
Strain estimation in aortic roots from 4D
echocardiographic images using medial modeling and

deformable registration

Ankush Aggarwala, Peter Mortensena, Jilei Haob,  Lukasz Kaczmarczyka,
Albert T. Cheungc, Lourdes Al Ghofailyd, Robert C. Gormane, Nimesh D.

Desaie, Joseph E. Bavariae, Alison M. Pouchb,f,∗

aGlasgow Computational Engineering Centre, James Watt School of
Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom

bDepartment of Radiology, University of Pennsylvania, Philadelphia, PA, USA
cDepartment of Anesthesiology, Perioperative and Pain Medicine, Stanford

University, Stanford, CA, USA
dDepartment of Anesthesiology, University of Pennsylvania, Philadelphia, PA, USA

eDepartment of Surgery, University of Pennsylvania, Philadelphia, PA, USA
fDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

Abstract

Even though the central role of mechanics in cardiovascular system is widely

recognized, estimating mechanical deformation and strains in-vivo remains an

ongoing practical challenge. Herein, we present a semi-automated framework to

estimate strains from four-dimensional (4D) echocardiography images and ap-

ply it to the aortic roots of patients with normal trileaflet aortic valves (TAV)

and congenital bicuspid aortic valves (BAV). The method is based on fully

nonlinear shell-based kinematics, which divides the strains into in-plane (shear

and dilatational) and out-of-plane components. The results indicate that, even

for size-matched non-aneurysmal aortic roots, BAV patients experience larger

regional shear strains in their aortic roots. This elevated strains might be a con-

tributing factor to the higher risk of aneurysm development in BAV patients.

The proposed framework is openly available and applicable to any tubular struc-

tures.
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1. Introduction

Mechanical strains experienced by cardiovascular tissues are closely related

to their function and long-term adaptation [1]. The strains affect the cellular

behavior and phenotype, which over time can lead to changes in the tissue

microstructure [2]. This is especially relevant for arterial tissues that experience5

high pulsating pressures and shear stresses from the blood flow, and arterial

stiffening is associated with normal aging process [3]. In arteries, excessive

strains can also cause damage and tear in the tissue, sometimes creating a false

lumen [4, 5]. Thus, tissue strains can carry extra information that improves

patients’ risk stratification [6, 7] and could potentially serve as early indicators10

of multiple vascular diseases, such as aneurysm, dissection, and stenosis. A large

number of studies have focused on calculating tissue strains by combining in-

silico modeling and ex-vivo experimentation [8]. However, using ex-vivo/in-silico

models to predict or even inform in-vivo values is far from trivial. Multiple in-

vivo features, such as pre-strain [9], inelastic behavior [10] and moving boundary15

conditions [11], are extremely challenging to replicate.

A capability to measure tissue strains in-vivo can transform the vascular

research landscape, by allowing direct monitoring of these important biome-

chanical indicators, determining differences between patient subgroups, and in-

forming/validating the in-silico models. Recent advances in four-dimensional20

(4D) imaging provide an opportunity to make progress in this direction. 4D

in-vivo images, such as those acquired using transesophageal echocardiography

(TEE), contain an extensive amount of information. Yet, only the 3D tissue

and organ shape characteristics are regularly extracted and utilized from these

images. In addition to the shape, the tissue motion captured in the 4D images25

can be further processed to estimate in-vivo strains. While such strain mea-

surements are now being investigated as functional indicators for the cardiac

tissue [12], the same is not true for vascular tissues. For example, aneurysm

diameter remains the primary feature used by clinicians to decide whether a
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surgical intervention is required.30

Numerous studies have proposed strain estimation using 2D ultrasound (US)

imaging by cross-correlation and speckle tracking, with a wide range of appli-

cations to the myocardium [13–16], aortic wall [17–19], carotid artery [20–22],

prostate [23] and skin [24]. Commonly known as US strain imaging, the under-

lying approach is to use cross-correlation in the raw signal and/or image domain35

to determine the tissue velocity and displacement, which is further processed

to estimate strains. However, 2D ultrasound has limitations. The out of plane

motion may cause signal decorrelation and affect the quality of results [25], and

the associated out of plane strains are challenging to estimate. Indeed, many of

the studies only report the changes in diameter. Moreover, further processing is40

required to capture the discontinuities between tissue and lumen [26]. A similar

approach is used in Tissue Doppler Imaging [27], which has also been extended

to 3D [28, 29].

Multiple studies have reported full 3D strain estimates in ventricles using

tagged magnetic resonance imaging [30, 31] and 3D speckle tracking in 4D ultra-45

sound [32–37]. However, these are structure-specific and rely on vendor-specific

proprietary software, which have shown suboptimal intervendor agreement of

strain measurements [38]. Even though 4D TEE plays a valuable role in aortic

pathologies assessment and repair [39, 40], strain estimation in arteries remains

a challenge due to their smaller thickness when compared to ventricles. Some50

have applied the motion tracking designed for ventricles to aortic vessels by

adding a fictive pseudo-apex[41–44]. However, these motion tracking algorithms

are optimized for ventricles and specific to the image acquisition hardware. In

most of these studies, only global strain estimates, such as changes in diameter

were estimated. Another approach has been to track the vessel wall motion and55

couple it with inverse finite element analysis to estimate strains and stresses [45–

47]. However, to the authors’ knowledge, few studies have directly estimated

regional in-vivo strains in thin tissues [48].

The aim of the presented work is to fill the gaps identified above with an

open-source framework to estimate 3D tissue strains in thin tubular structures,60
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such as arteries, from 4D echocardiographic images. One of the methodological

novelties of our framework is the use of a medial model, which conforms well to

thin tubular structures and appropriately quantifies in-plane and out-of-plane

strains, and at the same time facilitates population-level studies through spatial

correspondence between patients. To demonstrate the proposed framework, the65

aortic root is chosen as an application for reasons explained next.

The aortic root connects the left ventricle to the ascending aorta and sup-

ports the cusps of the aortic valve (AV). It plays an important role in several

pathologies, such as aortic aneurysm and dissection. Moreover, its biomechani-

cal coupling with the AV is complex. Patients with a bicuspid aortic valve (BAV)70

[49] are known to be at higher risk of aortic aneurysm compared to those with

a normal, trileaflet AV (TAV). However, the underlying reasons for higher risk

of root aneurysm are not fully known. The 4D dynamics of aortic root has been

analyzed in detail [50] and differences have been found in the enclosed volume

(also known as the lumen volume) for TAV versus BAV patients [51]. However,75

detailed in-vivo strains cannot be yet quantified from the 4D dynamics. The

only information available about the in-vivo strains experienced by the aortic

root tissue is through invasive animal studies using physical markers [52–54]. By

applying the proposed novel framework, the objective of this work is to provide

the first in-vivo strain measurements in human aortic roots and ascertain any80

differences between TAV and BAV patients. Relative to transthoracic echocar-

diography (TTE), TEE is superior for aortic root strain assessment given the

close proximity of the transesophageal transducer to the valve apparatus and is

therefore used in this study. However, the proposed framework is not specific

to TEE and could be generalized to other imaging modalities with which high85

quality images of vasculature can be obtained.

In the next section, details of the proposed framework to estimate tissue

strains from TEE are provided. Given the thin profile of aortic root, strains are

divided into in-plane and out-of-plane using shell kinematics [55–57]. Moreover,

to account for the large deformations that the aortic root undergoes during the90

cardiac cycle, fully nonlinear kinematics are used. In Section 3, the results for

4
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size-matched TAV and BAV aortic roots are compared in terms of reference

shape, global strains, and regional strains. In Section 4, we discuss the impli-

cations of the results and possible extensions of the proposed method in the

future.95

2. Methods

2.1. Image acquisition

Electrocardiographically gated real-time 3D TEE images of the aortic root

were retrospectively acquired from 35 patients with the approval of the Institu-

tional Review Board at the University of Pennsylvania. The patients included 16100

with physiologically normal TAVs and ascending aortas and 19 with minimally

calcified BAVs with or without aneurysm of the aortic root and/or ascending

aorta. The 3D TEE images were obtained using the iE33 imaging platform

with the X7-2t xMATRIX transducer (Philips Medical Systems, Andover, MA)

at end-expiration during positive pressure ventilation in anesthetized patients105

to eliminate motion caused by respiration. To compare the roots with similar

sizes, only the roots with a maximum radius1 between 15.5 mm and 18 mm were

included, which resulted in a dataset of 10 TAV and 7 BAV roots. Each patient’s

3D TEE image series consisted of 8 to 40 frames showing the aortic root from

the level of the left ventricular outlet (LVO) to the sinotubular junction (STJ)110

over one complete cardiac cycle beginning at early systole. The images were

exported in Cartesian DICOM format with nearly isotropic voxel size ranging

from 0.4 to 0.8 mm.

2.2. Image segmentation

From each patient’s 3D TEE dataset, a series of 3D aortic root reconstruc-115

tions was generated over one cardiac cycle using the custom semi-automated

image analysis pipeline illustrated in Figure 1. Briefly, the aortic root was first

1Luminal radius averaged circumferentially at the reference configuration

5
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Figure 1: The proposed semi-automated image segmentation, modeling, and strain analy-

sis pipeline. A reference 3D volume is selected from the input image series and manually

segmented. The aortic root is labeled in yellow, sinotubular junction (STJ) in orange, left

ventricular outlet (LVO) in pink, and interatrial septum (IAS) in green. A medial mesh, with

thickness shown in color, is generated from the reference segmentation. Consecutive pairs of

images are then registered at half-resolution in order to propagate a masked region of the root

to all frames in the series. Next, full-resolution deformable registration is performed between

the reference frame and all other frames in order to propagate the reference medial model to

all time points in the series. Maps of shear and area (dilatational) strain are computed from

the series of medial models of the aortic root.

manually traced in a systolic frame of the cardiac cycle using ITK-SNAP, an

open-source tool for interactive 3D medical image segmentation[58]. The seg-

mentation was annotated at the STJ, LVO, and interatrial septum to define120

the orientation of the root for subsequent measurement. This segmentation

was referred to as the “reference segmentation” and was verified by a second

observer. A medial model was automatically created from the segmentation

as described in Section 2.3. Next, the reference segmentation was morphologi-

cally dilated to define a region of interest around the aortic root in the image.125

Then the TEE image series was down-sampled, and deformable registration

between each consecutive pair of 3D volumes was performed. The resulting de-

formation fields were used to propagate the reference mask to all 3D volumes

6
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in the series. The reference frame was then registered at full resolution to all

other 3D volumes in the TEE series using the reference masks in each frame130

for increased computational efficiency and precision. The medial model of the

reference frame was then propagated to all other frames, producing a series of

3D medial models of the aortic root at all available frames in the cardiac cy-

cle. Note that image down-sampling in the first registration step was performed

only to quickly define a region of interest around the root in each 3D frame,135

whereas full-resolution deformable registration was guided by these regions of

interest and used to propagate the aortic root model to all available 3D frames.

All deformable registrations were performed using the generalized open-source

greedy 3D registration tool [59]. The same Gaussian regularization parameters

were used for all data sets: metric gradient smoothing with a sigma value of140

3mm and deformation field smoothing with a sigma value of 1.5mm.

2.3. Medial modeling

The shape of the aortic root is modeled at each cardiac phase using medial

axis representation in a manner that preserves spatial correspondences across

time and between patients. The medial axis, or morphological skeleton, of an145

object is a surface formed by the centers of all maximally inscribed balls (MIBs)

in the object [60], as illustrated in 2D in Figure 2. The medial axis can be

parameterized by (m, R) ∈ R3 × R where m is a medial surface formed by the

centers of all MIBs (or maximally inscribed disks in 2D) in an object and R is a

scalar radial thickness field defined over the medial surface. R refers to both the150

radius of a MIB centered on the medial axis and, equivalently, to the distance

between the medial axis and object boundary. Any point m on the interior of

the non-branching medial axis is associated with two spokes (vectors) pointing

to two points, b+ and b−, on the object boundary. In Figure 2, the points b1
+

and b1
− are said to be medially linked, because they are points of tangency of the155

MIB centered at the point m1 on the medial axis. The point b0 is not medially

linked to any other boundary point because it is a point of tangency of a disk

centered at an edge of the medial axis. Since the thickness of an object is related

7
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to the scalar radius function, medial axis representation is useful for quantifying

locally varying thickness of sheet-like anatomical structures. In this work, each160

point on the medial axis is associated with a measurement of localized thickness

of the aortic root, defined as the distance between medially linked boundary

points (e.g., the distance between b1
+ and b1

− in Figure 2).

Figure 2: The 2D medial geometry of an thin oblong object that has a non-branching medial

axis. The point m0 is the center of a maximally inscribed disk that is tangent to the object

boundary at b0. The maximally inscribed disk centered at m1 has radius R1 and is tangent

to the object surface at two medially linked boundary points: b1
+ and b1

−.

Given a segmentation of an anatomical structure, its medial axis can be

modeled using several strategies. For example, deterministic skeletonization165

algorithms estimate an object’s medial geometry directly from its boundary

representation (e.g., [61–63]), while inverse skeletonization algorithms approx-

imate an object’s medial geometry by fitting a pre-defined deformable model

with fixed medial topology to the object (e.g., [64, 65]). In this work, we use a

boundary contour resampling scheme adapted from [66] to generate a 3D trian-170

gulated medial mesh of the aortic root based on the geometry of its boundary

(similar to deterministic algorithms) while assuming a non-branching medial

8
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axis topology (similar to inverse skeletonization approaches). The meshing al-

gorithm is specific to 3D shapes with non-branching medial geometry, meaning

that the 3D shape can be sliced into 2D cross-sections that are oblong and175

homeomorphic to a disk (e.g., placentas, cardiac ventricles, kidneys). The input

to the algorithm is a segmentation or boundary representation of an anatomical

structure, and the output is a triangulated mesh that approximates the medial

surface of the structure.

Figure 3: Generation of a 3D medial mesh from an image segmentation of the aortic root.

(A)The aortic root segmentation is rigidly transformed so that the outflow tract is vertically

oriented along the z-axis and the interatrial septum (green) is aligned with the x-axis. (B)

The oriented segmentation is rotationally cross-sectioned into long-axis slices of the root.

(C) In each cross-section, a 2D non-branching medial axis is approximated using a surface

resampling technique, wherein points on the medial axis are estimated as midpoints between

medially linked boundary points on the root surface. (D) 3D triangulated surfaces of the root

boundary and medial surface are generated by defining edges between nodes in neighboring

cross-sections. Locally varying thickness of the aortic root is shown in color.

An overview of the 3D medial meshing process is illustrated in Figure 3. The180

3D aortic root shape is first rigidly transformed so that the aortic outflow tract

is aligned with the z-axis: the STJ is up, the LVO is down, and the interatrial

septum is aligned with the x-axis. The segmentation is then cross-sectioned into

9
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long-axis slices that are oblong and homeomorphic to a disk (i.e., they have a

closed, flat geometry that can be approximated by a non-branching medial axis185

representation). For each longitudinal 2D cross-section of the root, a binary

image is created, morphologically closed, and smoothed, as shown in Figure 3C.

Let B(γ) : [0,M) 7→ R2 be a closed curve parameterized by arc length that

outlines the boundary of the root and is computed from the zero level-set of

a signed distance map of the binary image. Let B(0) and B(K) be centrally190

located points on the opposite sides of the boundary such that 0 < K < M .

B(0) and B(K) remain fixed and are assumed to be medially linked since the

normals to the boundary at these points are approximately anti-parallel for

thin oblong shapes. Let qU and qL be points on the interval [0,M) that map

to opposites ends of the shape, such that B can be represented in terms of four195

quadrants: U+, L+, L−, U−. The superscripts (+,−) refer to symmetry about

the medial axis, and (U,L) refer to symmetry about a line through B(0) and

B(K). The optimal values of qU and qL are those for which B(qU ) and B(qL)

lie at the edges of the medial axis of the 3D shape and are not medially linked

to any other points on B. As a result, medially linked boundary points on200

B encode a medial contour that approximates the ridge of the signed distance

transform of the shape.

For the aortic root, the values of qU and qL are computed from the vertical

extrema of B, and the locations of medially linked boundary points b ∈ R2

in each quadrant of B are subsequently calculated by contour interpolation as205

follows:

 bU+(γ, qU ) = B
(
2qU
K · γ

)
bU−(γ, qU ) = B

(
2(qU−K)

K · γ +K
) , γ ∈

[
0,
K

2

)
(1)

 bL+(γ, qL) = B
(

2(qL−M)
M−K · (γ −K) +M

)
bL−(γ, qL) = B

(
2(qL−K)
M−K · (γ −K) +K

) , γ ∈
(
K,K +

M −K
2

)
(2)

Note that in Equations 1 and 2, the medially linked boundary points need

only be defined over the domain of two quadrants of B that are symmetric

10
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about a line through B(0) and B(K). Points on the medial axis m can then be

estimated as the midpoints between pairs of medially linked boundary points.210

For thin cylindrical shapes like the aortic root, the estimated medial axis aligns

well with the ridge of the signed distance transform shown in Figure 3C. For

anatomies with larger shape variation, m can alternatively be updated through

constrained optimization as described in [66], such that the values of qU and

qL are optimized to align the medial axis with the ridge of the signed distance215

transform.

Once nodes on m are defined for each 2D cross-section of the shape, a 3D

triangulated mesh is automatically created by defining edges between nodes of

adjacent cross-sections. The edges define triangular faces such that the triangle

normals point outward from the medial axis. Shown in color in Figure 3D, a220

scalar thickness measurement is associated with each node, which is defined as

the distance between the medially linked boundary nodes from which the point

on m was estimated. The resulting mesh is a medial model of the aortic root

that has a standardized triangulation (i.e., consistent nodes, edges, and faces

with fixed topology) regardless of the size of the input segmentation from which225

it is generated. Note that the procedure for medial mesh generation is only

performed in one 3D frame (the frame in which the root was initially segmented

in 3D). Thereafter, the same medial mesh is transformed to other 3D frames

based using the affine transformations and deformation fields obtained in the

propagation scheme described in Section 2.2.230

2.4. Strain estimation

The medial model provides a spatial correspondence across different phases

of the cardiac cycle since the 3D medial mesh is propagated in time using de-

formable registration, which facilitates strain calculation. The medial model also

provides spatial correspondence between different patients since the segmentation-235

derived medial mesh is computed using a standardized boundary sampling

scheme. In order to temporally align data for strain measurement, the first

3D TEE frame showing AV closure after systole was manually identified in each

11
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patient’s image series. The frame just prior to AV opening was considered to

represent the lowest pressure and therefore the “mechanical reference configu-240

ration”.

Since the medial model is a two-dimensional manifold in three-dimensional

space S ∈ R3, it can be parameterized using coordinates sα with α = 1, 2. If

the spatial coordinates of the medial model nodes in the mechanical reference

configuration are denoted as XI , while those in other frames are denoted as

xI(t). From the nodal coordinates, the entire surface is obtained by interpo-

lation X =
∑
I NI(s

α)XI and x(t) =
∑
I NI(s

α)xI(t). Piecewise linear La-

grangian polynomials [67] are used for NI to calculate the in-surface strains,

while C2-continuous Loop’s subdivision functions [68] are used to calculate

the curvature strains. Once interpolated, the basis vectors are calculated as

Aα = ∂X
∂sα in the reference configuration and aα = ∂x

∂sα in the deformed configu-

ration. From the reference covariant basis Aα, the components of the reference

metric are calculated as Gαβ = Aα ·Aβ and the reference contravariant basis

vectors are calculated using of the metric tensor as Aα = [Gαβ ]
−1 ·Aβ . Finally,

the deformation gradient F = ∂x/∂X is obtained by

F = aα ⊗Aα. (3)

From F, the right Cauchy-Green deformation tensor is calculated as C = F>F,

and its invariants are calculated as [69]

I1 = tr(C) and (4)

J =

√
1

2

{
[tr(C)]

2 − tr(C2)
}
. (5)

Ī1 = I1/J quantifies the shear strain (Ī1 ≥ 2 always and Ī1 = 2 represents

zero shear strain) and J quantifies the area dilatational strain (J = 1 indicates

no change in area). While it is common to decompose the in-plane strains in

vessels into circumferential and longitudinal components, the chosen represen-245

tation in terms of Ī1 and J offers two advantages. First, the representation in

terms of invariants does not require circumferential and longitudinal direction

vectors. Second, the two invariants represent different modes of deformation

12
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and, as a result, are much less correlated than other measures. Ī1 is termed

as the shear strain and J is termed as areal or dilatational strain. In addition,250

the thickness obtained from medial model is converted into thickness strain, de-

fined as the ratio of deformed thickness to the thickness at mechanical reference

configuration.

The surface normals are calculated by using the cross product of basis vectors

and normalizing it:

N =
A1 ×A2

‖A1 ×A2‖
(6)

n =
a1 × a2

‖a1 × a2‖
. (7)

Curvature changes during the cardiac cycle can also be calculated (see Ap-

pendix) but, since no significant changes were found in curvatures, these are255

not reported in this study.

2.5. Quantitative and statistical analysis

Fitting the same medial mesh to all patients’ images provides a spatial cor-

respondence. In order to determine the time correspondence, the frames when

AV first opens and first closes were manually identified and marked. The images260

were assumed to be acquired at equally spaced time points and over a complete

cardiac cycle. Therefore, in addition to the AV opening/closing time points,

strain quantities at two additional time points – mid-systole and mid-diastole

– were determined by piecewise interpolation and considered to correspond to

the same time point for each patient.265

Quantities defining the reference shape (assumed to be at one frame before

the AV opens) were averaged across patients. The mean values of all strain-

related quantities were calculated at the above four time points. To deter-

mine the statistical significance of differences between TAVs and BAVs, the

non-parameteric Wilcoxon rank-sum test was carried out at each spatial point.270

However, no correction was applied for the multiple comparisons2.

2Due to strong spatial correlation, Bonferroni correction was considered to be too conser-
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2.6. Implementation

The methodology has been implemented as a publicly available distributed

segmentation service in ITK-SNAP, entitled GoValve-Root at dss.itksnap.org.

Documentation and an example are available at https://govalve-root-src.275

readthedocs.io/en/latest/ with source code at https://github.com/apouch/

GoValve-Root-src.

2.7. Verification

In order to assess the accuracy of the tracking algorithm, each aortic root

was manually traced again in a different cardiac phase such that there were two280

manual segmentations completed for each 4D image series. The propagation of

the first manual segmentation was then evaluated with respect to the second

manual segmentation in terms of the Dice overlap and symmetric distance met-

rics. For example, if a patient’s data set consisted of 20 frames and frame 3

was manually traced at systole, then another frame at diastole was randomly285

selected (e.g., frame 17) and manually traced. Then, the segmentation of frame

17 created by propagation of frame 3 was compared to the manual segmentation

of frame 17. This evaluation was carried out for each patient in the study.

In order to verify the accuracy of strain estimation, three TAV and three

BAV manually TEE images were chosen at random and their manually seg-290

mented frames were used as the starting (reference) image. An affine, isotropic

deformation of a maximum of 10% stretch was applied, based on expected max-

imum stretch in-vivo. The affine transformation was applied in 10 incremental

steps to create artificial 4D datasets with 10 time frames each, where the true

strains were known a priori based on the applied deformation. A percentage295

error between the true strain values and estimated strain values were calculated

for the three types of strains – dilatational strain, shear strain, and thickness

strain.

vative.
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3. Results
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Figure 4: a,b) The average reference shape of aortic root for patients with TAV versus BAV in

two orientations colored by luminal radius and indicating the locations of left coronary (LC),

right coronary (RC), and non-coronary (NC) sinuses. c) Three slices of the reference shape

showing the LVO, sinus of valva (SoV), and STJ. d) A polar contour plot of the luminal radius

where inner radius is the LVO and outer radius is the STJ. e) Radius and f) ellipticity of the

reference shapes along the length of the root. g) Polar contour plot of the p-values comparing

the luminal radius of TAV and BAV roots.

Comparison of aortic root reference geometry in the TAV and BAV groups

is shown in Fig. 4. The average TAV and BAV root shapes are shown in Fig. 4a

with locally varying luminal radius in color. In order to better visualize lo-

cally resolved measurements such as luminal radius, strain, and thickness, the

measurements are illustrated on a disk-shaped projection of the 3D root onto305

a plane perpendicular to the outflow tract. In this mapping (e.g., Fig. 4d), the

inner contour of the disk-shaped projection represents the LVO and the outer

contour represents the STJ. A similar representation, known as the bulls-eye

plot is used in cardiac research [70]. While the TAVs and BAVs analyzed in

this study fall within a designated size range, the plots of luminal radius show310

greater prominence and consistency in the sinuses of Valsalva in TAV roots than

in BAV roots. The average luminal radius and ellipticity along the length of

the root are compared in Fig. 4e,f. While there is no significant difference in

the luminal radius except near the STJ (as the data sets in this study were

intentionally selected with respect to root size), the sinuses of TAV roots have315
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a higher ellipticity. Thus, even when matched for size, there are observable

differences in TAV vs. BAV root shape (Fig. 4g), especially at the sinuses of

Valsalva. Differences in root wall thickness were also observed, with BAV roots

being thinner than the TAV roots, especially at the sinuses (Fig. 5). This dif-

ference in thickness can have an important effect on the in-plane and bending320

stiffnesses of the arterial tissue.

TAV BAV

Thickness
(4.03, 4.26]
(3.79, 4.03]
(3.56, 3.79]
(3.32, 3.56]
(3.09, 3.32]
(2.85, 3.09]
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(2.38, 2.62]
(2.15, 2.38]
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(0.000, 0.025]
(0.025, 0.050]
(0.050, 0.100]
(0.100, 0.200]
(0.200, 0.500]
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(0.050, 0.100]
(0.100, 0.200]
(0.200, 0.500]
(0.500, 1.000]

Figure 5: Average thickness of the root wall at the reference configuration for patients with

TAV and BAV, and the p-value of differences between them tested using Wilcoxon rank-sum

test.

3.2. Assessment of tracking accuracy

The Dice overlap between the propagated and manual segmentations for the

17 data sets averaged 0.72 ± 0.07. The symmetric mean boundary distance

averaged 0.31± 0.11 mm.325

3.3. Verification of estimated strains

A boxplot of percentage errors in the three estimated strains for six (there

TAV and three BAV) images are shown in Fig. 6. The errors were negligible in

the shear strain since no shear was induced when applying an affine transfor-

mation. Moreover, 95 percentile of the errors in the dilatational and thickness330

strains were less than 5%. As the deformation level increases, the ranges of

errors increased slightly.
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Figure 6: The three strain estimates (shear strain, dilatational strain and thickness strain)

for six artificial datasets show an acceptable error range.

3.4. Strains over the cardiac cycle

Since strains depend on the gradient of the deformation, they require a

choice of “reference” configuration, with respect to which the gradients are335

calculated. To this end, the time frame when the AV first opens was identified

manually, and one frame before that was chosen as the reference configuration.

This assumption is based on the general rule that pressure in the aortic root is

minimum just before AV opening.

Both global and regional strains were computed from the image-derived 4D340

models of the aortic root. Global strain is a measure of change in the total

area/volume of the root during the cardiac cycle. To assess global strain, the to-

tal root wall surface area, wall volume (defined as the sum of wall area multiplied

by wall thickness) and the lumen volume enclosed by the root were calculated

at all time points, and their ratios with respect to the reference configuration345

were plotted (Fig. 7). No statistically significant differences were observed with

respect to these global measures in the TAV and BAV roots analyzed in this

study.

Regional strains were calculated and quantified in terms of shear and dilata-

tional strains (Ī1 and J), with the mean values at four time points plotted in350

Fig. 8a,b. Differences in regional strain in BAV versus TAV roots were observed,

with regional strains of BAV roots being higher. Similarly, the strain in wall

thickness was calculated and its mean values are graphed in Fig. 8c, which also
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Figure 7: The global strains quantified in terms of the ratio of aortic root wall area, aortic

root wall volume, and aortic root lumen volume for patients with TAV and BAV.

shows higher values in BAV roots.

The results from Wilcoxon test comparing the strains at all four time points355

between TAVs and BAVs were plotted (Fig. 9). These plots confirm that there

are statistically significant differences between the regional strains, with aortic

roots in BAV patients experiencing higher strains. Interestingly, these differ-
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Figure 8: The average strains in aortic root for patients with TAV versus BAV at four points

in the cardiac cycle: a) shear strain, b) areal strain, and c) thickness strain.
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Figure 9: Differences between the measured strains in the aortic root for patients with TAV

versus BAV tested using Wilcoxon rank-sum test

ences are in slightly different areas of the root as well. Higher shear strains are

observed in the region where the left ventricular outflow jet is directed towards360
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the aortic arch, which could be related to the differences in the hemodynamics

in TAVs and BAVs. No significant differences were found in the bending strains,

quantified by changes in the curvature (result not shown here for brevity).

4. Discussion

This study presents a novel approach to estimating 3D tissue strains in-365

vivo in thin tubular structures, for which the aortic vasculature is a clinically

motivated example. Development of this approach is a necessary first step to-

wards investigating whether characterization of locally resolved deformations

can contribute to our understanding of the pathophysiology of aortopathies, as

well as the prediction of their progression. The method combines deformable370

registration and medial modeling with large deformation kinematic calculations

commonly used in nonlinear mechanics. While this work demonstrates applica-

tion to the mechanics of the aortic root, the proposed methodology is general

and can be applied to any structure with tubular topology for which 4D im-

ages are available. The application to the aortic root, in particular, is clinically375

motivated since BAVs are commonly associated with progressive pathologies

not only of the cusps (e.g., stenosis and regurgitation), but of the aortic root

and ascending aorta as well [71]. An open-source example of the pipeline has

been made available through ITK-SNAP’s distributed segmentation service for

further research applications.380

In addition to presenting a novel pipeline for image-to-strain analysis, a

goal of this study is to demonstrate a clinical application to anatomical shape

and tissue mechanics assessment that can be carried out with the proposed

algorithm. In terms of anatomical form, BAV patients commonly have larger

aortic roots than patients with TAVs. To minimize the effect of root size on385

strain analysis, TAV and BAV cases with comparable root size were selected for

this study. Nevertheless, in these cases with similar root dimensions, differences

were observed in the local root morphology. Specifically, the sinuses of Valsalva

were observed to be more pronounced in TAV patients, likely owing to the
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consistency of cusp and sinus morphology in physiologically normal TAVs. The390

luminal radius at the LVO and STJ were slightly larger in the BAV roots,

which is consistent with frequent clinical observation of STJ dilatation in the

BAV population. Moreover, the root wall thickness in BAV patients was found

to be lower, which may affect effective in-plane and bending stiffnesses of the

tissue.395

Global aortic root strains were not found to be significantly different in the

BAV and TAV groups in this study, thus motivating the need for localized

strain assessment. In terms of regional strain, there was a clear difference be-

tween the TAV and BAV groups, with BAV patients experiencing higher shear,

dilatational, and thickness strains in certain areas of the root. Interestingly, the400

between-group differences in these three strain measures localized to different

regions of the root. For example, shear strains were found to be higher near the

STJ above the right coronary (RC) sinus, the dilatational strains were higher at

the LVO and the STJ in the region between the left and right coronary sinuses.

Lastly, there was a small area near the non-coronary (NC) and right coronary405

(RC) sinuses, where the thickness strains were higher in the BAV. These results

show the significance of strain analysis, which may shed light on the role of

tissue mechanics in aortic root pathology when applied to larger populations.

In addition, future longitudinal studies could investigate whether strains could

be leveraged as a prognostic index related to risk of aortic dilatation, dissection,410

or rupture. To allow for application to future studies, the proposed framework

has been made openly available as a distributed segmentation service (DSS) in

ITK-SNAP.

While this work demonstrates a novel, generalizable shape and strain analy-

sis pipeline, there are a few limitations of the approach. First, the analysis used415

manual segmentation of the root in one 3D volume of each 4D data set, which

will be automated in future work. Second, the choice of reference configuration

for strain calculation has limitations, as there is no point in the cardiac cycle

when aortic tissue is truly load-free. The choice of the mechanical reference

frame in this study was based on a commonly accepted point of lowest pressure420
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in the cardiac cycle. As a result, the resulting strains should be viewed with

respect to the diastole and not with respect to the true stress-free state (which

would require tissue explantation and is not possible in-vivo). Thus, these

strain estimates with respect to diastole do not provide a complete picture of

the biomechanical state. Third, the accuracy of the calculated strains depends425

on the image registration algorithm. Since image registration is well-known to

be an ill-conditioned problem, the results may be influenced by regularization,

which is a limitation of all image-based strain analysis assessment tools. Thus,

the same regularization parameters were used for all datasets in the study and

we consider the reported strains to be estimates, which could potentially be430

improved with physics-inspired regularization or by analysis of the raw signal.

Since commercial echocardiography machines generally do not output raw data,

the effect of different regularization approaches will be a topic of future studies.

Fourth, future work will specifically investigate the reproducibility of thickness

strain estimation with respect to another imaging modality such as CT. Since435

the root wall is relatively thin (only several voxels thick in 3D TEE), thickness

strain is more likely impacted by image resolution than areal and shear strains.

Finally, the population of TAVs and BAVs analyzed in this study was relatively

small, so the goal of reporting between-group differences in root mechanics is

intended to illustrate the clinical potential for application of the image-to-strain440

analysis pipeline methodology to larger populations, rather than to draw con-

clusions about BAV root pathophysiology.

In the future, the framework will be adapted to other, more complex topolo-

gies and can be used towards estimating mechanical stresses as well. For differ-

ent structures with non-cylindrical morphology, new medial modeling methods445

will be adapted. For thick structures, such as myocardium, a three-dimensional

kinematics (as opposed to the proposed shell kinematics) will be implemented.

Calculation of stresses will require choosing a stress-strain relationship and the

associated parameters, as well as the temporal and spatial variations of the lu-

minal pressure, adding further complexity to the problem. However, it might450

be possible to treat these properties stochastically and approximate their dis-
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tributions from the tissue deformation through the cardiac cycle.

In conclusion, this work presents a semi-automated methodology for estimat-

ing global and regional strains in-vivo in a manner that enables statistical com-

parison between patients. The method is based on fully nonlinear shell-based455

kinematics, which divides the strains into in-plane (shear and dilatational) and

out-of-plane. The results suggest that relative to size-matched non-aneurysmal

TAV roots, BAV patients experience higher regional shear strains in their aortic

roots. This difference in strains might be a contributing factor to their higher

risk of aortic root dilatation. The proposed framework is openly available and460

applicable to any tubular structures.
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Appendix A. Appendix

The curvature tensor in reference and deformed configurations are calculated

using the second derivative of interpolated positions as

W =

(
N · ∂2X

∂sα∂sβ

)
Aα ⊗Aβ (A.1)

w =

(
n · ∂2x

∂sα∂sβ

)
aα ⊗ aβ , (A.2)

respectively. Mean curvature in the reference configuration is H0 = 1
2 tr (W ) =

1
2W

γ
γ = 1

2WαβA
αβ . Similarly, the mean curvature in the current configuration

is H = 1
2 tr (w) = 1

2w
γ
γ = 1

2wαβa
αβ . The Gaussian curvature is the determinant

of curvature tensor K = |wβα|.470
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