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Key Points 

Question: Does opioid use disorder (OUD) have a potentially causal role in the risk for suicide attempts 

(SA), or vice versa? 

Findings: In this observational study with raw data from >150,000 UK Biobank samples and genome-

wide association summary statistics from >600,000 individuals, positive phenotypic and genetic 

associations were observed between OUD and SA, whether or not controlling for major psychiatric 

disorders.  Comprehensive Mendelian randomization analyses (one-sample and two-sample) suggested 

the genetic liability for SA was associated with increased risk for OUD. However, they were still 

underpowered to reveal the putative causal association from OUD to SA. 

Meaning: This genomics-based study supports a strong genetic association underlying the OUD-SA 

comorbidity. Though both phenotypes are intertwined with other psychiatric disorders, there also exists an 

independent bidirectional relationship between OUD and SA. 

  



Abstract (318 words) 

IMPORTANCE: Clinical epidemiological studies have found high rates of comorbidity between suicide 

attempts (SA) and opioid use disorder (OUD). However, the patterns of correlation and causation between 

them are still not clear due to psychiatric confounding. 

OBJECTIVE: To investigate the pairwise associations and interrogate the potential bidirectional 

relationship between OUD and SA using genetically based methods. 

DESIGN, SETTING, AND PARTICIPANTS: We utilized raw phenotypes and genotypes from UK 

Biobank, and summary statistics from Million Veteran Program, Psychiatric Genomic Consortium, 

iPSYCH, and International Suicide Genetics Consortium. Statistical genetics tools were used to perform 

epidemiological association, genetic correlation, polygenic risk score prediction, and Mendelian 

randomizations (MR). Analyses were conducted to examine the OUD-SA relationship with and without 

controlling for psychiatric disease status (e.g., major depressive disorder [MDD]). 

MAIN OUTCOMES AND MEASURES: OUD and SA with or without major psychiatric disorders 

(schizophrenia, bipolar disorder, major depressive disorder, and alcohol use disorder). 

RESULTS: Strong correlations between OUD and SA were observed at both phenotypic level (overall 

samples [OR=2.94, P =1.59�×10-14]; non-psychiatric subgroup [OR=2.15, P =1.07�×10-3]) and genetic 

level (r2=0.4 and 0.5 with or without conditioning on MDD).  The higher genetic susceptibility to SA can 

increase the polygenic risk of OUD (OR=1.08, false discovery rate [FDR] =1.71�×10-3), while the higher 

susceptibility to OUD can also increase the risk of SA (OR=1.09, FDR =1.73�×10-6).  However, 

predictive abilities for both were much weakened after controlling for influence of psychiatric diseases.  A 

combination of different MR analyses suggested a possible causal association from SA to OUD (2-sample 

univariable MR: OR=1.14, P = 0.001; multivariable MR: OR=1.08, P = 0.001).  

CONCLUSIONS AND RELEVANCE: This study provided new genetic evidence underlying the strong 

OUD-SA comorbidity.  While controlling for the influence of psychiatric diseases, there is still some clue 

on possible causal association between SA genetic liability and the risk for OUD. Future prevention 

strategy for each phenotype needs to take into consideration of screening for the other one. 



Introduction 

Opioids are among the world’s oldest known psychoactive drugs for thousands of years, and widely used 

for medicinal and recreational purposes.1 Fentanyl, tramadol, hydromorphone and morphine, the most 

commonly prescribed opioids, are used in acute and chronic pain management, and non-pain conditions 

such as multiple sclerosis.2, 3 Although the total number and rate of opioid prescription dispensed have 

declined in the last decade, the incidence of opioid use disorder (OUD) and rate of opioid overdose death 

are both increasing.4, 5 Over 40 million people suffer from opioid misuse or OUD globally.1, 6, 7  In the 

United States, it is estimated that >10 million people misused opioid, >2 million had an OUD, and 

~50,000 died from opioid overdose annually.8  However, not everyone who has opioid exposure (OE) 

extra-medically develops OUD,9-11 and the underlying biological mechanisms of developing OUD are to 

be uncovered. 

 

Suicidality is another major public health concern that accounts for death and disability worldwide with 

an increased rate in recent decades12, 13. Suicide attempts (SA), defined as non-fatal self-injurious 

behaviour with the intent to die, has been estimated to occur about 10- 20 times more frequently than 

actual suicide and is a major source of disability, reduced quality of life, and social and economic 

burden.14 Known risk factors for SA are mental health (MH) conditions, such as major depressive disorder 

(MDD), bipolar disorder (BD), schizophrenia (SCZ) and their related clinical variables.15-17 Opioid drugs 

are one of the mostly used means for committing suicide.  

 

Clinical epidemiological studies have found high rates of comorbidity between these two behavioral 

traits,18-20 especially withdrawal from or forced tapering states.21 As a reflection of their interconnected 

relationship, risk of suicidal ideation and behaviour has been found markedly increased in people with 

OUD, with highest risk for more severe outcomes.22-24 Also, these two public health crises are intertwined 

at multiple levels. People with a range of mental health conditions, social and environmental factors are at 

high risk for both disorders.25-27 Chronic pain, one of the reasons of opioid medical use, is associated with 



increased risk of mood or anxiety disorder28 and SA.29 However, due to confounding factors, it is 

challenging to explain OUD-SA comorbidity with epidemiology data. 

 

In fact, both SA30 and OUD31 are genetically heritable (heritability at 0.55 and 0.34, respectively), and 

have been investigated through genome-wide association studies (GWAS). The largest-scale GWAS on 

OUD, performed by Million Veteran Project (MVP) researchers, reidentified the OPRM1 gene as the most 

replicable genetic locus.31 A recent GWAS on SA that was performed by International Suicide Genetics 

Consortium (ISGC), has assembled almost all available SA datasets in the field.30 Besides identifying 

novel disease genes for each phenotype, these updated genomic data also provide us new resource for 

interrogating cross-phenotype relationships, for instance, through polygenic risk score (PRS) prediction 

and Mendelian randomization (MR)32 analysis. These two approaches are complementary to each other 

and can rigorously assess the evidence regarding association and causality when combined.33 This is also 

an opportunity to quantify their genetic correlation in the context of other psychiatric diseases, and then 

help to dissect their phenotypic correlation into nature and nurture parts. 

 

Up to date, there is still no valid longitudinal cohort or clinical trial to reveal the temporal pattern and 

mechanism behind OUD and SA co-occurrence. Here we combined UK Biobank (UKB) phenome-

genome data and published GWAS summary statistics to investigate their multi-layer relationships. The 

statistical genetics approaches were tailored for the data and adopted to reveal the possibility and degree 

of bidirectional association between OUD and SA. Our study also controlled for potential confounders of 

their psychopathology by conditional and stratified models. This new evidence may help us design more 

efficient strategy for promoting behavioural health in future.26, 27, 34  

 



Materials and Methods 

Study design 

Genomic data and statistical genetics analyses provide a new solution to disentangle the comorbidity 

between OUD and SA. As shown in eTable 1, we have collected both primary data (UK Biobank) and 

secondary data (GWAS summary statistics) and designed an integrated analytical pipeline to investigate 

their relationship (eFigure 1).  

 

UK Biobank 

Definition of OUD and SA phenotypes (binary status), and other comorbid psychiatric traits were through 

mental health questionnaire (MHQ) and electronic health records in UKB (eTable 2).  Processing of 

genotype data followed the recommendation in the original report.35 Detailed criteria and quality control 

steps are included in the Supplementary.  Particularly, we used self-reported ancestry, principal 

component (PC) analysis and kinship relatedness to select European-descent unrelated individuals.36, 37 

Number of PC to be adjusted for downstream association was determined by their eigenvalues (eFigure 

2). The UKB received ethical approval from the North West–Haydock Research Ethics Committee (REC 

reference 11/NW/0382), and had appropriate informed consent from all its participants. The current study 

was conducted under application No. 15422 and 86920.  

 

GWAS summary statistics 

GWAS summary statistics for SA were collected from two resources: 1) overall ISGC data repository 

(26,590 cases, 492,022 controls; with UKB),30 the largest GWAS focusing on SA; and 2) a Danish 

Integrative Psychiatric Research (iPSYCH) study (6,024 cases, 44,240 controls; without UKB)38 as 

independent verification. Genetic variants presented in both datasets showing no heterogeneity were 

retained. GWAS summary statistics for OUD (10,544 cases, 72,163 controls; without UKB) and alcohol 

use disorder (AUD) was accessed through NCBI dbGaP for MVP (phs001672.v6.p1).39 GWAS summary 



statistics for OE, MDD, BD and SCZ were downloaded directly from Psychiatric Genomics Consortium 

(PGC) website.40, 41 Additional harmonization steps were included in the Supplement.  

 

Observational association in UKB 

Descriptive statistics between groups were compared and test for difference by independent t-test or chi-

square test. Conditional logistic regression was used to examine the observational association between 

OUD status and SA outcomes in all eligible subjects (OUD-All and SA-All) and those without mental 

health problems (OUD-nonMH and SA-nonMH) among UKB participants. Model was adjusted by age, 

gender, and whether diagnosed with mental health disorders or not. The age and sex of participants were 

baseline characteristics determined at recruitment. These conditional models were run in all individuals, 

and in males and females separately. 

 

Polygenic risk score association 

Published GWAS for MVP OUD39 or iPSYCH SA38 was used as training dataset, and UKB data as target 

dataset. ISGC SA data was not used in PRS analysis since it already included UKB. Training dataset 

included GWAS summary statistics with and without adjustment of major mental health diseases 

(iPSYCH M2 and M1; MVP OUD|MDD and OUD). HapMap3 CEU markers42 was referred in this 

analysis.  PRSice-243 was used to construct PRS scores in UKB targeted dataset at different P thresholds 

(5×10-8, 10-7, 10-6, 10-5, 104, .001, .01, .05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1).  To avoid systematic error from 

population stratification,44 a principal component analysis (PCA) on the resulting PRS scores was 

performed and the resulting PCs were used in subsequent association analysis.45 Standardized PRS was 

generated using the entire distribution and associated with binary phenotype (OUD or SA) by logistic 

regression, adjusted for age, sex, PC1-PC4, and array type. 

 

Univariable Mendelian Randomization 



Only OUD and SA were included in this type of MR.  First, bidirectional one-sample MR (1SMR) 

analyses were performed on UKB using individual-level genotyping data matched with corresponding 

phenotypes in ‘All’ or in those ‘nonMH’ samples. Second, bi-directional two-sample MR (2SMR) was 

then conducted by inverse variance–weighted (IVW) method (as primary) and 3 other companion 

methods (weighted median, MR-Egger regression, and GSMR; as secondary), imbedded in 

TwoSampleMR and MendelianRandomisation R packages (R version 4.0.2) and GSMR software46. 

Pleiotropy or heterogeneity test was performed with MR-Egger regression (intercept), MR-PRESSO, or 

HEIDI test in GSMR, respectively. Several sensitivity analyses were included to further evaluate the 

influence of different instrumental SNPs, overlapping sample, and confounding factors on 2SMR 

estimated effects (detail in Supplement).  MR power calculation was performed using mRnd.47   

 

Pairwise genetic correlation 

To examine how other psychiatric exposures may serve as potential confounders, we firstly applied 

linkage disequilibrium score regression (LDSC)48 to estimate the genetic correlation between OUD, SA 

and related MH phenotypes . The Bonferroni method was used to correct the P values returned from 

LDSC. Only those having significant genetic correlation with OUD or SA were included in final 

multivariable MR analyses. 

 

Multivariable Mendelian Randomization 

Multivariable MR (MVMR) analyses were lastly performed using GWAS summary dataset from OUD, 

SA, and their correlated psychiatric traits. The same criterion as univariable MR was adopted to select 

instrumental SNPs for each exposure, covariate, or outcome. We used the MVMR extension of the IVW 

method to estimate the effect of each exposure trait and whether there existed mediating effects from its 

covariates.  Multivariable median method and MR-Egger method were also included as sensitivity tests. 

Forest plots were used to present the MVMR fitting.  

   



Results 

Observational association between OUD and SA 

When examined individually, male gender, younger age, psychiatric diseases affection, and OUD are all 

risk factors for SA; as a comparison, male gender, older age, psychiatric diseases affection, and SA are 

risk factors for OUD (Table 1 and eTable 3).  In the conditional logistic models (Table 2), patients 

diagnosed with OUD were associated with higher likelihood of SA in overall sample (OR =2.94; 95% CI, 

2.24-3.88; P =1.59×10−14).  After limiting to those without major mental health disorders (nonMH), their 

phenotypic correlation is still significant (OR =2.15; 95% CI, 1.36-3.41; P =1.07×10−3). For the gender-

specific analysis, OUD status presented positive association with SA in both gender groups but had 

stronger effect in males than in females (OR =4.67 vs 2.28 in overall, and 2.22 vs 2.13 in non-MH). 

 

Polygenic risk score association between OUD and SA 

As shown in Table 3, the PRS for MVP OUD significantly predicted SA status in UKB, among all and 

non-MH samples (OR =1.09 or 1.06, respectively; FDR < .05). Meanwhile, the PRS for iPSYCH SA was 

also positively associated with OUD status in UKB for both settings (OR=1.08 or 1.07, respectively; FDR 

<.05).  When using GWAS with adjustment of major psychiatric diseases as training data, the PRS 

association was still significant for the pair of iPsych SA (M2) and UKB OUD-All (OR =1.05, FDR <.05); 

but the effects for other three OUD-SA pairs were much weakened and not significant anymore. 

 

Univariable MR-based association between OUD and SA 

Using PRS as an instrumental variable, 1SMR in UKB data did not identify any significant causal 

association between OUD and SA (eTable 4).  In the extended 2SMR result (Table 4), it showed a 

significant causal effect of the genetic risk of SA on OUD (IVW: OR =1.14, 95%CI: 1.05-1.24, P =.001; 

GSMR: OR =1.14, 95%CI: 1.07-1.21, P <.001), surviving Bonferroni correction (0.05/8). Three validity 

tests did not find any violation of MR assumptions for SA-OUD analysis (all P >0.05).  However, no 

consistent evidence of a reverse causal effect was found when investigating the direction from OUD to 



SA (IVW: OR =1.02, 95%CI: 0.87-1.19, P =.828; GSMR: OR =1.25, 95%CI:1.05-1.49, P =.014).  This 

may be due to the existence of horizontal pleiotropy (MR-PRESSO global test P = .023) and limited MR 

power (<0.2). The overall distribution of instrumental SNPs’ effects for both 2SMR analyses are shown in 

Figure 1A-D.  When re-examining their relationship in additional sensitivity analyses (eTable 5), the 

causal effect of SA liability on OUD is still significant (P < .05) after regressing out the genetic risk of 

MDD from both GWAS datasets. Like 1SMR result, none of these causal associations was identifiable 

when using much smaller SA GWAS (i.e., iPSYCH cohort) against MVP OUD. More details on model 

fitting and individual SNP annotation are included in eTables 6 and eFigures 3-4.  

 

Genetic correlation with other psychiatric traits 

LDSC result (Figure 1E and eTable 7) showed that OUD and SA had a high genetic correlation (rg 

=0.50, P =1.81×10-11). Both traits also presented strong correlations with MDD (OUD: rg =0.41, P = 

2.40×10-8; SA: rg =0.86, P =2.51×10-123), BD (OUD: rg =0.27, P =1.33×10-6; SA: rg =0.58, P =6.13×10-

81), SCZ  (OUD: rg =0.31, P =2.55×10-10; SA: rg =0.43, P =9.58×10-56) and AUD (OUD: rg =0.81, P 

=2.64×10-39; SA: rg =0.48, P =8.24×10-32), but not with OE (OUD: not applicable; SA: rg =0.38, P =.092). 

After conditioning on MDD polygenic risk, the genetic correlation between OUD and SA was still 

significant (rg=0.40, P =3.76×10-5). 

 

Multivariable MR-based association controlling for other psychiatric traits 

In the MVMR results involving OUD, SA and those significantly correlated traits (eTable 8 and Figure 

1F), genetic liability of SA still retained a significant causal association with OUD (IVW OR= 1.08, 

95%CI:1.03-1.13, P <0.001), further supported by two additional sensitivity tests (P =0.005 and <0.001) 

and validity checking (P >0.05). However, when assessing the genetic liability of OUD with SA, the three 

MVMR methods did not agree on a consistent causal effect (IVW OR =1.09, 95%CI: 1.00-1.20, P =.054). 

Both patterns were generally stable in repeated MVMR models with reduced number of confounders 

(eFigure 5). A full list of instrumental SNPs involved in MVMR was included in eTable 9. 



Discussion 

In this study, our triangulated results support more the existence of an MH-independent bidirectional 

relationship between OUD and SA: 1) the undirected phenotypic and genetic correlations are both 

significant after adjustment of mental health conditions;  2) from SA to OUD, not only SA polygenicity 

risk can predict OUD status in opioid-exposed population, but also the genetic liability of SA has a 

suggestive causal effect on OUD risk; 3) from OUD to SA, though it is underpowered to identify similar 

causal association, the OUD polygenicity risk can still predict SA status in nonMH population. 

 

To our knowledge, this is the first endeavour using genomic data to explain OUD and SA comorbidity in 

the context of other mental health conditions.  Although observational studies have emphasized the 

association between substance use disorder (SUD) and suicide idea or behaviours, they were unable to 

establish causal relationships.49, 50 Meanwhile, there are only a few related genetic association studies 

specifically focusing on correlated relationships between them. Instead, previous studies usually 

concentrated on SA with psychiatric disorders, especially MDD,51 BD,51, 52 and SCZ53; or they just 

focused on mental disorders themselves.32 Though studies have emphasized that suicidality is genetically 

independent of major psychiatric diagnoses,38, 54, 55 few has unearthed biological mechanism of SA until 

recent finding from ISGC becoming available.30 With similar approaches (e.g., PRS and MR), an earlier 

report has revealed a potential causal association between self-harm and some complex traits (including 

mental health disorders and SUD).17 Nevertheless, OUD was left behind in their study. Though cross-

phenotype genetic correlation and MR were also included in the original MVP OUD GWAS,31 it did not 

consider SA or self-harm in their selected traits. Our findings can fill the knowledge gap remained. 

 

One mechanism could be that impulsiveness that serves in stress-diathesis model might partly account for 

this special relationship.56 Suicide attempters, differ from suicide decedents who are more deliberate, are 

more linked to impaired probabilistic learning assessed by risk taking tendency57 and economic and social 

reward and punishments,58, 59 in another word, are assumed to be of higher trait impulsiveness.60, 61 When 



faced from psychological or material stress, such as stigma, discrimination and violence, they usually lack 

of social reward, as well as chronically expose to social exclusion. The stress response triggers a 

psychobiological reaction involving the hypothalamic-pituitary-adrenal axis,55, 62 which in turn might 

potentially exacerbate poor health outcomes and risk behaviours such as opioid abuse.63  Another 

explanation lies on the opioid receptor system.  This system may play a role in negative affect associated 

with suicidality since its abnormality may impact cognition and reward circuitry via altered mu opioid 

receptor binding,55, 59 and buprenorphine, the kappa antagonist to decrease illicit opioid use and reduce the 

multiple negative consequences of OUD (e.g., fatal and nonfatal substances overdose, infectious 

complications, and anti-suicidal strengths).64  Additional clue comes from our SNP-gene annotation 

(eTable S6) and gene-set enrichment analysis ((eFigure 4). Genes mapped by instrumental SNPs 

included in two-sample MR have not only shown significant effects in impulsiveness trait (e.g., risk-

taking tendency and adventurousness) and major psychiatric disorders, but also enriched in metabolic and 

hematological index abnormalities,60, 65-68 indicating their influence in inflammatory and immune 

dysfunction. This is consistent with pathogenetic mechanism of suicidal behaviours55 and suggests a 

possible risk for OUD and use of anti-inflammatory drugs in both phenotypes.69 

 

Limitations 

The main advantage of this study lies on the big genomic data (e.g., UKB, MVP, and ISGC) we can 

collect for the phenotypes of interest, and the integrated pipeline for cross-phenotype analysis. We also 

included additional data and sensitivity tests for verifying potential causal associations.  Nevertheless, this 

data-driven study also has some limitations. First, we don’t have access to clinical phenotypes in ISGC 

SA and MVP OUD studies.  Both focused mainly on their primary phenotype and did not especially filter 

out those participants with the alternative phenotype.  Given that OUD is often under diagnosed at 

population level, there might be hidden OUD patients in ISGC samples that may affect the polygenicity 

risk of SA.  Second, the reason why using opioids, like physical pains of cancer patients, were not taken 

into account. Hence there might be a horizontal pleiotropy between the pathogenesis of pain and 



phenotypes (e.g., MDD) we focused on.32  Third, this study mainly focused on establishing genetic 

correlation and causal associations between OUD and SA, but not proceed much to dig up biological 

mechanisms of their observed comorbidity.  Further research should add more biological evidence (e.g., 

exact genes and pathways) through gene transcription and multi-omics analyses.70 Last, this bivariate 

relationship was based on observational data and statistical approaches. Pragmatic clinical trials and 

implementation research should be added in the future study before translating it into clinical services.71 

 

Conclusion 

In summary, both OUD and SA phenotypes present strong phenotypic and genetic association with each 

other and major categories of psychiatric diseases. There is also an independent association between OUD 

and SA after controlling for the influence of psychiatric diseases. Moreover, their relationship is likely to 

be putatively bidirectional. Comprehensive prevention approaches that address the intersections between 

suicide, opioid use and shared comorbidity with mental health conditions are needed, so as to provide a 

promising path forward for addressing these public health challenges among the population. 
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Figure legends 

Figure 1. Bi-directional two-sample Mendelian randomization results between OUD and SA.  

A) Results of GSMR analysis from OUD to SA. Yellow crosses: 9 SNPs included in GSMR. B) Results 

of IVW, Weighted median, MR-Egger, Weighted mode and simple mode from OUD to SA. Black crosses: 

20 SNPs included in the analyses. C) Results of GSMR analysis from SA to OUD. Yellow crosses: 29 

SNPs included in GSMR. D) Results of IVW, Weighted median, MR-Egger, Weighted mode and simple 

mode from SA to OUD. Black crosses: 16 SNPs included in the analyses. E) Genetic correlations across 

different phenotypes included in multivariable Mendelian Randomization. F) Odds ratios (ORs) and 95% 

confidence intervals (CIs) for the effect of SA liability on OUD and vice versa, estimated using the 

multivariable Mendelian randomization (MR) IVW approach. The vertical line means OR = 1. Red points 

represent significant causal effects, and green points represent unsignificant associations. The larger point 

size is, the more significant SNPs of the traits were included in the analyses. 

  



 
Tables. 

Table 1. Descriptive statistics for SA and OUD assessed in UKB 

Characteristic 
SA OUD 

Cases Controls P Cases Controls P 
Total size 3591 116674  2169 50543  

# Male (%) 1290 (35.9) 52299 (44.8) <2.2x10-16 817 (37.7) 21024 (41.6) 3.0x10-4 
Mean age (SD) 53.9 56.4 <2.2x10-16 59 58.6 0.026 

# MH diseases (%)* 1242 (34.6) 8775 (7.5) <2.2x10-16 826 (38.1) 9922 (19.6) <2.2x10-16 
# OUD (%) 67 (1.9) 338 (0.3) <2.2x10-16 2169 (100.0) 0 (0.0) NA^ 

# SA (%) 3591 (100.0) 0 (0.0) NA^ 67 (3.1) 775 (1.5) 2.8x10-8 
* Mental health (MH) diseases were defined by ICD-9/10 codes for depression, anxiety, stress-related disorder, substance 
misue (excluding OUD), and psychotic disorders. 
^ NA means not available as the test is not valid when certain cell count is 0. 
SD shorts for standard deviation. 

  



Table 2. Observational association between SA and OUD phenotypes in UKB 
Outcome* Exposure Group (N) OR (95% CI) P 

SA-All OUD-All 
All (12,559) 2.94 (2.24, 3.88) 1.59×10-14 

Men only (4,874) 4.67 (2.99, 7.31) 1.45×10-11 
Women only (7,685) 2.28 (1.60, 3.24) 4.97×10-6 

SA-noMH^ OUD-noMH 

All (10,570) 2.15 (1.36, 3.41) 1.07×10-3 

Men only (4,138) 2.22 (0.88, 5.60) 9.21×10-2 

Women only (6,418) 2.13 (1.26, 3.62) 5.07×10-3 
* Logistic regressions were adjusted by age and sex for groups with ‘All’, and by age for sex-stratified groups (Men, 
Women). 
^ noMH is for non-Mental health conditions, selected by excluding all individuals with major psychiatric diseases. 

N for total sample size, OR shorts for odds ratio, CI for confidence interval. 
  



Table 3. Polygenic risk score association between OUD and SA   

Target* Training^ P-Best P-PCA OR (%95 CI) FDR 

UKB_SA-All 
MVP OUD 4.92x10-7 5.42x10-7 1.09 (1.05, 1.13) 1.73x10-6 

MVP OUD|MDD 9.83x10-3 0.068 1.03 (1.00, 1.07) 0.099 

UKB SA-noMH 
MVP OUD 4.46x10-3 9.65x10-3 1.06 (1.01, 1.10) 0.022 

MVP OUD|MDD 0.067 0.869 1.00 (0.96, 1.05) 0.869 

UKB OUD-All 
iPSYCH SA M1 5.61x10-4 6.42x10-4 1.08 (1.03, 1.13) 1.71x10-3 
iPSYCH SA M2 0.016 0.019 1.05 (1.01, 1.10) 0.033 

UKB OUD-noMH 
iPSYCH SA M1 0.019 0.018 1.07 (1.01, 1.13) 0.033 
iPSYCH SA M2 0.139 0.204 1.04 (0.98, 1.09) 0.251 

* Target is from UKB genotype data. All is for all samples, noMH is for samples without major mental health 
conditions. 
^ Training is from GWAS summary statistics by MVP or iPYCH. No overlapping samples are included.  
OUD|MDD is OUD GWAS conditioning on MDD. SA M1 and SA M2 are GWAS without or with controlling 
for MH conditions. respectively. 
P-Best is for p-value from the best thresholding PRS, P-PCA is for p-value from principal component 1 of PRSs 
of different thresholding. OR for odds ratio, CI for confidence interval, and FDR for false discovery rate 
(Benjamini-Hochberg) that used to correct multiple testing. 
  



 
Table 4. Univariable two-sample MR result using MVP-OUD and ISGC-SA datasets 

Exposure vs 
Outcome^ 

MR effect estimate MR validity test MR power 

Method OR 95% CI P nsnp* Method P F-statistic Power 

OUD ~ SA 

IVW 1.02 0.87-1.19 0.828 20 MR-Egger intercept test 0.868 6957.83 0.16 
Weighted median 1.06 0.89-1.26 0.538 20 MR-PRESSO global test 0.023   

MR-Egger regression 1.06 0.66-1.70 0.207 20 Q statistics heterogeneity test 0.023   

GSMR 1.25 1.05-1.49 0.014 9     

SA ~ OUD 

IVW 1.14 1.05-1.24 0.001 16 MR-Egger intercept test 0.726 10695.47 1 

Weighted median 1.15 1.03-1.28 0.012 16 MR-PRESSO global test 0.892   

MR-Egger regression 1.09 0.84-1.42 0.525 16 Q statistics heterogeneity test 0.966   

GSMR 1.14 1.07-1.21 <0.001 29         
^ In two-sample MR between MVP and ISGC, overlapping sample is only 0.4%.  

* nsnp means number of instrumental SNPs used. More SNP details are provided in TabS6. 
OR stands for odds ratio, CI for confidence interval, MR for Mendelian randomization, IVW for inverse-variance weighted, GSMR for generalized summary-
data-based Mendelian randomization. 
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