
Analysis of functional connectivity using machine learning and deep learning in
multimodal data from patients with schizophrenia

Caroline L. Alves∗

University of São Paulo (USP),
Institute of Mathematical and Computer Sciences (ICMC),

São Paulo, Brazil and
BioMEMS lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany

Thaise G. L. de O. Toutain†

Federal University of Bahia (UFBA),
Health Sciences Institute(HSI), Bahia, Brazil

Joel Augusto Moura Porto
University of São Paulo (USP),

Institute of Physics of São Carlos (IFSC), São Paulo, Brazil

Patricia de Carvalho Aguiar
Hospital Israelita Albert Einstein, São Paulo, Brazil and

Federal University of São Paulo,
Department of Neurology and Neurosurgery, São Paulo, Brazil

Aruane M. Pineda and Francisco A. Rodrigues
University of São Paulo (USP),

Institute of Mathematical and Computer Sciences (ICMC), São Paulo, Brazil

Eduardo Pondé de Sena
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Schizophrenia is a severe mental disorder associated with persistent or recurrent psychosis, hallu-
cinations, delusions, and thought disorders that affect approximately 26 million people worldwide,
according to the World Health Organization (WHO). Several studies encompass machine learning
and deep learning algorithms to automate the diagnosis of this mental disorder. Others study
schizophrenia brain networks to get new insights into the dynamics of information processing in
patients suffering from the condition. In this paper, we offer a rigorous approach with machine
learning and deep learning techniques for evaluating connectivity matrices and measures of complex
networks to establish an automated diagnosis and comprehend the topology and dynamics of brain
networks in schizophrenia patients. For this purpose, we employed an fMRI and EEG dataset in a
multimodal fashion. In addition, we combined EEG measures, i.e., Hjorth mobility and complexity,
to complex network measurements to be analyzed in our model for the first time in the literature.
When comparing the schizophrenia group to the control group, we found a high positive correlation
between the left superior parietal lobe and the left motor cortex and a positive correlation between
the left dorsal posterior cingulate cortex and the left primary motor. In terms of complex network
measures, the diameter, which corresponds to the longest shortest path length in a network, may
be regarded as a biomarker because it is the most important measure in a multimodal fashion.
Furthermore, the schizophrenia brain networks exhibit less segregation and lower distribution of
information. As a final result, EEG measures outperformed complex networks in capturing the
brain alterations associated with schizophrenia. As a result, our model achieved an AUC of 100%,
an accuracy of 98% for the fMRI, an AUC of 95 %, and an accuracy of 95% for the EEG data set.
These are excellent classification results. Furthermore, we investigated the impact of specific brain
connections and network measures for these results, which helped us better describe changes in the
diseased brain.
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I. INTRODUCTION

Schizophrenia is a mental disorder that has plagued in-
dividuals for millennia and affects around 26 million peo-
ple worldwide, according to the World Health Organiza-
tion (WHO) [1]. Archaeologists discovered ancient Egyp-
tian inscriptions outlining common signs of this mental
disorder [2]. However, it was not until the nineteenth cen-
tury that it was classified as dementia praecox by psychi-
atrist Emil Kraepelin, who claimed that people with this
condition suffered from constant and permanent men-
tal degeneration beginning in childhood. In 1908, the
Swiss physician Eugen Bleuler dubbed this psychiatric
condition schizophrenia [3] (SCZ ), which means split
mind in Greek because one of its symptoms was a loss of
mind and awareness unity [4]. Other symptoms of SCZ
encompass: persistent or recurring psychosis, hallucina-
tions (mainly auditory voices), delusions, and disordered
thinking [5, 6].

Despite centuries of research, it is still unknown what
biologically causes schizophrenia [7]. The authors in
[8] propose a functional and structural disconnection of
brain networks, resulting in a dysfunctional integration
of them, reflecting on numerous cognitive and behav-
ioral symptoms of schizophrenia [9]. This large-scale dis-
connection is reflected in the structural and functional
topology of patients with the disorder; thus, network
measures have been applied to them [4]. In [10], and
[11], altered small world properties on these networks are
suggested using functional magnetic resonance imaging
(fMRI) data, and in [12], through electroencephalogram
(EEG) data, a decrease in these properties is reported.
In [13], again, using electroencephalogram data and net-
work measurements, such as cluster coefficient and the
mean of the shortest paths, it was found in the networks
of patients with schizophrenia a decrease in clusters and
shorter paths concerning networks of healthy patients.
Although the SCZ networks still present a small world
topology, there is subtle randomization resulting in a dis-
turbance in the balance of brain integration and segrega-
tion [4].

In the investigation [14], SCZ patients, compared
with control patients, had lower segregation and func-
tional connectivity in brain areas such as the bilat-
eral fusiform gyrus, bilateral medial temporal gyrus, left
supramarginal gyrus, right amygdala, and left tempo-
ral regions. In addition, [15] brought attention to the
concurrent increases and decreases in Posterior Cingu-
late Cortex (PCC) connectivity seen in SCZ patients, but
mostly reduced connectivity between PCC and brain re-
gions linked to the Default Mode Network (DMN). The
authors also discovered significant discriminative capac-
ity using machine learning (ML) for categorizing persons
with the first episode of schizophrenia compared to con-
trol participants, with an average accuracy of 72.28% in
test sample data. Furthermore, [16] discovered hypocon-

nectivity in the DMNs in patients with SCZ in the tha-
lamus region. Another investigation with SCZ patients
[17] showed changes in the left angular gyrus brain re-
gion. The gray matter volume of this region was 14.8%
smaller than the control group in the same research, indi-
cating that this region may represent a neuroanatomical
basis for the “expression of schizophrenia”. The reversal
asymmetry in the inferior parietal lobe, angular gyrus,
discovered by [18], indicated a significance for this area
in cognitive deficiencies, language issues, and thinking
disorders in SCZ. The authors of [19] also emphasize the
impairment of motor cognition in SCZ patients.

These aforementioned studies show that the structure
of the brains of individuals with SCZ differs from those
of normal controls. Hence, it is possible to diagnose SCZ
based on data collected by the EEG or experiments.
Furthermore, EEG is a low-cost, widely available tech-
nology with high temporal resolution. Therefore, EEG
data have been used to study brain organization [20, 21].
fMRI, in contrast, has a poor temporal resolution but a
high spatial resolution, which makes it ideal for studying
spatial brain dynamics [22, 23]. fMRI scans produce a
set of three-dimensional images recorded over time and
measure a signal (called Blood Oxygenation Level De-
pendent – BOLD - signal [24]). The temporal evolution
of the BOLD series is called the hemodynamic response
function and is determined by the pixel intensity in fMRI
images [25, 26]. Each cube of an fMRI image, called
voxel, which anatomically maps a position in the brain,
has a BOLD time series [27].

Previous studies have evaluated the effectiveness of ML
in diagnosing SCZ with supervised machine learning al-
gorithms that distinguish between two classes, namely
SCZ and control group (see Table I). In contrast to tra-
ditional statistical methods, the ML approach does not
rely on prior assumptions (such as adequate distribution,
independence of observations, absence of multicollinear-
ity, and interaction problems). It is well suited to au-
tomatically analyze and capture complex nonlinear rela-
tionships in data. In addition, new methodologies, such
as SHapley Additive Explanations (SHAP) values, have
evolved to aid in interpreting machine learning outcomes.
Any machine learning algorithm may use this statistic to
detect and prioritize features [28–30].

This study aims to determine whether it is feasible to
automatically detect brain changes caused by SCZ while
providing a biological explanation. For that, we consider
the BOLD series to develop the classification method for
SCZ patients, and we also test in EEG data. After the
preprocessing of these two data (A), we consider as an in-
put for the machine learning the following data abstrac-
tion levels: (B) the correlation between the EEG elec-
trodes and fMRI regions of interest and (C) complex net-
work measures extracted from (B). In contrast to articles
in the literature that use only one of these levels of ab-
straction, this study uses all two levels in both data sets
in a multimodal fashion for the first time in literature. In
addition, we define which of these abstraction levels is the
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TABLE I: The table comprises machine learning research that used the same database as the current study
(COBRE data described in more detail in subsection IIA).

Authors Data
Data
Type

Correlation
metrics

ML
methods

ROIs AUC Acc. Recall Precision

[31]
COBRE
data

fMRI
specific
method

SVM 102 - 0.99 - -

[32]
COBRE
data

fMRI
Pearson

correlation

Deep Learning
combined
with SVM

116 - 0.92 - -

[33]
COBRE
data

fMRI

correlation-
based

distance
metric

SVM 90 - 0.65 - -

[34]
COBRE
data

fMRI
Pearson

correlation
SVM 27 - 0.80 - -

[35]
COBRE
data

fMRI
Pearson

correlation
SVM 160 - 0.69 0.92 -

most appropriate for capturing SCZ brain changes. The
SHAP value technique has also been found to be more
successful than the previous research [21, 36, 37] in find-
ing the best brain areas, connections between brain re-
gions, and measurements of complex networks that may
be utilized to evaluate the effects of the SCZ on the brain.
As a final result of this research, for the first time in lit-
erature, we combine EEG measures extracted from time
series and complex network measures as input for the
ML method to evaluate which measure is more critical
to distinguish SCZ from control patients.

II. MATERIALS AND METHODS

In the current study, two schizophrenia datasets were
used to test our general workflow: one fMRI, described
in the subsection IIA, and another EEG, described in
the subsection II B, with different pre-processing for each
data. First, the best pairwise metrics for capturing
schizophrenia-induced changes in the brain are defined
based on the fMRI data workflow. This metric is then
validated using EEG data.

Figure 1 depicts the fMRI complete methodology work-
flow used and organized into three parts according to
their aim, i.e., preprocessing and using the best select-
ing pairwise metrics (described in Figure 1-(A) and in
subsection IIA 1), the best brain connection (described
in Figure 1-(B) and in subsection IIA 2), and the best
complex network measures for differentiating schizophre-
nia from control group (described in Figure 1-(C) and in
subsection IIA 3.)

Further, Figure 2 fully represents the EEG entire
method workflow used and organized into three parts ac-
cordingly to their aim. First, following preprocessing,
the most distinguishing metrics discovered for the fMRI
data were used to create a connection matrix (described
in Figure 2-(A) and subsection II B 1), the best brain
connection (described in Figure 2-(B) and in subsection

II B 2), and the best complex network measures for differ-
entiating schizophrenia from the control group (described
in Figure 2-(C) and subsection II B 3.)
The python code with the methodology used in

this work is available at: https://github.com/
Carol180619/Paper-multimodal-schizophrenia.git.

A. fMRI data

1. fMRI data preprocessing and selecting best pairwise
metrics

The fMRI data utilized in this study were from The
Centers of Biomedical Research Excellence (COBRE)
and included raw anatomical and fMRI data from 72
schizophrenia patients and 74 healthy controls (ages 18
to 65 in each group) with 6 minutes resting-state BOLD
time series. As exclusion criteria, all the screened pa-
tients were excluded if they had a history of mental re-
tardation, a neurological condition, severe head trauma
with more than 5 minutes of loss of consciousness, or a
history of drug dependency or misuse within the previous
12 months. More details can be seen in [38]. This data
was accessed using the Nilearn Python library, in which
the images were already preprocessed using the NIAK
resting-state pipeline [39].
Brain regions of interest (ROIs) are considered rather

than the whole BOLD time series collected from each
voxel of the brain imaging. Because a brain atlas com-
prising these ROIs is employed, only the BOLD time
series voxels of these ROIs were utilized. Bootstrap
Analysis of Stable Clusters (BASC) was chosen from
among the several preconfigured atlases since it was the
map with the most outstanding performance according to
[40, 41]. It was proposed in [42] and obtained via group
brain parcellation using the BASC technique, a k-means
clustering-based approach that finds brain networks with
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FIG. 1: The methodology for diagnosing schizophrenia using fMRI schizophrenia data is also in subsection IIA. (A)
fMRI preprocessing and selecting best pairwise metrics methodology described in subsection IIA 1; (B)

Connectivity matrix methodology reported in subsection IIA 2; (C) Complex network measure methodology
described in subsection IIA 3.

coherent activity in resting-state fMRI [43]. BASC map
with a cluster number of 122 ROIs is used here (see Fig-
ure 1-(A)). Further, manual use of Yale BioImage Suite
Package web application[44] labeled the coordinates of
each ROIs for the identification of their names.

Once the time series for each of the 122 regions had
been extracted, they were correlated according to Pear-
son Correlation (PC) [45], Spearman Correlation (SC)
[46], Granger Causality (GC), [47], Biweight Midcorre-
lation (BM) [48], Sparce Canonical Correlation analysis
(SCC)[49], Graphical Lasso method (GL) [50], Ledoit-
Wolf shrinkage (LW) [51], Mutual Information (MI) [52],
and Transfer Entropy (TE) [53] [54].

Each matrix was reduced to the size of the vectors
used as input to the ML algorithm. The support vector
machine (SVM) algorithm [55] was used as a classifier
to select the most effective method to choose the best
methods to construct the correlation and connectivity
matrices. We use this method because it has been con-
sidered in studies of schizophrenia (see section I) and has
a low computational cost, it also checked whether the use
of metrics was better than the direct use of time series –
the one of better performance would be chosen.

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 14, 2022. ; https://doi.org/10.1101/2022.11.06.22282001doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.06.22282001


5
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FIG. 2: The methodology used here for the diagnosis of schizophrenia using EEG schizophrenia data in subsection
II B. (A) EEG preprocessing and selecting best pairwise metrics methodology described in subsection II B 1;

(B) Connectivity matrix methodology reported in subsection II B 2; (C) Complex network measure
methodology described in subsection II B 3.

2. Most important brain connection

After the best brain connectivity metric had been de-
termined, the following ML classifiers were used: Ran-
dom Forest (RF) [56], Naive Bayes (NB) [57], Multilayer
Perceptron (MLP) [58], tuned Convolution Neural Net-
work (called here CNNtuned and CNNuntuned) imple-
mented in [59], and Long Short-TermMemory neural net-
works (LSTM) [60]. In addition to the CNN deep learn-
ing used in prior work [37], the LSTM network is a form
of recurrent neural network commonly used to identify
patterns in time series. Subsequently, the SHAP value
method was used for the biological interpretation, as it

explains the predictive power of each attribute. The same
sampling data set was used in all ML algorithms and split
into training (train) and test sets, with 25% data com-
prising the test set. was employed, with k = 10 which is a
common value for this method [61–65]). This procedure
is applied for model selection and hyper-parameter opti-
mization. It was also considered the grid search method
used for all ML algorithms except the untuned CNN and
LSMT model, as done in [66–70]. The hyper-parameter
optimization values for each classifier model are provided
in Appendix B. The standard performance metric accu-
racy [71–75] was employed for evaluation. Due to the
two-class (negative and positive) classification problem,
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other common metrics such as precision and recall were
considered [76–79]. Precision (also called positive pre-
dictive value) corresponds to the hit rate in the negative
class (here corresponding to the control group), whereas
recall (also called sensitivity) measures how well a classi-
fier can predict positive examples (hit rate in the positive
class), here related to SCZ patients. Regarding the visu-
alization of the two latter measures, the Receiver Operat-
ing Characteristic (ROC) curve is a common method that
displays the relation between the rate of true and false
positives. The area below the curve, called Area Under
ROC Curve (AUC), has been widely used in classification
problems [69, 71, 80, 81]. The AUC value ranges from
0 to 1- 1 corresponds to a classification result free of er-
rors, and 0.5 indicates the classifier cannot distinguish
the classes, as in a random choice. The micro average of
the ROC curve, which computes the AUC metric inde-
pendently for each class (it calculates AUC for healthy
individuals, class zero, and separately calculates it for
unhealthy ones, class one), was also considered. The av-
erage is computed considering the classes equally. The
macro average was also employed in our evaluation - it
does not consider the classes equally but aggregates their
contributions separately and then calculates the average.

3. Best complex network measures

A complex network (or a graph) was generated for
each connectivity matrix for the extraction of different
measures. Towards inputting data into the ML algo-
rithm, the complex network measures were stored in
a matrix of attributes, where each column represents
a complex network measure (feature), and each row
denotes a subject. 2D matrices were generated for all
subjects, as in [21].

To describe the network structure of the brain, the fol-
lowing complex network measures were calculated: assor-
tativity coefficient [82, 83], average shortest path length
(APL) [84], betweenness centrality (BC) [85], closeness
centrality (CC) [86], eigenvector centrality (EC) [87], di-
ameter [88], hub score [89], average degree of nearest
neighbors [90] (Knn), mean degree [91], second moment
of the degree distribution (SMD) [92], entropy of the de-
gree distribution (ED) [93], transitivity [94, 95], com-
plexity, k-core [96, 97], eccentricity [98], density [99], and
efficiency [100].

Newly developed metrics (described in detail in [21])
reflecting the number of communities in a complex net-
work were also applied. Community detection algorithms
were also used in our study [101–103]. Since the com-
munity detection measures must be transformed into a
single scalar value to be included in the matrix, commu-
nity detection algorithms were applied to find the largest
community. The average path length within the commu-
nity was then calculated and received a single value as a
result. The community detection algorithms used were

the fastgreedy (FC) [104], Infomap (IC) [105], leading
eigenvector (LC) [106], label propagation (LPC) [107],
edge betweenness (EBC) [108], spinglass (SPC) [109],
and multilevel community identification (MC) [110]. The
abbreviations were extended with the letter ”A” (for av-
erage path length) to indicate the approach (AFC, AIC,
ALC, ALPC, AEBC, ASPC, and AMC).
These network measures were used to characterize the

brain’s network structure. Thus, each observation rep-
resenting the network properties of one patent is repre-
sented by a vector containing these metrics. The results
are provided in subsection IIIA 2.

B. EEG data

1. Preprocessing and selecting best pairwise metrics

The EEG dataset used for diagnosis of SCZ, also used
in [37], contains a 16-channel EEG time series recorded at
a sampling frequency of 128 Hz over one minute, includ-
ing F3, F4, F7, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, and O2. The study included 39 healthy young peo-
ple (control group; aged 11 to 14 years) and 45 teenagers
(aged 11 to 14 years) with schizophrenia symptoms in a
resting state.
From these time series are extracted EEG measure-

ments which are widely used in the literature, as there
are spectral entropy [111, 112], Hjorth mobility and com-
plexity [113–115] and Lempel-Ziv complexity [116, 117].
Further, connectivity matrices were generated with the

most successful method evaluated for fMRI data; see sec-
tion IIA.

2. Most important brain connection

Based on these connectivity matrices, the best ML
method is used. With the SHAP value method, most
distinguishing brain regions are found.

3. Complex network measures

The same measures of complex networks used in the
previous subsection were extracted. Moreover, for the
first time in the literature, EEG measures extracted from
time series and complex network measures have been put
into the ML algorithm to obtain which metric best dif-
ferentiates EEG data from schizophrenia patients.

III. RESULTS

In general, ML algorithms were applied for two differ-
ent levels of data abstraction, namely (B) the connec-
tivity matrix and (C) the matrix of attributes, whose
elements are complex network measures calculated from
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(B). This approach was used for EEG and fMRI data.
However, for EEG, not only the complex network but
also EEG measures extracted from time series.

We verified that all approaches automatically detected
changes in the brain of SCZ patients. The fMRI connec-
tivity matrix obtained the highest classification perfor-
mance with a 99% mean AUC (see Table II and subsec-
tions IIIA and III B.

A. fMRI results

1. Selecting best pairwise metrics

Appendix A contains the results for each connectivity
matrix with different types of pairwise statistical metrics.
SVM was used to detect the best one for capturing the
brain changes due to SCZ in fMRI data. TE achieved
the best performance. It is worth mentioning that the
connectivity matrices outperformed the raw BOLD time
series.

Then, the best connectivity matrix was tested with
the other ML algorithms to determine the one that best-
differentiated SCZ patients from control ones. According
to Table III, the best classifiers are the CNNtuned and
RF. CNN performance for the test set was equal to 1.00
for the mean AUC and 0.98 for precision, recall, and ac-
curacy. RF performance for the test set was equal to
0.97 for the mean AUC, precision, F1, recall, and ac-
curacy. Figure 4 displays the confusion matrix (4-(a)),
the learning curve (Figure 4-(b)), and the ROC curve (4-
(c)), respectively, using TE and CNNtuned. The learning
curve contains the loss error in each epoch. The loss error
is computed on training and validation, and its interpre-
tation is how well the model performs for these two sets.
It is the total error committed for each example in these
train, and test samples [118].

In contrast, Figure 3 displays the confusion matrix (3-
(a)), the learning curve (Figure 3-(b)), and the ROC
curve (3-(c)), respectively, using TE and RF. The re-
sults suggest that the complete database is not required
to obtain the best validation accuracy (see learning curve
in Figure 3- (b)). Regarding the classification model, TP
(related to class 1) was higher than TN, showing that
it better detects SCZ patients (see confusion matrix in
Figure 3- (a)). The learning curve for ML assesses the
model’s predictability by altering the size of the training
set [30]. Since RF has a lower computational cost, it was
chosen for the following steps.

SHAP values were calculated to quantify the impor-
tance of brain connections for the RF (see Figure 5 for the
results). The connection between the Left-Dorsal Pos-
terior Cingulate Cortex and Left-Primary motor cortex
(Left-DorsalPCC – Left PrimMotor1) was the most im-
portant, according to Figure 5. Low correlation values
(blue dots) for this connection (Left-DorsalPCC – Left
PrimMotor1) were essential for the detection of the con-
trol group, and high values of this correlation (red dots)

were important for the detection of SCZ. The second
most crucial connection was detected between the Left-
Premotor Cortex and Left-angular gyrus (Left-premotor
suppmor5 – Left-AngGyrus1). Low correlation values for
this connection (blue dots) were associated with SCZ pa-
tients, and high correlation values (red dots) were essen-
tial for detecting control ones. The corresponding brain
regions are depicted in Figure 5.
Since RF was the algorithm that provided the best

performance, it was used in the following subsections.

2. Complex network

The performance of the test sample considering the
complex network yielded a mean AUC of 0.89, 0.90 for
precision, 0.89 for F1 score, 0.89 for recall, and 0.89 for
accuracy. Confusion matrix Figure 6-(a), learning curve
Figure 6-(b), and ROC curve Figure 6-(c). Furthermore,
according to Figure 6, the whole dataset was necessary.
The results suggested that almost the complete database
is required to obtain the best validation accuracy (see
learning curve in Figure 6- (b)).
According to the SHAP values in Figure 7, the most

crucial measure for the model was the Diameter, followed
by the CC. Furthermore, except for CC, it is difficult to
determine whether low or high values of these other mea-
sures are related to the presence or absence of schizophre-
nia from the Figure 7. However, in contrast to the other
measures, it is evident that low CC values are associated
with the presence of schizophrenia.

B. EEG dataset

1. Connectivity matrix

As previously stated, the identical approach used in
the preceding section was evaluated on the EEG data.
Furthermore, the TE measure was utilized to build the
connectivity matrices of the EEG data, and RF was used
to differentiate SCZ patients from the control group. Its
performance for the test set was equal to 0.95 for the
mean AUC, precision, F1, recall, and accuracy. Fig-
ure 8 displays the confusion matrix (8-(a)), the learning
curve (Figure 8-(b)), and the ROC curve (8-(c)), respec-
tively. The results suggest that the complete database
is required to obtain the best validation accuracy (see
learning curve in Figure 8- (b)).
SHAP values were calculated to quantify the impor-

tance of brain connections for the RF (see Figure 9 for
the results). The connection between regions P3 and C3
(P3 – C3) was the most important for the RF model.
According to the data in Figure 9, high correlation val-
ues (red dots) for the connection (P3 – C3) were essen-
tial for the detection of SCZ patients, and low values
of correlation (blue dots) were necessary for the detec-
tion of control ones. The second most crucial connection
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TABLE II: Summary of all the results obtained in the present work. Classification results using the connectivity
matrix best-captured brain changes due to SCZ. The best performance is highlighted in bold.

Data
abstraction

Data
ML

Subset AUC Acc. Recall Precision

Connectivity
matrix

fMRI
CNN

Train 1.00 1.00 1.00 1.00

Test 0.99 0.99 1.00 0.97

Connectivity
matrix

fMRI
RF

Train 1.00 1.00 1.00 1.00

Test 0.97 0.97 0.97 0.97

Complex
network

fMRI
RF

Train 1.00 1.00 1.00 1.00

Test 0.89 0.89 0.89 0.90

Connectivity
matrix

EEG
RF

Train 1.00 1.00 1.00 1.00

Test 0.95 0.95 0.95 0.95

Complex
network

EEG
RF

Train 1.00 1.00 1.00 1.00

Test 0.81 0.81 0.81 0.81

TABLE III: Results from different ML algorithms. The best ML was CNNtuned and RF for the fMRI dataset,
whose performances are highlighted.

ML
methods

Subset AUC Acc. Recall Precision

RF
Train 1.00 1.00 1.00 1.00
Test 0.97 0.97 0.97 0.97

CNN
tunned

Train 1.00 1.00 1.00 1.00
Test 1.00 0.98 0.98 0.98

CNN
untuned

Train 1.00 1.00 1.00 1.00
Test 1.00 0.98 1.00 0.97

LSTM
Train 1.00 0.99 0.99 0.99
Test 0.99 0.97 0.97 0.97

SVM
Train 0.99 0.99 1.00 0.99
Test 0.92 0.92 0.92 0.92

NB
Train 1.00 1.00 1.00 1.00
Test 0.87 0.86 0.88 0.89

MLP
Train 0.89 0.85 1.00 0.90
Test 0.80 0.80 0.80 0.80

was detected between T6 and T4 (T6 – T3), and this
connection’s low values were associated with SCZ. The
corresponding brain regions are depicted in Figure 9

2. Complex network

The performance of the test sample considering the
complex network yielded a mean AUC equal to 0.82, 0.85
for precision, 0.81 for F1 score, 0.75 for recall, and 0.81
for accuracy. Confusion matrix, learning curve, and ROC
curve are shown in Figure 10. The results suggest that
the complete database is required to obtain the best val-
idation accuracy (see learning curve in Figure 10- (b)).
Regarding the classification model, TP (related to class
1) was slightly higher than TN, showing that it better
detects SCZ patients (see confusion matrix in Figure 10-
(a)).

According to the SHAP values in Figure 11, the most
relevant measure was spectral entropy, which had a pos-
itive correlation with SCZ, followed by Hjorth mobility
and complexity, which have a negative correlation with
the occurrence of SCZ. Further, the measures extracted
from the EEG time series were more important than the
complex network measures. However, the diameter was
the most relevant complex network measure, comparable
to that found for the fMRI data. Furthermore, the exis-
tence of SCZ was connected with greater ASPC values,
which estimated the size of the communities. As a result,
SCZ is connected with larger communities.
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(a) (b)

(c)

FIG. 3: RF results using fMRI connectivity matrices. (a) Confusion matrix indicating a TN rate of 100% (purple,
according to the color bar) and a TP rate of 95.2% (blue, according to the color bar). (b) Learning curve for the

training Acc. (blue) and test Acc. (green). (c) ROC curve with class 0 (control) and class 1 (with SCZ).

IV. DISCUSSION

A. Connectivity matrix

One aim of this work was to compare the classificatory
statements that can be made based on two different SCZ
datasets, namely fMRI and EEG. The ML workflow used
was essentially the same. A comparison of the main re-
sults regarding altered connectivity in the neural network
structure of the SCZ patients can be found in Figure 12.

Our method identified a positive correlation in the SCZ
group between the left dorsal PCC and the left primary
motor during rest. The posterior cingulate cortex is in
the upper region of the limbic system and is associated
with Brodmann Areas (BA) 23 and 31. Researchers [123]
suggested that this brain region behaves as a central hub
for information exchange and has high connectivity with
frontoparietal regions, which is related to the cognitive

control of directing attention inside and outside. Fur-
thermore, they observed that the ventral PCC is highly
involved in DMN when there is the activation of cogni-
tive activity directed towards the inside focus and when
there is recovery and memory planning. On the other
hand, dorsal PCC is related to highly complex connec-
tivity directed to the frontal lobe, correlated to the bal-
ance of internal/external and broad/ narrow attention
[123, 124].

In contrast, the primary motor cortex (PMC), BA04,
was a brain region positively correlated with PCC in our
study, usually activated when the finger is in movement
[125] or when healthy subjects press a button in a given
task. However, [126] suggested that the premotor and
primary premotor cortex may be involved in language
processing, especially the left premotor cortex, which
performs articulation planning [127]. Considering previ-
ously cited studies mentioned here and in the I, the high
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(a) (b)

(c)

FIG. 4: CNNtuned results using fMRI connectivity matrices. (a) Confusion matrix indicating a TN rate of 100%
(blue, according to the color bar) and a TP rate of 94.7% (blue, according to the color bar). (b) The learning curve
with the Loss for the training (blue dots) and validation (line). (c) ROC curve with class 0 (control) and class 1

(with SCZ).

positive correlation found between PCC and left PMC
in our study suggests that activation of DMN-related ar-
eas, usually present during rest and reflecting voluntary
targeting for inside observation, are also associated with
language processing and may reflect problems in produc-
tion, articulation, and speech expression, such as alter-
ations in thought process manifested in speech, seen by
[128] in SCZ patients.

The second highest correlation found in our study oc-
curred between the left premotor supplementary (BA6)
and angular gyrus (BA39) areas; this time, these ar-
eas are negatively correlated. The Supplementary Motor
Area (SMA) has been associated with movement con-
trol and preparation [129], and patients with left me-
dial SMA lesions showed severe difficulties remembering
and reproducing rhythms compared to control subjects.
Furthermore, it has been observed that bilateral SMA
regions are altered in SCZ patients with catatonia, and

this hyperperfusion is a marker of current catatonia in
schizophrenia, indicating a dysregulation in the motor
system, particularly affecting the premotor areas [130].

The angular gyrus brain region, located in the pos-
terior inferior parietal area, is activated during differ-
ent tasks, and as shown by [131] as being a hub that
receives information and integrates it, generating com-
prehension and reasoning, redirecting attention to rel-
evant information, manipulating mental processes, and
problem-solving. Considering the angular gyrus findings
described in the I and through the findings obtained for
the negative correlation in our study, in the SCZ group
compared to the control, between the left premotor sup-
plementary regions and the angular gyrus, we can suggest
that this correlation may reflect an altered motor system,
with problems related to motor learning with altered co-
ordination; express the cognitive deficits, language and
thinking problems, both associated with SCZ.
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FIG. 5: Feature importance ranking for the RF classifier with brain regions ranked in descending order of
importance. For example, the connection between the regions Left-DorsalPCC and Left-PrimMotor1 is the most

important to classify SCZ patients.

We also observed a high positive correlation between
P3 and C3 regions for the SCZ group compared to the
control group. The P3 region corresponds to the Left
Superior Parietal lobe (LSP), BA07, while the C3 region
corresponds to the left motor cortex, BA06 [122]. LSP is
activated during the performance of body part localiza-
tion task [132]; both right and left parietal regions showed
deficits in tests related to working memory information
involving mental information [133]. The motor cortex
is usually associated with motor actions. However, [134]
highlighted its involvement in cognitive processes such as
task-directed attention, motor consolidation, integration
of multiple sensory inputs, and inhibition of involuntary
movements. Therefore, the studies cited in I and the
correlation observed between P3 and C3 regions in our
study during resting state may reflect the dysfunctions
found in SCZ that unfold working memory problems and
deficits in motor cognition.

Our study’s negative correlation in the right tempo-
ral lobe between T6 and T4 electrodes for SCZ patients
comprises BA 21 and 38. For example, the temporal
lobe is associated with speech perception and produc-
tion, hearing, and episodic memory [135]. During hal-
lucinatory crises in SCZ patients, [136] found increased

coherence in the temporal cortices bilaterally, suggest-
ing abnormally increased synchrony in the left and right
auditory cortices compared to the time without hallu-
cination. In contrast with this study, we only found a
correlation between two electrodes in the right tempo-
ral cortex in SCZ patients, indicating an inverse activity
variation in this region. Furthermore, the hallucinating
patients showed reduced alpha coherence in FT7, and
FT8 electrodes, compared to the HC and the group of
patients without hallucination [137]. This finding points
to the importance of the activity of the temporal region
bilaterally with other areas of SCZ patients.

B. Complex network and measures extracted from
EEG time series

The most important measure found for both data was
Diameter, which corresponds to the length of the longest
of the shortest path between any two vertices [138]. Since
this measure was observed in two different bases, EEG
and fMRI, it may be an indicative biomarker for the di-
agnosis of schizophrenia.
Regarding the EEG database, for the first time in

the literature, we combined measures extracted from
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(a) (b)

(c)

FIG. 6: ML results using complex networks and fMRI. (a) Confusion matrix indicating a TN rate of (blue,
according to the color bar) and a TP rate of (blue, according to the color bar). (b) Learning curve for the training

Acc. (blue) and test Acc. (green). (c) ROC curve with class 0 (control) and class 1 (with SCZ).

EEG time series with measures of complex networks ex-
tracted from functional networks of control individuals
and schizophrenia patients to verify which measures are
more efficient for this type of data. The results suggested
that measures extracted from time series were more crit-
ical for classifying patients with SCZ. The most relevant
measure for EEG was spectral entropy, which has a pos-
itive correlation with SCZ, followed by Hjorth mobility
and complexity, which have a negative correlation with
the occurrence of SCZ.

Spectral Entropy is an information theory-derived
quantity that measures the degree of uncertainty in a
signal, with higher values corresponding to a more uni-
form spectrum and more random frequency content and
lower values corresponding to more regular frequencies
[139, 140]. Spectral Entropy is an information theory-
derived quantity that measures the degree of uncertainty
in a signal, with higher values corresponding to a more
uniform spectrum and more random frequency content

and lower values corresponding to more regular frequen-
cies. During the resting condition, we detected greater
levels of spectral Entropy associated with SCZ, indicat-
ing more random frequencies. This conclusion contra-
dicts previous studies [140–142] that reported spectral
entropy deficiencies in schizophrenia patients executing
the P300 activity. We assume this discrepancy because
our data were obtained during the rest. The second most
important EEG measure was Hjorth mobility and com-
plexity, which illustrates a frequency shift and shows how
a signal’s form is comparable to a pure sine wave [143].
The Hjorth mobility and complexity values found for SCZ
patients were according to the literature [144].

Furthermore, for EEG data, the existence of SCZ was
connected with greater ASPC values, which estimate
the size of the communities. As a result, SCZ is con-
nected with larger communities. Moreover, the discov-
ery of larger communities shows that the brain’s equilib-
rium between functional segregation and integration has
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FIG. 7: RF classifier features importance ranking in an fMRI dataset, with factors mentioned in descending order.
For the categorization of SCZ patients, the spectral entropy measure is the most essential, followed by the Hjorth

mobility and complexity measure.

been disrupted, implying that information distribution is
slower than in the control group. These findings support
the idea that functional brain networks in SCZ patients
are more random than the control ones, as described in
section I.

Further, lower Transitivity values are related to the
existence of SCZ. The transitivity is a measure of the ef-
ficiency of information transfer between all pairs of nodes
in the graph [145], and a lower value of these measures in-
dicates lower segregation [146]. This finding is according
to the literature [33, 147].

Additionally, for fMRI, CC was the second most crucial
measure. The average of the shortest path lengths from
the node to every other node in the network, measured as
CC, represents how near a node is to all other nodes in the
network [148]. Therefore, a lower Closeness Centrality
score reflects impairment at these nodes [149], which was
also found in previous findings [150].

V. CONCLUSIONS AND FUTURE WORK

The workflow developed using fMRI data distinguish
control from SCZ patients with an accuracy of 98% and

AUC of 100%. The best pairwise statistical metric cap-
tured brain changes due to the presence of SCZ was TE,
and the best-performing machine learning model was RF.

According to the TE and RF, essential brain connec-
tions in the SCZ group are a positive correlation between
the left dorsal PCC and left primary motor at rest and
a negative correlation between the left premotor supple-
mentary and angular gyrus areas. Furthermore, in the
right parietal lobe, there is a strong positive correlation
between the P3 and C3 regions and a negative correla-
tion between the T6 and T4 electrodes, according to the
EEG connectivity matrix.

Due to the employment of two databases collected in
different groups of SCZ patients using two different types
of equipment that capture detailed information on brain
activity, this study has particular difficulties in com-
prehending the associations revealed (fMRI and EEG).
However, the findings provide a wealth of information
about brain activity in SCZ patients, which is corrobo-
rated by clinical and neurophysiological findings in the
literature. We hypothesize that fMRI and EEG correla-
tions in the data point to brain regions involved in motor,
cognitive, and sensory processing, internal attention tar-
geting, DMN-related regions, and auditory and language
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(c)

FIG. 8: ML results using EEG connectivity matrices. (a) Confusion matrix indicating a TN rate of (blue, according
to the color bar) and a TP rate of (blue, according to the color bar). (b) Learning curve for the training Acc. (blue)

and test Acc. (green). (c) ROC curve with class 0 (control) and class 1 (with SCZ).

processing. This finding may reflect changes in SCZ pa-
tients, such as problems with expression, production, and
speech articulation, changes in thinking, internal atten-
tion targeting, cognition, and hallucinatory episodes.

Concerning the complex network measures, Diameter
is recognized as a critical measure for both data, and it
may be a suggestive biomarker for the diagnosis of SCZ
because the same result was obtained with two different
equipment and patient groups. This study could be a sig-
nificant finding, as it reveals a robust biomarker that en-
ables ML-based diagnosis of schizophrenia disease regard-
less of data modalities. Furthermore, for EEG data, SCZ
functional networks, compared to the control group, have
larger communities and lower. Moreover, SCZ functional
networks exhibit larger communities and lower Transi-
tivity for EEG data, indicating slower information dis-
tribution and less segregation than in the control group.
According to the literature, these results mean that our

approach with the SHAP value method could predict the
primary SCZ-related connections and the best complex
network measures.
Nevertheless, according to our ML approach, EEG

measures extracted from raw time series are more impor-
tant than complex network measurements in capturing
brain alterations in SCZ patients.
Finally, future studies may involve the application of

the methodology to other fMRI data from ADHD-200
Global Competition. It can also be adopted with EEG
data from patients with other neurological disorders, for
example, dystonia [151].
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FIG. 9: Feature importance ranking for the RF classifier with brain regions in descending order. The connection
between the P3 and C3 is the most important for classifying SCZ patients.
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FIG. 10: ML results using complex network measures from EEG. (a) Confusion matrix indicating a TN rate of
(blue, according to the color bar) and a TP rate of (blue, according to the color bar). (b) Learning curve for the

training Acc. (blue) and test Acc. (green). (c) ROC curve with class 0 (control) and class 1 (with SCZ).
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FIG. 11: RF classifier features importance ranking in an EEG dataset, with factors mentioned in descending order.
For the categorization of SCZ patients, the spectral entropy measure is the most essential, followed by the Hjorth

mobility and complexity measure.
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FIG. 12: Plot with the most crucial connections found, in the two-dimensional schematic (ventral-axis), with the
essential fMRI connection highlighted in blue and the most critical EEG connection highlighted in pink. The brain
plot was developed by Braph tool [119], based on the coordinates in [120–122], and each region was plotted using

the Brodmann map from the Yale BioImage Suite Package.
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[19] M. Schürmann, J. Järveläinen, S. Avikainen, T. D. Can-
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Appendix A: fMRI best pairwise metrics

Table IV contains the all pairwise metrics results.

TABLE IV: Results were obtained regarding the metrics used to obtain the connectivity matrix. The best metric
was TE, whose performance is highlighted.

Data
abstraction level

Subset AUC Acc. Recall Precision

time
series

Train 0.50 0.50 0.40 0.30
Test 0.50 0.51 0.50 0.26

PC
Train 0.57 0.57 0.59 0.56
Test 0.42 0.43 0.43 0.41

SC
Train 0.57 0.56 0.57 0.58
Test 0.35 0.35 0.35 0.35

GC
Train 0.48 0.47 0.36 0.43
Test 0.40 0.40 0.40 0.37

SCC
Train 0.49 0.47 0.35 0.40
Test 0.45 0.46 0.45 0.37

LW
Train 0.45 0.43 0.31 0.34
Test 0.56 0.57 0.56 0.57

CC Train 0.71 0.71 0.71 0.74
Test 0.68 0.67 0.68 0.68

MI
Train 0.50 0.50 0.40 0.26
Test 0.50 0.51 0.50 0.26

TE
Train 0.99 0.99 1.00 0.99
Test 0.92 0.92 0.92 0.92
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Appendix B: Grid search hyperparameter tuning

Table V contains the hyperparameters optimized by gridsearch.

TABLE V: Hyperparameters for each classifier using Grid search optimizer.

Classifier Hyperparameters and description Values

RF

- max depth: Maximum depth of the tree.
- max features: Number of features to be considered toward a best split.
- min samples leaf : Minimum number of
samples required to be at a leaf node.
- min samples split: Minimum number of
samples for the split of an internal node.
- n estimators: Number of trees in the forest.

[1,2,5,10,20,80]
[2, 3,5,10]

[1,2,3, 4, 5]

[1,2,8, 10, 12,20]

[1,2,3,5,10, 30,50,100, 200, 300,500]

SVM

-kernel: Specifies the kernel type to be used in
the algorithm.
-gamma: Kernel coefficient.
-C: Regularization parameter.

[rbf, linear]

[1e-3, 1e-4]
[1, 10, 100, 1000]

NB
-var smoothin:Portion of the largest variance of
all features that is added to variances for calculation stability.

range 1e-09 to 1

MLP

- activation: Activation function for the hidden layer.
- solver: Solver for weight optimization.
- alpha: L2 penalty (regularization term) parameter.
- batch size: Size of minibatches for stochastic optimizers.
- learning rate: Learning rate schedule for weight updates.
- learning rate init: The initial learning rate used.

[identity, logistic, tanh, relu]
[lbfgs, sgd, adam]
[0.0001,1e-5,0.01,0.001]
[1000,5000]
[constant, invscaling, adaptive]
[0.001,0.01,0.1,0.2,0.3]

LR
- C: Each value in Cs describes the inverse of r
egularization strength.
- penalty: Specifies the norm of the penalty.

range 0.001 to 1000

[l1, l2]
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Appendix C: Deep Learning architetrure

Two approaches for the CNN architectures are proposed here, one using a Random Search tuning method
(CNNtuned) and another without this optimization step (CNNuntuned). Tuning is an optimization approach for
determining hyperparameter values to improve the performance of the CNN model [152].

In the CNNtuned model, the dropout regularization technique is employed to avoid overfitting [153]. The layers
and range used for hyperparameters are presented in table VI. The best CNNtuned architectures tuned for each data
set are depicted in table VII. The CNNuntuned model presents fewer layers and, therefore, lower computational costs.
The parameters used in our analysis are described in table VIII.

TABLE VI: Best hyperparameters and layer configurations obtained for the CNNtuned model.

Type of Layer Tuning hyperparameter Value
Convolutional — —

[0.00, 0.05, 0.10, 0.15,
Convolutional dropout 0.20, 0.25, 0.30,

0.35, 0.40, 0.45, 0.50]
Convolutional — —

Convolutional number of filters [32, 64]

Max Pooling dropout [0.00, 0.50, 0.10, 0.15, 0.20]
Flatten — —
Dense - units [32, 64, 96....512]

-activation [relu, tanh, sigmoid]
Dropout rate [0.00, 0.50, 0.10, 0.15, 0.20]
Adam min− value = 1e−4

optimization learning max− value = 1e−2

compile rate sampling= LOG

TABLE VII: The CNNtuned model used in the SCZ dataset is the network architecture.

Type of Layer Output Shape (AD) Parameter
Convolutional (None, 122, 122, 1) 160
Convolutional (None, 119, 119, 32) 2320
max-pooling (None, 59, 59, 32) 0
dropout (None, 56, 56, 16) 0

Convolutional (None, 28, 28, 16) 4640
Convolutional (None, 2, 2, 32) 9248
max-pooling (None, 1, 1, 32) 0
dropout (None, 1, 1, 32) 0
flatten (None, 32) 0
dense (None, 160) 5280

dropout (None, 160) 0
dense (None, 2) 3

The learning curve and ROC curve obtained for the CNNuntuned model are found in Figure 13.
Furthermore, the LSTM parameters used in our analysis are described in table IX.
The learning curve and ROC curve obtained for the LSTM model are found in Figure 14.
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FIG. 13: CNNuntuned model results using fMRI connectivity matrices. (a) ROC curve with class 0 (control) and
class 1 (with SCZ). (b) Each epoch loses the training (blue dots) and validation (blue line).

TABLE VIII: The network architecture for the CNNuntuned model used in the SCZ dataset.

Type of Layer Output Layer Kernel
Input Layer (None, 122, 122, 1) 0
Convolution (None, 119, 119, 32) 544
Max pooling (None, 59, 59, 32) 0
Convolution (None, 56, 56, 16) 8208
Max pooling (None, 28, 28, 16) 0

Flatten (None, 12544) 0
Fully connected (None, 10) 125450
Fully connected (None, 1) 11

TABLE IX: The network architecture for the LSTM model used in the SCZ dataset.

Type of Layer Output Layer Param
LSTM (None, 122, 70) 54040
LSTM (None, 122, 60) 31440
LSTM (None, 122, 50) 22200
LSTM (None, 40) 14560
Dense (None, 2) 82

FIG. 14: LSTM model results using fMRI connectivity matrices. a) ROC curve with class 0 (control) and class 1
(with SCZ). (b) Each epoch loses the training (blue dots) and validation (blue line).
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Appendix D: Acronyms

NOMENCLATURE

APL Average shortest path length

AUC Area Under ROC Curve

BA Brodmann Areas

BASC Bootstrap Analysis of Stable Clusters

BC Betweenness centrality

BM Biweight Midcorrelation

BOLD Blood Oxygenation Level Dependent

CC Closeness centrality

COBRE The Centers of Biomedical Research Excellence

DMN Default Mode Network

EBC Edge betweenness community detection

EC Eigenvector centrality

ED Entropy of the degree distribution

EEG Electroencephalogram

FC Fastgreedy community detection

fMRI Functional Magnetic Resonance imaging

GC Granger Causality

GL Graphical Lasso method

IC Infomap community detection

Knn Average degree of nearest neighbors

LC Leading eigenvector community detection

LPC Label propagation community detection

LSP Left Superior Parietal Lobe

LSTM Long short-term memory

LW Ledoit-Wolf shrinkage

MC Multilevel community detection

MI Mutual Information

MLP Multilayer Perceptron

NB Naive Bayes

PC Pearson Correlation

PCC Posterior Cingulate Cortex

PMC Primary Motor Cortex
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RF Random Forest

ROC Receiver Operating Characteristic

ROIs Regions of interest

SC Spearman Correlation

SCC Canonical Correlation analysis

SCZ Schizophrenia

SHAP SHapley Additive Explanations

SMA Supplementary Motor Area

SMD Second moment of the degree distribution

SPC Spinglass community detection

TE Transfer Entropy

Tuned CNN tuned Convolution Neural Network

untuned CNN Untuned Convolution Neural Network

WHO World Health Organization
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