
Spatial Dynamics of Malaria Transmission

Supplement 4 - Vector Dynamics

Vector Dynamics

In the following, we:

• Present a dispersal matrix, K, written out in long form.

• Solve for the steady states of the mosquito models presented in the main

manuscript.

• Discuss extending a model to have multiple species, including a next-generation

matrix for multi-vector models.

• Briefly discuss the problem of modeling immigrating mosquitoes.

The Dispersal Matrix

We assume mosquitoes move without retaining any memory of their position on a

landscape: the resulting model is classified as Eulerian [1]. This framework does not

assume, a priori, that the patches are gridded or that all mosquitoes move to a nearest

neighbor, but gridded population models with nearest neighbor diffusion are a special

case of this class of models. The underlying landscapes are allowed to be as

heterogeneous with respect to adult movement as needed.

Let K(t) describe the fraction of mosquitoes emigrating from each patch that land

on another patch: Ki,j(t) ∈ K(t) is the fraction of mosquitoes leaving patch j that end

up in patch i. Each column in the matrix thus accounts for mosquitoes leaving from j:

K =



j = 1 j = 2 j = 3 . . . j = p
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0


(1)

The diagonal elements of K are all zeros – K is defined by the act of leaving. Just as

emigration is related to resource availability, it may be true that the elements of K
could be related to resource availability in the destination patch i. We also explicitly

consider mortality and population loss from migration to areas outside the spatial

domain associated with emigration from j. Let µ denote a vector describing the fraction
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of mosquitoes that die as a result of emigrating from a patch. A distance and

resource-based approaches to mosquito movement is thus:

Ki,j =
(1− µj)FK(Di,j , Bj , Qj , Sj)∑

j FK(Di,j , Bj , Qj , Sj)
.

After computing σ (Eq. 19) and K, mosquito demography, Ω can be computed with

Eq. 20.

Steady States

We can solve for steady state relationships within each one of the components. These

can be put together to arrive at the steady state for the entire system.

Adult Mosquitoes We consider mosquito population dynamics at the steady state

as a forced system with two inputs, Λ, and κ.

At the steady state, adult mosquito density is:

M = Ω−1 · Λ. (2)

Because the density of gravid mosquitoes does not depend on infection status in this

model, it can be solved at equilibrium given M . The diagonal matrices arise because

νG = diag(ν) ·G, which is needed in order to factor G out of the equation and solve.

G = (diag(ν) + Ω + diag(f))
−1 · diag(f) ·M (3)

We can formulate a model for the fraction parous (bloodfed), V , where

dV

dt
= fq(M − V )− Ω · V (4)

At the steady state, the fraction parous is:

V = (diag(fq) + Ω)
−1 · diag(fq) · Ω−1 · Λ. (5)

Similarly, the density of infected mosquitoes is:

Y = (diag(fqκ) + Ω)
−1 · diag(fqκ) · Ω−1 · Λ. (6)

Under static conditions, Υτ = e−Ωτ , and at the steady state,

fqκ(M − Y ) = fτqτκτ (Mτ − Yτ ) = Ω · Y,

so we can make a substitution into Eq. 25, and the density of infective mosquitoes at

the steady state is given by:

e−Ωτ · Ω · Y = Ω · Z. (7)

so

Z = Ω−1 · e−Ωτ · Ω · Y. (8)
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or

Z = Ω−1 · e−Ωτ · Ω · (diag(fqκ) + Ω)
−1 · diag(fqκ) · Ω−1 · Λ. (9)

Note that in the limit as κ approaches zero, that

V = limκ→0
fqZ
W

= limκ→0 fqΩ
−1 · e−Ωτ · Ω · (diag (fqκ) + Ω)

−1 · fqκMW
= fqΩ−1 · e−Ωτ · diag

(
fqM
W

)
.

(10)

Estimation In practical analysis of surveillance data from malaria or other

mosquito-borne pathogens, it is common to get incidence or prevalence data from the

human population, from which an estimate of Z, the density of infectious (sporozoite

positive) mosquitoes can be obtained.

Noting that (e−Ωτ )−1 = eΩτ , we can solve for Y:

Y = Ω−1 · eΩτ · Ω · Z. (11)

and

M = diag

(
1

fqκ

)
· diag (fqκ+ Ω) · Y (12)

and

Λ = Ω ·M (13)

Aquatic Mosquitoes The simplest nonlinear model of aquatic development

including density-dependent mortality was given as:

L̇ = η − (ψ + φ+ θL)L (14)

Given G, the rate that eggs are deposited into habitats, η is known. Additionally, we

assume Λ is known so that we can solve for L:

L = Λ/ψ (15)

From this we can solve for the density-dependent term:

θ = (η − ψL− φL)/L2 (16)

Multiple Vector Species

To formulate models with multiple mosquitoes-species, we let s denote the number of

vector species. We use different relative daily activity rates (ξ), biting weights (wf ), and

weighted availability of alternative hosts (B and ζ) to modify the same TiSp matrix, Θ.

Each species would also have its own functional response, so that the TaR matrix (Ψ),

host availability (W ), biting distribution matrix (β), human biting habit (q), and

feeding rates (f) would also be species-specific.

These multi-species models also draw attention to differences among vector species in

their ability to host the parasite. The notion of vectorial capacity makes the assumption

that a host is perfectly infectious so that the formulas focus on phenomena related to
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the vectors, but here we define vector competence as differences in the fraction of

mosquitoes that would become infected and remain infected through sporogony,

assuming the mosquitoes survived. We let cj denote this fraction, for the jth species.

Parasite next-generation matrices for models in which there are two or more vector

species are slightly more complex. Since the TaR matrix could be different for the same

humans, depending on mosquito activity patterns, we let Ψi be the TaR matrix for the

ith vector and we let Di be the associated HTC matrix (accounting for differences in

mosquito preferences and time at risk), and we let Vi denote the vectorial capacity

matrix for the ith species.

RZi = bβi · fiqiΩ−1
i . (17)

How many infective mosquitoes would arise from each human infection? The answer is s

matrices, of dimension p× n, describing transmission from a human in each stratum to

mosquitoes of each species in each patch:

RXj
= cje

−Ωjτ · fjqjMj · βTj · diag (DH) . (18)

The types next generation with multiple vector species is an n+ ps× n+ ps block

matrix:

N =


0 RX1

RX2
. . . RXs

RZ1 0 0 . . . 0

RZ2
0 0 . . . 0

...
...

...
. . .

...

RZs
0 0 . . . 0

 (19)

When we square this, we get a matrix in block form:

N 2 =

[
R 0

0 Z

]
(20)

Transmission from humans to humans through each vector species, Ri, where R is a

n× n block matrix

R =
∑
i

bβi · Vi · βTi · diag(DH) (21)

and Z is a ps× ps matrix with the block form:

Z =


Z1,1 Z1,2 . . . Z1,s

Z2,1 Z2,2 . . . Z2,s

...
...

. . .
...

Zs,1 Zs,2 . . . Zs,s

 (22)

where each block matrix

Zi,j = RXj
·RZi

is a p× p matrix that describes parasite transmission from the ith mosquito species

populations in the patches through human strata back to the jth mosquito species in

the patches.
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Immigrating Mosquitoes

We can add malaria importation in mosquitoes by simply adding a term:

dM

dt
= Λ− Ω ·M + δM (23)

Importation of infected mosquitoes is highly problematic because of the time delay for

the EIP, so we ignore immigrating infected mosquitoes, and count them only if they

survive to become infective. Importation of infective mosquitoes is:

dZ

dt
= Υτ · diag(fτqτκτ ) · (Mτ − Yτ )− Ω · Z + δZ (24)
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