in the ith patch,

out of a total of p patches, where they are at risk. We also consider how much time

humans spend in places where they are not at risk, so we add two patches: time spent

traveling, and time spent in places where there is no risk. Time is spent either at home

or away in a sequence of trips:

dHi

dt
= −

p+2∑
j=1

φjHi +

p+2∑
j=1

τjHj

dHj

dt
= −τjHj + φiHi

(1)

The constant φj represents the rate at which hosts travel to j, the constant τj is the

rate at which hosts visiting j return home, and we assume φi = τi = 0.

When the movement equations reach a steady state and the derivatives on the left

hand side of Eq. 1 equal zero, the population Hi is distributed across the p

metapopulation sites, travel, and not at risk, as follows:

θ∗i =
1

1 +
∑p+2
j=1

φj

τj

θ∗j =
φj
τj

1

1 +
∑p+2
j=1

φj

τj

These θ describe the fraction of time spent in each patch, and
∑p+2
j=1 = 1

Let d denote the time of day, d = t− floor(d). We note that this model would not

output time spent by time of day unless the parameters depended on time of day, φj(d)

and τj(d). In the resulting model, we would need to numerically solve Eqs. 1 to get θ(d).
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Let Θ denote the time spent matrix. A time spent matrix is constructed by

considering the travel patterns of each population stratum. Each column in Θ

represents the first p elements of a time spent vector, θj where j ∈ 1, 2, . . . , p. By

design, the time spent matrix does not include time spent during travel or not at risk:

Θ =



i = 1 i = 2 i = 3 . . . i = n

Θ1,1

Θ2,1

Θ3,1

...

Θp,1

Θ1,2

Θ2,2

Θ3,2

...

Θp,2

Θ1,3

Θ2,3

Θ3,3

...

Θp,3

. . .

. . .

. . .

. . .

. . .

Θ1,n

Θ2,n

Θ3,n

...

Θp,n


(2)

The rows should sum up to less than one, if humans travel at all, or if they spend any

time in locations where they are not at risk, such as automobiles, or office buildings.

These time-spent matrices are designed for short-term projections, so population

changes due to human births, deaths, and migration are either assumed to be small, or

they are dealt with through stratification. The underlying assumption is that over short

time scales, daily mobility patterns play a dominant role in moving parasites around

within the spatial domain. Malaria importation by residents occurs during travel, or

time spent outside of the spatial domain (Supplement 4). The concept of residency is

flexible, but a residence is where a person would be counted in a census. Those whose

are only present for a short time are “visitors”, and we use the concept of a visitor

population to model a secondary malaria immigration route (Supplement 4).

Time Spent vs. Distance While the “simple trip” model helps to clarify how time

spent could be computed, an alternative way of generating parameters for time-spent

matrices is the following:

• Let pi denote the fraction of time spent in the home patch, i.

• Let pt denote the fraction of time spent traveling or not at risk.

• Let θ denote time spent, where θi = pi and θj 6=i be a function of distance and

perhaps some features of the destination patch j, and
∑
j 6=i θj = 1− pi − pt.

The functions describing time spent by distance and features of a destination can be

informed by data.

Time at Risk Models of blood feeding must thus merge time spent, Θ(t), as defined

above, and mosquito activity rates. From this synthesis, we define three related

concepts: a matrix describing time at risk (TaR), a vector describing average daily

mosquito blood feeding rates f in each patch, and a vector describing the proportion of

blood meals that are taken on humans in each patch, Q.

Let ξ(d) describe relative daily blood feeding activity for a malaria vector species

over a day.
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In some cases, we can consider how ξ varies over time, and we want functions such

that: ∫ 1

0

ξ(t)dt ≈ 1 (3)

If we measured mosquito activity patterns, then for some large integer value of T � 1,∫ T

0

ξ(t)dt ≈ T (4)

and

ξ(d) =
1

T

∑
T

ξ(d+ T ) (5)

Note that this is defined in a similar way to the concept of average time spent over a day,

Θ(t). We note that ξ(t) describes blood feeding activity rates and not the distribution of

blood meals, which should be thought of as the product of activity and host availability.

A time at risk (TaR) matrix, Ψ, is constructed from a time spent matrix. It is like Θ

in every way, except that it weights time spent throughout the day by mosquito blood

feeding activity rates. Notably, this implies that models with more than one mosquito

species would weight time spent differently, so that while there is one time spent matrix,

Θ, there could be as many TaR matrices as vector species, with activity patterns

defined by ξi(d). The resulting species-specific TaR matrices would be:

Ψi =

∫ 1

0

diag (ξi(d)) ·Θ(d)dt (6)

Malaria Importation

The Travel FoI Here, we define malaria risk during activities related to travel, where

at least one night is spent away from home. Travel malaria is often defined by a

difference in prevalence of malaria associated with recent travel.

Data on travel is often available form Malaria Indicator Surveys and from

Demographic Health Surveys, reported as recent travel, or travel within the last s days.

Let T denote the fraction of a population that is traveling, α the frequency of travel,

and 1/λ the length of a trip:

dT

dt
= α(1− T )− λT (7)

So that the fraction of the population that is traveling is:

T̂ =
α

α+ λ
(8)

Let σ = s−1. The fraction that has recently traveled is modeled as:

dS

dt
= λT − σS (9)

It follows that

S = λsT =
sα(λ− α)

α+ λ
(10)
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If we let ĥ denote the average FoI while traveling. We define the travel FoI as:

δ = ĥT̂ (11)

Visitors The concept of a “visitor” population is a model choice. A “visitor”

population is present with parameters unaffected by local transmission dynamics. With

immigrant labor, it might make more sense to create a resident population with

frequent travel to the mainland.

The visitor population is modeled as an available population, a weighted, ambient

population at risk in each patch, Wδ. In some cases, it may be useful to explicitly model

an ambient visitor population Aδ before assigning it a weight, so that it can be

compared directly with Ar or An.
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