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One Sentence Summary: Combining cerebrospinal fluid proteomics data with neurodegeneration and 48 

neuroinflammation biomarkers, genomics, and cerebrospinal fluid metabolomics, we identify and 49 

replicate a theme of altered glucose metabolism proteins and the metabolite succinylcarnitine across 50 

amyloid and tau progression in Alzheimer’s disease. 51 

 52 

Abstract: 53 

A major hallmark of Alzheimer’s disease (AD) is the aggregation of proteins (β-amyloid (A) and 54 

hyperphosphorylated tau (T)) in the brain, which makes the AD proteome in cerebrospinal fluid (CSF) of 55 

particular interest. Here, we conducted a CSF proteome-wide analysis among participants with and 56 

without AD pathology (n = 137 total participants: 56 A-T-, 39 A+T-, and 42 A+T+; 915 proteins analyzed), 57 

using a panel of 9 CSF biomarkers for neurodegeneration and neuroinflammation. We identified 61 58 

proteins significantly associated with AT category (P < 5.46 x 10-5; strongest was SMOC1, P = 1.87 x 10-12) 59 

and 636 significant protein-biomarker associations (P < 6.07 x 10-6; strongest was a positive association 60 

between neurogranin and EPHA4, P = 2.42 x 10-25). Community network and pathway enrichment 61 

analyses highlighted three biomarker-associated protein networks centered around amyloid and tau 62 

measures, neurogranin, and the remaining biomarkers. Glucose metabolic pathways were enriched 63 

primarily among the amyloid- and tau-associated proteins, including malate dehydrogenase and 64 

aldolase A, both of which were associated with CSF phosphorylated tau levels in an independent 65 

replication cohort of 717 participants (P = 8.65 x 10-56 and P = 1.35 x 10-45). Follow-up interrogation of 66 

related CSF metabolite levels in the same samples as the discovery proteomics analysis identified 67 

increasing levels of succinylcarnitine with ptau and numerous other CSF biomarkers (P < 0.00056) that 68 

were replicated in an independent sample of 363 participants. Together, these results implicate glucose 69 
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metabolic dysregulation and increased CSF succinylcarnitine levels as amyloid and tau pathology emerge 70 

in AD. 71 

  72 
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Main Text: 73 

INTRODUCTION 74 

Despite much improvement in our understanding of it, Alzheimer’s disease (AD) continues to impose an 75 

enormous medical, social, and economic toll on society. An estimated 50 million people have dementia 76 

worldwide, with that number likely to increase to over 150 million by 2050(1). AD is the 6th leading cause 77 

of death in the U.S. and costs an estimated $290 billion annually for healthcare(2). Part of the reason for 78 

this global impact of AD has been the lack of a cure or effective therapies for the disease, which is driven 79 

in part by an incomplete understanding of its causal mechanisms(3). The core pathological features of 80 

AD are well-described and center on the accumulation of two proteins, amyloid and tau, into amyloid 81 

plaques and neurofibrillary tangles(4), for which there are validated cerebrospinal fluid (CSF) 82 

biomarkers(5). 83 

In order to better inform research on AD, there has been a shift in the conceptualization of the disease 84 

from a focus on clinical signs and symptoms(6) to AD biology measured in vivo. Using CSF assays related 85 

to amyloid deposition and hyperphosphorylation of tau protein (in addition to neuroimaging), it has 86 

become possible to leverage these biomarkers for identifying preclinical AD, mild cognitive impairment 87 

(MCI), and AD dementia(7–10). Most recently, in 2018, an explicit research framework for categorizing 88 

AD was proposed by the National Institute on Aging and Alzheimer’s Association (NIA-AA). This 89 

framework categorized individuals as amyloid positive (A+), tau positive (T+), and/or neurodegeneration 90 

positive (N+)(11). This so-called ATN framework—using ATN-based categorizations rather than more 91 

traditional clinical diagnoses as outcomes—provided nosological clarity in studying AD and other forms 92 

of dementia. 93 

The use of these biomarker-defined categories is most relevant in multiomic approaches to studying AD 94 

pathophysiology, where molecular pathways are interrogated and clear case definitions are essential. 95 
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Omics research offers immense promise for understanding complex disease by leveraging analyses of 96 

millions of molecular features spanning from the genome to the proteome, metabolome, phenome, and 97 

beyond(12). In the field of AD research, each of these individual omic approaches has already been 98 

applied extensively. Genomics research has highlighted a number of important loci, from the role of 99 

mutations in APP, PSEN1, and PSEN2 in early-onset familial AD(13) to late-onset AD genetic risk factors 100 

like APOE, CR1, and ABCA7(14–16). CSF metabolomics studies have identified alterations in cholesterol, 101 

sphingolipid, norepinephrine, and other pathways(17, 18). In the CSF proteome, already known to 102 

include the amyloid and tau biomarkers for AD, studies have identified altered proteins related to the 103 

immune system and inflammation, carbohydrate metabolism, phospholipids, and the regulation of 104 

synapses(19–24). 105 

Here, we combined the A and T of the ATN framework of AD with a novel CSF proteomics data set 106 

comprising 915 proteins generated for 137 participants, building on our recently published pilot study 107 

results in an independent sample(25). We comprehensively profiled the AD CSF proteome, its 108 

relationship to AT category, and its association with a diverse set of 9 AD CSF biomarkers covering 109 

measures of amyloid, tau, neurodegeneration, and neuroinflammation. These results were then 110 

extensively interrogated for pathway-level and network-based patterns, with top findings replicated in 111 

an independent AD proteomics cohort with an alternative proteomics modality and previously published 112 

AD proteomics associations with a similar mass spectrometry-based modality. The top-implicated 113 

biological pathway was then further explored with a focused metabolomics analysis using the same 114 

original participants and an independent metabolomics replication cohort of 363 participants. Finally, 115 

we combined the proteomics data set with previously generated genome-wide genotypes, 390 CSF 116 

metabolites, and demographic information to examine the relative utility of different omics data sets in 117 

predicting the AT-based categories. Elucidating the pathophysiology leading to the development of AD 118 
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pathology and symptoms of AD dementia is expected to inform the identification of novel, effective 119 

drug targets. 120 

 121 

RESULTS 122 

Sample summary 123 

CSF samples from 137 WRAP and ADRC participants were selected as described in the Methods, roughly 124 

evenly distributed across the three AT categories of interest (Table 1, Supplementary Figure 1, 125 

Supplementary Figure 2). Most (102, 74.5%) of the participants were cognitively unimpaired at the time 126 

of the sample, with 16 (11.7%) and 19 (13.9%) participants having an MCI or AD dementia diagnosis, 127 

respectively. The age and sex distributions across the AT categories varied, with worse AT pathology 128 

having a higher average participant age and a greater proportion of males. The amyloid and tau 129 

measures reflected the AT categorizations as expected. The remaining CSF biomarkers showed a general 130 

increase with increasing AT pathology with the exception of IL-6, which fluctuated across the groups. 131 

 132 

Table 1. Summary of sample demographics and CSF biomarkers 

 Overall A-T- A+T- A+T+ 

Participants (N, %) 137 56 (40.9) 39 (28.5) 42 (30.7) 

Age at CSF sample (mean, SD) 66.1 (8.3) 61.8 (6.7) 67.6 (7.2) 70.6 (8.5) 

Female (N, %) 82 (59.9) 39 (69.6) 23 (59) 20 (47.6) 

Aβ42/Aβ40 (mean, SD) 0.048 (0.019) 0.068 (0.011) 0.039 (0.006) 0.030 (0.007) 

ptau/Aβ42 (mean, SD) 0.045 (0.034) 0.018 (0.006) 0.044 (0.014) 0.082 (0.034) 

ptau (pg/mL) (mean, SD) 23.5 (12.0) 15.9 (4.2) 18.6 (3.6) 38.1 (10.9) 

NFL (pg/mL) (mean, SD) 119.3 (74.2) 80.8 (25.9) 112.9 (57.1) 176.6 (94.4) 

neurogranin (pg/mL) (mean, SD) 902.4 (357.6) 752.9 (251.9) 711.7 (199.7) 1278.8 (303.3) 

alpha-synuclein (pg/mL) (mean, SD) 178.0 (77.6) 145.7 (58.1) 143.2 (45.9) 253.4 (71.3) 

YKL-40 (ng/mL) (mean, SD) 164.9 (62.5) 133.0 (37.3) 153.9 (48.5) 217.7 (67.6) 

sTREM2 (ng/mL) (mean, SD) 8.5 (2.5) 7.9 (2.2) 7.6 (2.0) 9.9 (2.8) 

IL-6 (pg/mL) (mean, SD)* 5.0 (4.5) 5.1 (4.7) 5.5 (5.5) 4.5 (2.7) 
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*2 samples were missing IL-6 measurements and were thus excluded from analyses of IL-6 
 133 

 134 

CSF proteomics descriptive analyses 135 

The nLC-MS/MS analysis, MaxQuant identification, and LFQ quantification generated a total of 2,040 136 

protein groups across the participants. After the proteomics quality control steps (Supplementary Table 137 

1, Supplementary Figure 3, Supplementary Figure 4, Supplementary Figure 5), 915 proteins remained 138 

(Supplementary Table 2). Included in these proteins were YKL-40 (correlation with immunoassay 139 

measurement = 0.352, P = 2.40 x 10-5), sTREM2 (correlation with immunoassay measurement of sTREM2 140 

= 0.490, P = 1.26 x 10-9), apolipoprotein E (APOE), amyloid precursor protein (APP; correlation with Aβ42 141 

= 0.136, P = 0.114), amyloid-like protein-1 (APLP1), and APLP2. The tau protein was not reliably 142 

quantified by nLC-MS/MS in our samples. Little difference in protein missingness was seen by AT 143 

category (Supplementary Figure 3, Supplementary Figure 4, Supplementary Figure 5). The CSF proteome 144 

showed a rich correlation structure with both larger clusters and smaller pockets of highly correlated 145 

proteins (Figure 1a, Supplementary Table 3). Further interrogation with PCA underscored this 146 

complexity, with the first 4 PCs collectively explaining only half (49.89%) of the total variance 147 

(Supplementary Figure 6), with the top 2 PCs not explained by either AT or sex (Supplementary Figure 7). 148 

The top PC (PC1) was weakly correlated with age at sample (correlation = 0.17; P = 0.045), and its top 5 149 

protein contributors (SEZ6L2, NFASC, L1CAM, PCDH1, and NRCAM) shared a theme of neuronal cell 150 

structure and adhesion. The second PC (PC2) was not correlated with age (correlation = -0.019; P = 151 

0.82), and its top 5 protein contributors (C4orf48, DAF [CD55], MEGF10, FBLN3, and CNTFR) shared a 152 

theme of neuropeptides and glial function. 153 

 154 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2022. ; https://doi.org/10.1101/2021.09.02.21262642doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.02.21262642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 155 

Figure 1: CSF proteomics descriptive analyses 156 

a) A correlation heatmap of the CSF proteins (n = 915) across all participants (n = 137) is shown. The dendrogram above the 157 

heatmap shows the results of hierarchical clustering of the proteins. An intricate set of correlation patterns can be seen, with 158 

both large clusters of proteins (e.g., top-left and bottom-right of the plot) and small local clusters seen throughout. b) An 159 

enrichment plot of the GO biological process terms among quantified proteins in the CSF compared to the entire human 160 

genome is shown. Significantly enriched processes included extracellular processes, processes involving axons and synapses, 161 

and immune system processes. c) A network representation of enriched DO terms among the CSF proteome is shown. The tan 162 

nodes represent significantly enriched disease terms, and the gray nodes represent proteins whose genes were associated with 163 

those terms. Three clusters of terms emerged: Alzheimer’s disease and tauopathy; coronary artery disease; and arteriosclerotic 164 

cardiovascular disease and arteriosclerosis. d) A cluster comparison plot of KEGG pathways between the three main clusters of 165 

CSF proteins is shown. The clusters were generated by Gaussian mixture modelling. Cluster one shows an enrichment of 166 

extracellular matrix and cell cycle pathways; cluster two shows enrichment of immune system-related pathways; and cluster 167 

three shows enrichment of a handful of other pathways. 168 

 169 
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Pathway enrichment analysis comparing the proteins quantified in the CSF to the entire human 170 

proteome revealed significant enrichment of terms related to extracellular, neuronal, immune system, 171 

and platelet pathways (Figure 1b, Supplementary Table 4). Significantly enriched DO pathways among 172 

the cohort included three groups of proteins with some small overlap: Alzheimer’s disease and 173 

tauopathy; coronary artery disease; and arteriosclerotic cardiovascular disease and arteriosclerosis 174 

(Figure 1c). 175 

Given the apparent presence of clusters of proteins based on the correlation structure, the CSF 176 

proteome was divided into 3 clusters based on a Gaussian mixture model (Supplementary Figure 8). 177 

These three clusters were then compared to each other for the differential enrichment of biological 178 

pathways (Supplementary Table 5). The KEGG terms revealed a pattern where the smallest cluster (2) 179 

was enriched for immune system and cholesterol pathways while the other two larger clusters were 180 

enriched for extracellular and metabolism-related pathways (Figure 1d). 181 

 182 

Protein-AT associations 183 

The ANCOVA tests revealed 61 statistically significant associations between proteins and AT category 184 

after multiple testing correction (P < 5.46 x 10-5), with a total of 496 (54.2%) of the proteins nominally 185 

associated (P < 0.05) (Supplementary Table 6). The differences in distribution of the top ten proteins 186 

revealed a number of different patterns in relation to amyloid and tau pathology (Figure 2a). Based on 187 

both the box plots and logistic regressions, some proteins increased (FABP3, SMOC1) consistently as AT 188 

pathology increased. Other proteins did not change from A- to A+ but did change from T- to T+ (GOT1, 189 

ALDOA, GDA, DDAH1, CRYM, and ACVR1B). Overall, there was an enrichment of statistical signal across 190 

the proteome that was not seen in the permutation sensitivity analysis (Figure 2b). Controlling for the 191 

APOE ε4 allele count did not substantially change the results, with 53 of the 61 proteins remaining 192 
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significantly associated when the APOE variable was added to the ANCOVA models (Supplementary 193 

Figure 9). Among the set of significantly associated proteins, a number of biological pathways were 194 

enriched relative to the full human proteome (Supplementary Table 7), including extracellular matrix, 195 

secretory granule, and vesicle lumen GO cellular component terms; peptidase regulation GO molecular 196 

function terms; and glucose metabolic KEGG pathways (Figure 2c). 197 

 198 
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 199 

 200 

Figure 2: Proteins associated with  201 

a) The distributions of the top 10 most significantly associated proteins with AT category are shown. A number of different 202 

patterns were seen across increasing AT pathology, including proteins that increased consistently, decreased consistently, or 203 

increased only with tau positivity. b) The quantile-quantile (Q-Q) plots of the protein-AT ANCOVA association tests are shown 204 
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above, with the distribution of P values shown separately for the original (“Not permuted”) and permuted data sets. Substantial 205 

signal enrichment was seen across the CSF proteome, with that signal absent in the permuted data set. c) The enriched KEGG 206 

pathways among the AT-associated proteins are shown, revealing a general perturbation of metabolic pathways. 207 

 208 

When the logistic regression model was used to test for the direction of effect between proteins and 209 

A+T+ (vs. A-T-), only 9 proteins were significantly associated with being A+T+, and all of these proteins 210 

were also significantly associated in the ANCOVA model (Supplementary Figure 10). All but 1 (FBLN1) of 211 

the proteins significantly associated with A+T+ were increased in A+T+ relative to A-T- (Supplementary 212 

Figure 11). 213 

 214 

Protein-CSF biomarker associations 215 

When each of the 9 CSF biomarkers (Aβ42/Aβ40, ptau, ptau/Aβ42, NFL, alpha-synuclein, neurogranin, 216 

YKL-40, sTREM2, and IL-6) was regressed on each CSF protein, a total of 636 protein-biomarker 217 

associations were statistically significant after Bonferroni correction (P < 6.07 x 10-6; Supplementary 218 

Table 8). As with the protein-AT associations, there was widespread association signal across the 219 

proteome with the CSF biomarkers that was not seen in the permutation test, except for IL-6, which had 220 

no significantly associated proteins (Supplementary Figure 12). The top 3 significantly associated 221 

proteins per biomarker are summarized in Table 2, with the full list of all statistically significant protein 222 

associations available in Supplementary Table 8. A total of 119 significantly enriched pathways among 223 

the biomarker-specific sets of significantly associated proteins was observed, with glucose metabolic 224 

pathways noted to be enriched among amyloid-related biomarkers (Supplementary Table 9). 225 

 226 

  227 
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Table 2. Top 3 significantly associated proteins for each biomarker 

Biomarker UniProt ID Entrez ID Protein Effect size 
Effect size 
(std. biomarker) P value 

AB42/AB40 Q9H4F8 64093 SMOC1 -0.010 -0.54 4.55E-14 

AB42/AB40 P40925 4190 MDH1 -0.009 -0.46 1.44E-09 

AB42/AB40 S4R371 2170 FABP3 -0.008 -0.43 2.69E-08 

alpha-synuclein Q16270 3490 IGFBP7 -50.56 -0.65 1.04E-18 

alpha-synuclein E7EUF1 5168 ENPP2 -49.04 -0.63 1.96E-15 

alpha-synuclein P12259 2153 F5 -45.88 -0.59 6.30E-15 

log10 NFL Q16270 3490 IGFBP7 -0.092 -0.43 4.28E-13 

log10 NFL P23142-4 2192 FBLN1 -0.091 -0.43 5.55E-12 

log10 NFL P12259 2153 F5 -0.084 -0.39 5.11E-11 

neurogranin E9PG71 2043 EPHA4 266.13 0.74 2.42E-25 

neurogranin O00451 2675 GFRA2 266.78 0.75 1.12E-23 

neurogranin Q8TAG5-2 222008 VSTM2A 259.95 0.73 8.53E-23 

ptau A0A087WZS0 66004 LYNX1 6.70 0.56 1.05E-14 

ptau P40925 4190 MDH1 6.78 0.57 3.29E-14 

ptau E9PG71 2043 EPHA4 6.62 0.55 3.81E-14 

ptau/AB42 Q9H4F8 64093 SMOC1 0.019 0.57 1.83E-15 

ptau/AB42 S4R371 2170 FABP3 0.018 0.53 1.68E-12 

ptau/AB42 P18669 5223 PGAM1 0.017 0.50 4.72E-11 

sTREM2 Q16270 3490 IGFBP7 -1.68 -0.67 3.67E-19 

sTREM2 E7EUF1 5168 ENPP2 -1.68 -0.67 5.54E-17 

sTREM2 P09486 6678 SPARC -1.47 -0.59 3.01E-13 

YKL-40 Q16270 3490 IGFBP7 -28.22 -0.45 4.54E-12 

YKL-40 E9PG71 2043 EPHA4 24.60 0.39 3.45E-09 

YKL-40 P12259 2153 F5 -24.43 -0.39 4.63E-09 

 228 

The network plot and subsequent community analysis of the protein-biomarker associations revealed 229 

three communities (modularity = 0.256) among the network (Figure 3). One community largely 230 

comprised the more traditional AD biomarkers of ptau, ptau/Aβ42, and Aβ42/Aβ40; a second 231 

community centered around the proteins associated with neurogranin; and the third community 232 

included the remaining biomarkers of alpha-synuclein, YKL-40, NFL, and sTREM2 (IL-6 had no significant 233 

protein associations and was not included). The largest number of shared associations across the 234 

biomarkers occurred among neurogranin, ptau, and alpha-synuclein, which shared 103 protein 235 

associations between at least two of those biomarkers (Supplementary Figure 13). 236 
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 238 

Figure 3: Network analysis of protein-biomarker associations 239 

A bipartite graph representation of the proteins significantly associated with the CSF biomarkers after Bonferroni correction is 240 

shown. The nodes representing the biomarkers are larger and in green. Proteins are represented as smaller nodes, with an edge 241 

to a biomarker representing a significant association between a protein and a biomarker. The colors of the protein nodes and 242 

underlying shaded regions correspond to three distinct communities identified with the fast greedy modularity optimization 243 

algorithm. Three such communities were identified. Community 1 included proteins associated with the more traditional AD 244 

biomarkers, such as ptau, ptau/Aβ42, and Aβ42/Aβ40. Community 2 centered around neurogranin, including many proteins 245 

uniquely associated with neurogranin. Community 3 included proteins associated with the remaining biomarkers of alpha-246 

synuclein, YKL-40, NFL, and sTREM2. No proteins were significantly associated with IL-6. Many proteins were shared in the 247 

center of the network, particularly among neurogranin, ptau, and alpha-synuclein. 248 

 249 

Replication of top pathway results 250 
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The glucose metabolism pathway (REACTOME ID R-HSA-70326) was significantly enriched among all 251 

three of the amyloid and tau measures, so the results of the 9 proteins from this pathway that were 252 

significantly associated with one of the amyloid or tau biomarkers were chosen for replication in the 253 

Knight ADRC, which used an aptamer-based instead of an MS-based proteomics platform. These 254 

proteins included MDH1, ALDOA, PGK1, TPI1, PGAM1, PKM, GOT1, ALDOC, and ENO1. Of these 9 255 

proteins, 5 of them (MDH1, ALDOA, PGK1, TPI1, PGAM1) were measured in the CSF in the Knight ADRC. 256 

For the protein associations with CSF amyloid levels, there was statistically significant (P < 0.0056) and 257 

directionally concordant replication of the associations of MDH1, ALDOA, and TPI1 with both levels of 258 

CSF ptau/Aβ42 and CSF ptau (Table 3). Associations of PGAM1 with CSF ptau/Aβ42 and CSF ptau were 259 

nominally significant in the replication analysis with P values closer to the replication significance 260 

threshold. For CSF amyloid levels, no signals were statistically significantly replicated, which might be in 261 

part due to a difference in amyloid outcome (Aβ42/40 vs. Aβ42). PGK1 was statistically significantly 262 

associated with both CSF Aβ42 and CSF ptau/Aβ42 levels, but in the opposite direction as observed, 263 

which may be related to technical differences in the underlying proteomics platforms for this protein. 264 

Looking at plasma levels of these same 9 proteins and their associations with these biomarkers, only 2 of 265 

the 9 proteins were analyzed in the Knight ADRC data set (TPI1 and PGAM1), but neither showed 266 

convincing evidence of association with the CSF biomarkers (Supplementary Table 10). 267 

 268 
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Table 3. Replication of implicated glucose metabolism-related proteins in the Knight ADRC 

 Discovery (Wisconsin ADRC)  Replication (Knight ADRC) 

 CSF AB42/40 CSF ptau/AB42 CSF ptau  CSF AB42 CSF ptau/AB42 CSF ptau 

Protein Beta P value Beta P value Beta P value   Beta P value Beta P value Beta P value 

MDH1 -0.0088 1.44E-09 0.016 3.21E-10 6.78 3.29E-14  -4.53 7.61E-01 0.043 4.13E-22 19.13 8.65E-56 

ALDOA -0.0070 1.75E-06 0.014 7.34E-08 6.59 1.26E-13  -3.73 8.02E-01 0.040 3.75E-19 17.50 1.35E-45 

PGK1 -0.0068 5.67E-06 0.013 5.08E-07 4.13 2.05E-05  82.96 1.49E-08 -0.016 5.21E-04 -1.12 4.04E-01 

TPI1 -0.0071 9.01E-07 0.012 4.51E-06 4.43 1.71E-06  22.07 1.36E-01 0.032 1.86E-12 15.80 1.78E-36 

PGAM1 -0.0081 4.35E-08 0.017 4.72E-11 5.38 1.16E-08  -39.12 8.06E-03 0.014 3.32E-03 3.57 7.90E-03 

ALDOC -0.0048 1.44E-03 0.008 2.25E-03 4.42 2.53E-06  . . . . . . 

ENO1 -0.0068 4.72E-06 0.011 3.86E-05 2.86 3.12E-03  . . . . . . 

GOT1 -0.0072 5.67E-07 0.014 2.25E-08 6.58 5.88E-14  . . . . . . 

PKM -0.0066 6.93E-06 0.014 5.75E-08 6.65 5.14E-14  . . . . . . 

A "." indicates a protein that was not present in the QC’d Knight ADRC data set.        
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When checked for replication in the CSF proteomics results of Higginbotham et al. 2020 (see their Table 

S2A(26)), 8 of these glucose metabolism-related proteins (MDH1, ALDOA, PGK1, TPI1, PGAM1, ALDOC, 

ENO1, and GOT1) showed a nominally significant increase in AD participants relative to controls (P < 

0.05), and all of these but TPI1 had an FDR < 0.05. In the brain proteomics results reported by Johnson et 

al. 2020 (see their Supplementary Table 2A(24)), 5 proteins (MDH1, PGK1, TPI1, ENO1, and PKM) 

showed at least a nominally statistically significant difference (P < 0.05) from the ANOVA analysis across 

controls, asymptomatic AD, and AD participants. Of these, TPI1 showed a statistically significant increase 

between asymptomatic AD and AD participants (P = 0.016) while the other 4 proteins (MDH1, PGK1, 

ENO1, and PKM) were statistically significantly increased in AD participants relative to controls (P range 

from 0.019 to 9.5 x 10-5). 

 

Secondary analysis of insulin-related proteins 

Of the insulin-related proteins of interest that had not been already included in the QC’d data set, only 

IGF-1 and AKT1 were identified in the proteomics workflow. AKT1 was only quantified in one subject and 

was thus not suitable for further analysis, but IGF-1 was quantified in 82 samples (59.9%) and analyzed 

further using only the non-imputed measurements. A trend in missing values by AT category was noted: 

44.6% of samples were missing IGF-1 in A-T-, 41.0% in A+T-, and 33.3% in A+T+. The ANCOVA analysis of 

IGF-1 did not show a statistically significant difference of the protein across AT categories (P = 0.170), 

though the distribution of the protein appeared to increase with amyloid positivity (Supplementary 

Figure 14). The association analysis between IGF-1 and the CSF biomarkers revealed a nominally 

significant negative association with Aβ42/Aβ40 (P = 0.011) and positive association with ptau/Aβ42 (P = 

0.009) (Supplementary Table 11, Supplementary Figure 15). 
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Secondary analysis of glycolysis and TCA cycle metabolites 

Of the 10 glycolysis and TCA cycle-related metabolites examined in the discovery analysis 

(Supplementary Table 12), only one (succinylcarnitine (C4-DC)) was statistically significantly associated 

with AT category after multiple testing correction (P = 1.57 x 10-6;Supplementary Table 13; 

Supplementary Figure 16). This metabolite was also statistically significantly associated with CSF 

neurogranin, alpha-synuclein, ptau, sTREM2, YKL-50, NFL, and ptau/Aβ42, in each case indicating that 

succinylcarnitine increases in the CSF along with increasing levels of the biomarker (Supplementary 

Table 14). In the independent replication cohort (n = 363) (Supplementary Table 15), succinylcarnitine 

showed a similar trend to what was seen in the discovery cohort. This association was weaker than that 

seen in the discovery cohort (P = 0.014), though the replication cohort distribution across the AT 

categories was strongly skewed to include more A-T- participants than the other two categories. More 

convincing were the succinylcarnitine-biomarker associations (i.e., with neurogranin, alpha-synuclein, 

ptau, sTREM2, YKL-50, and NFL), which were replicated for all biomarkers except for ptau/Aβ42. 

 

Multiomic prediction models for amyloid and tau 

The results of the multiomic amyloid and tau prediction models revealed a consistent pattern where the 

CSF proteome outperformed the other individual omic data sets in predicting positivity based on the 

core biomarkers of Aβ42/Aβ40, ptau/Aβ42, and ptau (Figure 4, Supplementary Table 16). The predictive 

model based on the CSF proteome (number of predictors selected ranged from 75-105) achieved a high 

AUC across for all three biomarkers (Aβ42/Aβ40 AUC = 0.839, ptau/Aβ42 AUC = 0.920, and ptau AUC = 

0.954), performing slightly better than even the integrative model when predicting ptau or ptau/Aβ42. 

For Aβ42/Aβ40 and ptau positivity, the sensitivity and specificity values further demonstrated the 
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relative superiority of the proteomics model. For Aβ42/Aβ40 positivity, the sensitivity of the CSF 

proteome model was 0.800 compared to much lower values (0.050–0.450) from the other models. For 

ptau positivity, the specificity of the CSF proteome model (0.800) was much higher than the other 

models (0.000–0.200). In all cases, the genome-based model performed poorly (AUCs ranged from 

0.525–0.679) (Figure 4a). The 2D histograms showing the performance of the CSF proteome relative to 

the raw biomarker values highlighted the effective classification by the proteomic models with effective 

delineation between positive and negative amyloid statuses (Figure 4b–d). 

 

 

Figure 4: Multiomic predictive model performance for amyloid and tau 
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The ability of different omic data sets to predict the key AD CSF biomarkers for amyloid and tau is summarized. a) The receiver 

operator characteristic (ROC) curves for Aβ42/Aβ40, ptau/Aβ42, and ptau are shown for the held-out testing data set 

predictions. Each omic prediction set is plotted with a different line. b-d) A 2D density plot summarizes the actual values and 

predicted probability of positivity for each CSF biomarker (Aβ42/Aβ40, ptau/Aβ42, and ptau, respectively) from the proteomic 

predictor models applied to the held-out testing data set. The text labels in the corners refer to the prediction categories: TN = 

true negative, FP = false positive, TP = true positive, and FN = false negative. The vertical red line indicates the threshold for a 

hard classification of biomarker positivity from the prediction models. The horizontal red line indicates the binary threshold for 

the CSF biomarker determined from previous work (see Methods). 

 

DISCUSSION 

In this study, we completed four main CSF proteomics analyses with multiple and diverse sources of 

independent replication: 1) a characterization of the CSF proteome in an AD-focused cohort; 2) a 

differential proteomics analysis centered on the ATN framework rather than clinical diagnoses; 3) an 

interrogation of the individual and pathway-level associations of the proteome with a robust set of 

neurodegeneration and neuroinflammation biomarkers; and 4) a comparative multiomic predictive 

analysis of amyloid and tau using different omic data sets on the same set of participants. We found that 

the results of the proteomics discovery and replication analyses highlighted altered (namely increased) 

levels of glucose-metabolism-related proteins in the CSF. Further triangulation with CSF metabolomics 

data on the same participants from the discovery proteomics cohort and independent replication 

identified a positive association of succinylcarnitine with ptau and markers of neurodegeneration and 

neuroinflammation. These results provide new insight into the specifics and timing of glucose metabolic 

dysregulation in AD. 

Using the pipeline we developed from the pilot study, we successfully quantified 915 proteins that 

passed our QC metrics across 137 participant CSF samples. Our participant population covered the 
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spectrum of amyloid and tau positivity in a largely preclinical cohort that, in combination with the rich 

set of standard and novel CSF biomarkers of neuroinflammation and neurodegeneration, gave us a 

window into the proteomic changes occurring as amyloid and tau accumulate. Among the CSF proteins 

we quantified, significantly enriched functional annotation included extracellular matrix, axonogenesis, 

humoral immune system, complement system, and platelet pathways (Figure 1b), which was similar to 

previous work despite the difference in cohort (here, AD-focused, compared to typical or healthy CSF 

samples)(27–32). Also similar to previous work was our finding that there was no discernible difference 

by sex among the top 2 PCs of our CSF proteome (Supplementary Figure 7), echoing a previous study 

where unsupervised hierarchical clustering failed to distinguish samples by sex(29), though we note that 

such results do not preclude sex differences in individual AD-related proteins. When our CSF proteome 

was examined for significantly enriched disease-related proteins, we identified enriched clusters of 

proteins related to AD and tauopathy. This finding underscored results from the Zhang et al. study of 

2,513 proteins from 14 CSF samples that showed an enrichment of proteins related to neurological 

disease in the CSF(30), though we also identified enriched clusters of proteins related to cardiovascular 

disease among the CSF proteome (Figure 1c), which could potentially reflect differences in the studied 

population. 

We identified a total of 61 AT-associated CSF proteins after multiple testing correction (Supplementary 

Table 6), with 43 of these proteins having been previously implicated in AD. The protein here with the 

strongest association with AT category was the SMOC1 protein, which increased in the CSF with 

increasing pathology along the AT categories. The increase of SMOC1 with increasing pathology or 

disease severity has been noted before(26, 33, 34), and the protein has also been found to partly 

colocalize with amyloid plaques(35). Fatty acid binding protein 3 (FABP3), which was found to increase 

across AT categories in this study, is another example. FABP3 has been commonly associated with AD 

across CSF proteomics studies(34, 36, 37). However, several proteins commonly associated with AD 
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were not significantly associated with AT category here, including APOE, clusterin, and 

secretogranin(37). Although the reason for this lack of association is unclear, it could be due to the 

present cohort being largely preclinical. On the other hand, we identified several novel protein 

associations, including ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5, 

noted to possibly be involved in neuronal cell communications(38)), heparin cofactor2 (SERPIND1, 

previously associated with multiple sclerosis(39)), extracellular matrix protein 2 (ECM2, jointly 

associated with iron along with APOE(40)), and glycoprotein endo-alpha-1,2-mannosidase-like protein 

(MANEAL, where variants in both MANEAL and OSTM1 have been observed in connection with a 

neurodegenerative disorder(41)). The enriched KEGG pathways among the AT-associated proteins were 

carbon metabolism (hsa01200), biosynthesis of amino acids (hsa01230), and glycolysis/gluconeogenesis 

(hsa00010), and all three of these enriched pathways were enriched whether the full human proteome 

or only our 915 CSF proteins were used as the background distribution. The enriched GO terms varied 

but included multiple pathways related to the regulation of peptidases, some of which have been shown 

to be related to AD and amyloid metabolism(42, 43). The differential expression of proteins related to 

metabolism has been seen in other CSF proteomics cohorts(24, 26, 36, 44), but although protein 

peptidases are known to be present in a large number in the CSF proteome(28), there is comparatively 

less proteomics work highlighting the role of peptidases beyond a study by Whelan et al. that found up-

regulated endopeptidases in AD patients relative to controls(23). 

One of the major trends in AD research has been the movement toward a biomarker-based definition of 

AD(11). Recent CSF proteomics work in AD has explored the relationship between CSF protein levels and 

various AD biomarkers, especially measures of amyloid and tau pathology(34, 45). We replicated 

numerous previously reported protein associations with CSF levels of ptau (e.g., SMOC1, BASP1, and 

GAP43)(34, 45), but failed to replicate any of the proteins significantly associated with CSF amyloid, 
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though we note that our analysis used Aβ42/Aβ40 as the outcome rather than Aβ42 since Aβ42/Aβ40 is 

considered to be a better biomarker for AD than Aβ42 alone(46). 

Unique to this study was the inclusion of a more comprehensive set of CSF biomarkers relevant to AD, 

neurodegeneration, and neuroinflammation. Each biomarker had its own unique set of significantly 

associated proteins, but the network community analysis revealed that the affected proteins for the 

biomarkers tended to separate between the traditional AD biomarkers of amyloid and tau, neurogranin, 

and the remaining biomarkers. Notably, IL-6—a cytokine that has been explored as a possible marker of 

AD-related neuroinflammation—was alone in lacking statistically significant protein associations, 

supporting a meta-analysis that found no significant difference in peripheral IL-6 levels between AD 

cases and controls(47). Collectively, our results identify broadly different protein networks associated 

with the classical AD biomarkers compared to more general markers of neurodegeneration and 

neuroinflammation. 

The pathway enrichment analysis of biomarker-associated proteins underscored the differences among 

these protein groups (Supplementary Table 9). Among the amyloid and tau biomarkers, the associated 

proteins shared a common theme of enrichment of glucose metabolism pathways, including two 

proteins (MDH1 and ALDOA) that showed evidence of association with AD diagnosis in the Knight ADRC 

replication data set and in one or both of the AD MS proteomics data sets from Higginbotham et al. 

2020(26) or Johnson et al 2020(24). MDH1 levels have been associated with AD in the past, although the 

direction of effect has not been consistent(48–50). Here, MDH1 was observed to increase with amyloid 

and tau pathology. ALDOA has been previously positively associated with CSF tau levels(34), as was the 

case here, and also associated with the APOE ε4 allele(51). Glucose metabolism, which is the major 

source of energy for the brain, has long been known to show signs of dysfunction in AD even before the 

emergence of symptoms(52–56). Our findings here, where 74% of participants were cognitively 

unimpaired, support the emergence of glucose metabolic dysregulation presymptomatically as amyloid 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2022. ; https://doi.org/10.1101/2021.09.02.21262642doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.02.21262642
http://creativecommons.org/licenses/by-nc-nd/4.0/


and tau begin to show alterations. Further underscoring potential abnormalities in energy metabolism 

as AD develops is the observation that 18 of the 61 proteins associated with AT here have been 

previously connected with insulin resistance, including pyruvate kinase (PKM), alpha-enolase (ENO1), 

and triosephosphate isomerase (TPI), which in a previous study were found to be elevated in 

participants with type 1 diabetes(57). These proteins were statistically significantly associated with one 

or more of the three amyloid and tau biomarkers. Importantly, the enrichment of glucose metabolic 

pathways among the amyloid and tau-related proteins in this study was not seen among the other two 

communities of biomarkers, which instead tended to be enriched for extracellular matrix, cell junctions 

and adhesion, and other pathways. Taken together, these results provide evidence for a dysregulation of 

the glucose metabolic proteome that is more specific to amyloid and tau than to biomarkers of 

neuroinflammation or neurodegeneration. 

The secondary analysis of IGF-1 further suggests possible abnormalities in insulin signaling. IGF-1, which 

can bind insulin receptors(58), has been previously implicated in AD in studies that found decreased 

IGF1 expression in brain tissue and evidence of IGF-1 resistance(59–61). Here, we found increased levels 

of CSF IGF-1 with increasing amyloid pathology, though the lower sample size in the IGF-1 analysis 

warrants caution in the interpretation. We also observed a statistically significant decrease in IGFBP7 

levels from A-T- to A+T+ and a negative correlation with sTREM2, alpha-synuclein, neurogranin, ptau, 

NFL, and YKL-40. IGFBP7 can bind to IGF1, and the levels of IGFBP7 have been noted to increase in brain 

tissue in both mouse models of AD and AD patients(62). The difference in the observed direction of 

effect might be related to differences between the brain tissue and CSF, though it is worth further 

investigation.  

The secondary analysis of specific metabolites in the glycolysis and TCA cycle pathways provided a 

greater depth of insight into the proteomic changes detected in the main analysis. Among the 

participants whose CSF samples were included in the proteomics analysis, only one of the 10 CSF 
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metabolites showed a significant association with AT category—succinylcarnitine (C4-DC)—which 

increased in the A+T+ group relative to both the A-T- and A+T- groups. A similar trend was observed in 

the independent replication cohort, though with only nominal significance (P < 0.05;Supplementary 

Figure 16). Succinylcarnitine is a type of acylcarnitine, which typically play a role in metabolism by 

transporting fatty acids from the cytoplasm into the mitochondria for beta-oxidation(63). 

Succinylcarnitine may also play a role in the transfer of succinyl groups between the mitochondria and 

the cytosol through the carnitine shuttle(64). With regard to the TCA cycle, succinyl-CoA (one of the TCA 

cycle intermediates) may be esterified into succinylcarnitine. In mouse models of aging and AD, 

succinylcarnitine levels were found to increase significantly in the brain hippocampus along with 

multiple other changes to metabolite levels from glycolysis and the TCA cycle(65). In another mouse 

model of aging, succinylcarnitine increased significantly in the hippocampi of older mice, implicating a 

diversion from succinate in the TCA cycle and broader issues with TCA cycle metabolism. Our results 

here provide evidence in humans that implicates succinylcarnitine in AD in conjunction with changing 

tau levels, complementing previous AD genomics findings relating a nearby enzyme (succinyl-CoA ligase, 

SUCLG2) with CSF amyloid levels(66). Moreover, recent AD metabolomics work in the blood and brain 

identified general acylcarnitine dysregulation and specifically found decreased levels of short-chain 

acylcarnitines(67) (the kind of acylcarnitine that succinylcarnitine is), which potentially indicates that 

either the CSF or succinylcarnitine is an exception to this general trend. More broadly, our proteomics 

and follow-up metabolomics analyses reveal a situation where the protein machinery of glucose 

metabolism is upregulated as amyloid levels change, while succinylcarnitine levels increase only when 

tau begins to change, potentially signaling problems with the metabolic pathways trying to keep up with 

the demands imposed by AD. Furthermore, given the known increases in acylcarnitines more generally 

in aging(68, 69), it is possible that increasing succinylcarnitine could be connected with oxidative stress 
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in the brain as well. Additional joint multiomics work will be needed to pinpoint the timing and context 

of these changes in succinylcarnitine levels and their implications. 

A potential consequence of altered glucose metabolism is a disruption in autophagy and 

proteostasis(52), which has been observed in AD(70–73). Although many proteasome-relevant proteins 

were not quantified in our CSF data set, several heat shock proteins, which often help regulate protein 

folding and degradation, were, including the chaperone protein HSP90AA1. We observed a statistically 

significant negative association of HSP90AA1 levels with Aβ42/Aβ40 and a significant positive 

association with ptau/Aβ42, consistent with worse pathology. Interestingly, cathepsin D (CTSD), a 

lysosomal protease that has been targeted by drugs seeking to modulate autophagy in AD mouse 

models(73, 74), was statistically significantly associated with sTREM2, alpha-synuclein, neurogranin, NFL, 

and YKL-40, but not with amyloid or tau (Supplementary Table 8). Moreover, we observed an 

enrichment of peptidase-related pathways among proteins associated with AT category, ptau, and 

neurogranin (Supplementary Table 7, Supplementary Table 9). Further potential evidence implicating 

proteostasis was the substantial enriched association signal across the proteome, with 54.2% (496/915) 

of CSF proteins being nominally associated with AT category and substantial deviation from the 

expected null distribution across the proteome (Figure 2b). These nominally associated proteins 

included many proteins known to form intracellular or extracellular deposits in disease(71), including 

APP, TTR, B2M, APOA1, APOA2, APOA4, APOC2, APOC3, LYZ, CST3, SOD1, IGHG1, IGHG2, IGHG3, and 

HBB (Supplementary Table 6). Although individual protein associations and pathway enrichment have 

tended to be the focus of previous work, several studies have reported similar widespread enrichment 

among the proteome, including a case-control study of AD diagnosis with 487 of 1,968 (24.7%) of 

proteins nominally associated with AD diagnosis(75) and a study of protein correlations with CSF total 

tau, ptau, and Aβ42 where 63 out of 106 proteins (59.4%) were associated with at least one of the 

biomarkers(45). Indeed, one core feature of AD proteomics work historically has been the identification 
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of numerous AD-associated proteins that nonetheless do not replicate upon further study(36, 37). There 

are technical and study design reasons why such protein associations may not replicate easily(36), and 

unmeasured confounding could certainly explain some of the signal enrichment, but another potential 

reason could be dysregulated proteostasis which leads to greater variation in the levels of many 

proteins. Finally, the relative importance of the CSF proteome over the CSF metabolome, genome, and 

demographic information in predicting relevant AD biomarkers, seen not just here but in multiple 

studies where high prediction performance was achieved from the CSF proteome(23, 31, 76), further 

supports the unique relevance of the proteome in AD pathophysiology. 

A few limitations deserve mention. First, the sample size and studied population were both limited. 

Though our sample size of 137 was comparable to other CSF proteomics work in AD, analysis in a larger 

sample would provide more precision, particularly for the novel joint multiomic analyses presented 

here. Our study was also limited to individuals of European ancestry, which limits its generalizability to 

broader populations. Another limitation of our study was the lack of the N (neurodegeneration) 

category in our main analyses. Expanding the categories from AT only to all relevant combinations of 

ATN would allow for more nuanced analysis. In a similar vein, having comparison groups for other non-

AD causes of dementia would allow for better triangulation of AD-specific proteomic changes. We note 

as well that the Knight ADRC replication data set used a different proteomics platform from the 

discovery data set (aptamer-based vs. MS-based) and that the correlation between the MS-based and 

immunoassay-based measurements of YKL-40 and sTREM2 were only moderate. One the one hand, 

technical differences between the platforms could have introduced different biases or issues in protein 

identification that might have impacted the observed results. On the other hand, one way to deal with 

potential differences in proteomics platforms across cohorts is to seek replication through different 

technologies(77, 78). Here we used such a cross-platform approach. The presence of concordant 

replication of association for 3 out of 5 overlapping proteins despite the difference in platform shows 
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the robustness of these CSF signals to the choice of proteomics platform. Furthermore, the additional 

replication of 8 CSF proteins in the Higginbotham et al. and 5 brain proteins in the Johnson et al. data 

sets provide further evidence of the robustness of the associations reported here. As additional large AD 

proteomics data sets develop with a variety of proteomics platforms and outcome measures, further 

replication of our results will be useful. Finally, instead of using the entire omic data sets (or outcome-

blind predictor reductions, as was the case with the genetic data set), additional filtering steps that 

narrowed down to predictors more likely to be associated with AD would provide even better prediction 

for the amyloid and tau measures. 

Nevertheless, our study provides a thorough investigation of the CSF proteome and its relationship to 

AD, AD biomarkers, and other omics. Among the numerous proteins associated with AD and CSF 

biomarkers of neurodegeneration and neuroinflammation, we demonstrated that the CSF proteome 

associated with amyloid and tau was enriched for glucose metabolic pathways in contrast to the other 

biomarkers whose associated proteins were enriched for more extracellular and structural pathways. 

Follow-up independent proteomic replication analyses and CSF metabolomics interrogation provided 

robust support for the increase in the CSF of these proteins and highlighted succinylcarnitine as a 

relevant metabolite, corroborating several previous lines of AD experimental and genomic evidence. In 

total, these results showcase the power of multiomic analyses and provide a new look at the CSF 

proteome in AD in relation to amyloid and tau.  

 

MATERIALS AND METHODS 

Experimental design 

The data in this study came from two longitudinal AD cohorts of middle- and older-aged adults: the 

Wisconsin Registry for Alzheimer’s Prevention (WRAP)(79) and the Wisconsin Alzheimer’s Disease 
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Research Center (ADRC)(80) (Table 1, Supplementary Figure 1). Briefly, WRAP includes participants 

enriched for a parental history of AD dementia who were largely between the ages of 40 and 65 at the 

time of enrollment, fluent in English, able to perform neuropsychological testing, without a diagnosis or 

evidence of dementia at baseline, and without any health conditions that might prevent participation in 

the study. The ADRC study includes participants from one of several subgroups: mild late-onset AD, MCI, 

cognitively unimpaired middle-aged adults enriched for a parental history of presumed AD dementia, 

and age-matched healthy older controls (age > 65). Briefly, the ADRC participants were over the age of 

45, with decisional capacity, and without a history of certain medical conditions (like congestive heart 

failure or major neurologic disorders other than dementia) or any contraindication to biomarker 

procedures. Participants in both the WRAP and ADRC cohorts were given diagnoses of AD, MCI, 

cognitively unimpaired, and others that were reviewed by a consensus review committee that included 

dementia-specialist physicians, neuropsychologists, and nurse practitioners(79). The National Institute 

of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA)(6) and NIA-AA(7) criteria were used in defining the clinical diagnoses 

without reference to the participants’ CSF biomarker status. This study used the STROBE cohort 

reporting guidelines(81) and was performed as part of the GeneRations Of WRAP (GROW) study, which 

was approved by the University of Wisconsin Health Sciences Institutional Review Board. Participants in 

the ADRC and WRAP studies provided written informed consent. 

 

CSF biomarkers 

The CSF samples used for the biomarker analyses were acquired from lumbar punctures (LPs) using a 

uniform preanalytical protocol between 2010 and 2018 as previously described(82). Samples were 

collected in the morning using a Sprotte 24- or 25-gauge atraumatic spinal needle, and 22 mL of fluid 
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was collected via gentle extraction into polypropylene syringes and combined into a single 30 mL 

polypropylene tube. After gentle mixing, samples were centrifuged to remove red blood cells and other 

debris. Then, 0.5 mL CSF was aliquoted into 1.5 mL polypropylene tubes and stored at -80 degrees 

Celsius within 30 minutes of collection. 

All CSF samples were assayed between March 2019 and January 2020 at the Clinical Neurochemistry 

Laboratory at the University of Gothenburg. CSF biomarkers were assayed using the NeuroToolKit (NTK) 

(Roche Diagnostics International Ltd, Rotkreuz, Switzerland), a panel of automated Elecsys® and robust 

prototype immunoassays designed to generate reliable biomarker data that can be compared across 

cohorts. Measurements with the following immunoassays were performed on a cobas e 601 analyzer 

(Roche Diagnostics International Ltd, Rotkreuz, Switzerland): Elecsys β-amyloid (1–42) CSF (Aβ42), 

Elecsys Phospho-Tau (181P) CSF (ptau), and Elecsys Total-Tau CSF, β-amyloid (1–40) CSF (Aβ40), and 

interleukin-6 (IL-6). The remaining NTK panel was assayed on a cobas e 411 analyzer (Roche Diagnostics 

International Ltd, Rotkreuz, Switzerland), including markers of synaptic damage and neuronal 

degeneration (neurogranin, neurofilament light protein [NFL], and alpha-synuclein) and markers of glial 

activation (chitinase-3-like protein 1 [YKL-40] and soluble triggering receptor expressed on myeloid cells 

2 [sTREM2]). 

A total of nine established CSF biomarkers for AD were analyzed in this study: the Aβ42/Aβ40 ratio, 

ptau, the ptau/Aβ42 ratio, NFL, alpha-synuclein, neurogranin, YKL-40, sTREM2, and IL-6. Since the CSF 

biomarker measurements were to be used as outcomes, each biomarker was assessed for skewness 

using the skewness function of the R package moments (version 0.14)(83). Any biomarker with a 

skewness ≥ 2 was transformed with a log10-transformation to better meet the normality assumption of 

regression. The outcomes that were log10-transformed were NFL and IL-6. 
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Samples used in this study were then assigned to pathological categories from the NIA-AA ATN research 

framework(11) using binary cut-offs for CSF amyloid and tau positivity. The development of these 

research cut-offs is described in detail elsewhere(82). Briefly, cut-offs were estimated via ROC analysis 

on a subsample of n = 185 participants (cognitively impaired and unimpaired) who underwent [11C] PiB-

PET imaging within two years of an LP. Using the Matlab perfcurve function(84) with an equally 

weighted cost function(85), the optimal Aβ42/Aβ40 threshold was 0.046 and the optimal ptau/Aβ42 

threshold was 0.038. Thresholds for ptau181 were determined by establishing a reference group of 223 

CSF amyloid (Aβ42/Aβ40) negative, cognitively unimpaired younger participants (ages 40-60 years). 

Biomarker positivity thresholds for these analytes were set at +2 standard deviations (SD) above the 

mean of this reference group (ptau threshold = 24.8 pg/mL). In this study, A+ and T+ were defined based 

on the CSF Aβ42/Aβ40 and ptau thresholds, respectively. The final pathological categories for this study 

included amyloid negative and tau negative (A-T-); amyloid positive and tau negative (A+T-); and 

amyloid positive tau positive (A+T+). The fourth possible category of amyloid negative and tau positive 

(A-T+) was not included in this study as these samples are considered to represent non-AD pathological 

change(11). 

 

CSF metabolomics 

All samples used in this study had CSF metabolomics data available from the WRAP and ADRC cohorts 

that had been generated in previous work. The details of the CSF sample collection, handling, and 

metabolomics profiling have been previously described(86, 87). Briefly, fasting CSF samples were drawn 

from study participants in the morning through LP and then mixed, centrifuged, aliquoted, and stored at 

-80 degrees Celsius. Samples were kept frozen until they were shipped overnight to Metabolon, Inc. 

(Durham, NC), which similarly kept samples frozen at -80 degrees Celsius until analysis. Metabolon used 
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Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) to conduct 

an untargeted metabolomics analysis of the CSF samples. The metabolites were then annotated with 

metabolite identifiers, chemical properties, and pathway information. Metabolite measurements were 

divided by the median measurement for that metabolite across all samples. Missing values for 

xenobiotic metabolites were imputed to 0.0001, while missing values for non-xenobiotic metabolites 

were imputed to half of the minimum value among all other measured samples for that metabolite. 

The initial data set contained 412 metabolites from 1,172 CSF samples across 687 unique individuals. A 

total of 13 metabolites that were missing for ≥ 50% of samples were removed. One sample was 

removed for missing ≥ 40% of metabolite values. A total of 9 metabolites with low variance 

(interquartile range = 0) were then removed. A log10 transformation was applied to all metabolite 

values. A total of 220 samples from a clinical trial were excluded from analysis. The processed data set 

contained 390 metabolites quantified on 951 CSF samples from 609 unique individuals, including all but 

one of the CSF samples on which proteomics data were generated for this study. 

 

Genome-wide genotyping 

Genome-wide genotypes were also available for all samples in this study. The genotyping in both the 

WRAP and ADRC had been previously conducted(88). For the WRAP cohort, DNA from whole blood 

samples were genotyped with the Illumina Multi-Ethnic Genotyping Array at the University of Wisconsin 

Biotechnology Center(87). Pre-imputation quality control (QC) steps included removing samples and 

variants with a high missingness (> 5%) or inconsistent genetic and self-reported sex. Samples from 

individuals of European descent were imputed using the Michigan Imputation Server(89) and the 

Haplotype Reference Consortium (HRC) reference panel(90). Variants with poor quality (R2 < 0.8) or out 

of Hardy-Weinberg equilibrium (HWE) were removed after imputation, leaving a total of 1,198 samples 
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with 10,499,994 single nucleotide polymorphisms (SNPs). In the ADRC, whole blood samples were 

genotyped by the Alzheimer’s Disease Genetics Consortium (ADGC) at the National Alzheimer’s 

Coordinating Center (NACC) using the Illumina HumanOmniExpress-12v1_A, Infinium 

HumanOmniExpressExome-8 v1-2a, or Infinium Global Screening Array v1-0 (GSAMD-24v1-

0_20011747_A1) BeadChip assay. Initial quality control was conducted on each chip’s data separately, 

removing variants or samples with high missingness (> 2%), out of HWE (P < 1x10-6), or with inconsistent 

genetic and self-reported sex. The remaining samples were then imputed with the Michigan Imputation 

Server, phased using Eagle2(91), and imputed to the HRC reference panel. As before, variants of low 

quality (R2 < 0.8) or out of HWE were removed. The data sets from the different chips were then merged 

together, leaving a data set with 377 samples of European descent and 7,049,703 SNPs. The WRAP and 

ADRC data sets were then harmonized to each other and to the 1000 Genomes Utah residents with 

Northern and Western European ancestry (CEU)(92) data set, using the GRCh37 genome build. 

Ambiguous SNPs were removed, and then the remaining SNPs were aligned to the same strand and 

allele orientations as the ADRC data set. 

The 137 samples from this study were then extracted from this combined genetic data set and further 

processed using PLINK(93) (v1.90b6.3). To ensure sufficient data were available for use in the prediction 

models, only SNPs with no missing data and with a minor allele count of 20 or greater among the 137 

samples were retained. Linkage disequilibrium (LD) pruning was then applied using a window size of 

1000 kb, an R2 threshold of 0.1, and the 1000 Genomes CEU samples as the reference data set. The 

pruning resulted in a data set of 38,652 SNPs. 

 

APOE genotyping 
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Each sample was additionally assigned an APOE genotype based on the participant’s combination of the 

ε2, ε3, and ε4 alleles for APOE from a separate set of genotyping. DNA was extracted from whole blood 

samples, which was then genotyped for the APOE alleles using competitive allele-specific PCR-based 

KASP genotyping for rs429358 and rs7412(86). 

 

Proteomics sample selection 

Based on the results of our pilot study for CSF proteomics(25), we had estimated a priori that a sample 

of approximately 150 would be sufficient for 80% power to detect most of the observed protein-AD 

diagnosis associations from the original matched case-control analyses in the pilot using the R package 

pwr (version 1.3-0)(94), though we note that the final study design used here differed from the pilot in 

that three participant groups were used and age and sex were controlled for in the analyses instead of 

using a matched design (Supplementary Figure 2). The process of selecting samples for CSF proteomics 

generation began by considering all CSF samples from fasted, successful LPs (n = 1,440) from 823 unique 

participants across WRAP and ADRC. From there, each CSF sample was matched to its closest set of CSF 

biomarker data, CSF metabolomics data, and consensus conference diagnosis. Samples were excluded if 

there was insufficient material for proteomics analysis, if they were part of a clinical trial, or if they had 

been used already in our pilot study. To simplify the downstream analyses, only one sample (the most 

recent) per participant was considered when there were multiple samples. An approximately equal 

number of samples per AT-defined subgroup (A-T-, A+T-, A+T+) was selected, prioritizing samples with 

available genomic data and metabolomic data. A total of 140 samples were selected to have proteomics 

data generated. 

 

Protein extraction and digestion 
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CSF protein concentration was determined by protein BCA assay (Thermo Scientific). CSF aliquots were 

moved to 96-plates and dried down using a SpeedVac Concentrator (Thermo Scientific) before being 

resuspended in a lysis buffer consisting of 10 mM TCEP, 40 mM CAA, 100 mM Tris pH 8, and 8M urea. 

The sample solution was then diluted to 25% strength using 100 mM Tris pH 8 before the addition of 

protease. Trypsin was added to the protein solution at an approximate ratio of 50:1 w/w and digested 

overnight at ambient temperature. The digestion reaction was quenched by acidification using TFA. 

Digested peptides were desalted using Strata-X Polymeric Reverse Phase plates (Phenomenex) before 

being dried down in the SpeedVac Concentrator overnight. Dried down samples were resuspended in 

0.2% FA and peptide concentration was determined using a peptide BCA (Thermo Scientific). Peptide 

samples were injected directly from the 96-well plates.  

 

Offline fractionation 

In order to increase proteomic depth and protein identifications, offline chromatographic fractionation 

of a set of pooled representative samples was performed. Pooled samples for each of the three disease 

groups were created by combining 10 µL of CSF from each sample in that disease group. These three 

pooled samples were then prepared using the extraction and digestion protocol described above. The 

three desalted, digested peptide solutions were then fractionated using high-pH reverse-phase liquid 

chromatography. Separation was performed using an Agilent Infinity 2000 HPLC with a 150 mm C18 

reverse-phase column (Waters, XBridge Peptide BEH, particle size 3.5 µm). Mobile phase buffer A was a 

freshly prepared mixture 10 mM ammonium formate pH 9.5, and mobile phase buffer B was a freshly 

prepared mixture of 80% MeOH, 10 mM ammonium formate pH 9.5. The gradient method was 20 

minutes in length with fractions collected from minute 5 to minute 20, with a flow a rate of 800 nL/min 

across the entire method. The method initiated with a concentration of 5% B before increasing to 35% 
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by minute 2. Percent B increased to 100% by 13 minutes. From 5 to 20 minutes, 32 fractions were 

collected in round-bottom 96 well plates in a time-based manner. Fractions were concatenated into a 

total of 16 by combining every other column in the collection plate. Fractionated samples were injected 

directly from the collection plate.  

 

Online chromatography 

To quantify the proteins in the individual CSF samples, we used a method previously developed in our 

pilot study(25): a single-shot nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) 

method for quantitative and fast analysis of CSF protein extracts. Reverse phase columns used online 

with the mass spectrometer were packed using an in-house column packing apparatus described 

previously(95). In brief, 1.5 µm BEH particles were packed into a fused silica capillary purchased from 

New Objective (PicoTip, Stock # PF360-75-10-N-5) at 30,000 psi. During online LC separations, capillary 

was heated to 50° C and interfaced with mass spectrometer via an embedded emitter. For online 

chromatography, a Dionex UltiMate 300 nanoflow UHPLC was used with mobile phase A consisting of 

0.2% FA and mobile phase B consisted of 70% ACN, 0.2% FA. A flow rate of 310 nL/min was used 

throughout with the method increasing from 0% to 7% B over the first four minutes. Percent B then 

increased to 49% B by 59 minutes before a wash step of 100% B from 62 to 67 minutes. Method finished 

with an equilibration step from minute 68 to 78 of 0% B. 

 

Tandem mass spectrometry 

Peptides eluting from the column were ionized by electrospray ionization and analyzed using a Thermo 

Orbitrap Eclipse hybrid mass spectrometer. Survey scans were collected in the Orbitrap at a resolution 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2022. ; https://doi.org/10.1101/2021.09.02.21262642doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.02.21262642
http://creativecommons.org/licenses/by-nc-nd/4.0/


of 240,000 with a normalized AGC target of 250% (1e6) with Advanced Precursor Determination 

engaged across the range of 300–1400 m/z. Precursors were isolated for tandem MS scans using a 

window of 0.5 m/z, with a dynamic exclusion duration of 22 seconds and a mass tolerance of 15 ppm. 

Precursors were dissociated using HCD with a normalized collision energy of 25%. Tandem scans were 

taken over the range 130–1350 m/z using the “rapid” setting with a normalized AGC target of 300% 

(3e4) and a maximum injection time of 18 ms.  

The resulting raw data files were searched in MaxQuant(96, 97) using fast LFQ and a full human 

proteome with isoforms downloaded from UniProt (downloaded June 14, 2017). Oxidation of 

methionine and acetylation of the N terminus were allowed as variable modifications, and 

carbamidomethylation of cysteine was set as a fixed modification. Proteins were searched using a false 

discovery rate (FDR) of 1% with a minimum peptide length of 7 and a 0.5 Da MS/MS match tolerance. 

Matching between runs was utilized, applied with a retention time window of 0.7 minutes. Protein 

abundance data were extracted in the form of LFQ Intensity from the “proteinGroups.txt” output file. 

Throughout this manuscript, each protein group is referred to by the first listed majority protein from its 

annotation from MaxQuant. The protein data were annotated with Entrez IDs (via R package 

org.Hs.eg.db(98), version 3.11.4), UniProt(99) IDs, and gene information (GENCODE(100), version 37, 

and the HUGO Gene Nomenclature Committee, HGNC, database(101)). When the gene annotations 

conflicted or were absent from one of these databases for a given UniProt ID, the gene identifiers were 

taken in the order of resources listed. Although the LC-MS analysis was applied to individual samples as 

well as the three pooled and fractionated samples, only the individual samples were used for 

quantitative analysis and statistical investigations described hereafter. 

 

Proteomics quality control 
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After removing several samples with injection or other technical issues, the proteomics data set 

included 2,040 proteins across 137 samples. These data underwent a strict quality control pipeline: 

proteins that were missing for 33% or more of samples (either overall or within an AT category) were 

removed; samples missing 33% or more of proteins were removed; and proteins with an interquartile 

range of 0 were removed (Supplementary Figure 3, Supplementary Figure 4). A total of 137 samples with 

915 proteins remained (Supplementary Table 1). The label-free quantification (LFQ) values for each 

protein were then log2-transformed. The remaining missing values were then randomly imputed based 

on a normal distribution derived from the lower end of the observed values for that protein (the 

observed distribution mean was shifted by -1.8 and the SD shrunk by a factor of 0.3) (Supplementary 

Figure 5). This imputation was performed separately within each AT category. Finally, each protein was 

Z-score transformed. 

 

Statistical analysis 

Proteomics descriptive analysis 

The first step in understanding how the CSF proteome changes in AD is to first understand what its 

contents are and how it compares to the entirety of the human proteome. Thus, our first main objective 

was to extensively profile the set of proteins quantified in the CSF in this cohort (Supplementary Table 

2). The pairwise correlation of all proteins was calculated (nominally significant results with correlation P 

< 0.05 shown in Supplementary Table 3) and then visualized with a heatmap with hierarchical clustering 

to show the underlying patterns of covariation (R package ComplexHeatmap(102), version 2.4.3) (Figure 

1a). The structure was further examined with a principal components analysis (PCA), scree plot 

(Supplementary Figure 6), and plot of the first two PCs by AT category (R package factoextra(103), 

version 1.0.7) (Supplementary Figure 7) to assess the presence of independent signals among the CSF 
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proteome and their relationship to the AT categories. The associations of the top two PCs with age were 

also examined with a correlation analysis. A pathway analysis was then performed to examine the 

differences between the set of proteins quantified in the CSF and the overall human proteome. The 

enrichment of Gene Ontology (GO) terms(104), Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways(104, 105), and Disease Ontology (DO) gene sets(106) among the CSF proteome against the 

entire human proteome was calculated using the R packages clusterProfiler(107) (version 3.16.1), 

DOSE(108) (version 3.14.0), and ReactomePA(109) (version 1.32.0) (Figure 1b, Figure 1c, Supplementary 

Table 4). To summarize the major constituents of the observed CSF proteome in these cohorts, the 

presence of clusters was then assessed with Gaussian mixture modeling using the R package mclust(110) 

(version 5.4.6). The number of clusters (3) was chosen based on the elbow of the plot of the Bayesian 

Information Criterion (BIC) (Supplementary Figure 8). Enrichment of gene set ontologies across the 

clusters was repeated with the GO, KEGG, and DO sets and plotted (Figure 1d, Supplementary Table 5). 

 

Protein-AT category associations 

The second main objective of this study was the identification of differentially expressed proteins across 

the three AT categories in order to understand how the CSF proteome changes across the AD trajectory. 

This analysis was performed using an analysis of covariance (ANCOVA) model comparing each protein 

across the three groups, controlling for age at LP and sex (Supplementary Table 6). Additionally, to test 

the difference in protein level between each pair of AT categories, a logistic regression model was used 

for each pair of categories (controlling for age at LP and sex) (Supplementary Table 6). A Bonferroni 

correction for the number of proteins tested (P = 0.05 / 915 = 5.46 x 10-5) was used for reporting 

significant results. The distributions of the top-associated proteins across the AT spectrum were plotted 

(Figure 2a). To assess whether signal enrichment was likely due to an artifact, the ANCOVA analyses 
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were repeated with randomly permuted AT category labels. A quantile-quantile (Q-Q) plot was 

generated to assess the presence of signal enrichment across the proteome for AT-related differences 

and to compare the permuted and non-permuted analyses (Figure 2b). Since the APOE gene is known to 

have a significant effect on AD risk, we examined whether APOE genotype was driving the observed AT-

protein associations. The ANCOVA analyses were repeated but with the count of APOE ε4 alleles 

included as an additional covariate. The same Bonferroni correction was used as before. The resulting 

AT-associated proteins were compared to the results from the original ANCOVA analyses 

(Supplementary Figure 9). The set of associated proteins from the non-permuted analysis was then 

assessed for enriched GO, KEGG, and DO gene sets against the human proteome as before (Figure 2c, 

Supplementary Table 7). 

To examine the direction of effect of each protein, a logistic regression was performed with A+T+ (vs. A-

T-) as the outcome and a protein as the main predictor, controlling for age at LP and sex and using the 

same Bonferroni threshold for significance as the ANCOVA analyses. The sample size for the logistic 

regression was smaller (n = 98) due to the exclusion of the A+T- samples. The overlap between the set of 

significantly associated proteins and the set of significantly associated proteins from the ANCOVA 

analysis was displayed in a Venn diagram (R package ggVennDiagram(111), version 1.0.7) 

(Supplementary Figure 10), and the odds ratios were presented in a volcano plot (Supplementary Figure 

11). 

 

Protein-CSF biomarker associations 

While understanding the relationships of the proteome with amyloid and tau status can provide a 

coarse view of the changing AD proteome, it is useful to investigate more nuanced connections with 

markers of neurodegeneration and neuroinflammation in part to be able to identify proteins that may 
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be related to dementia but not necessarily specific to AD. To this end, our third main objective was 

conducting a comprehensive set of protein-CSF biomarker analyses using the NTK panel described 

above. Each protein was tested for association with each of the 9 CSF biomarkers (the Aβ42/Aβ40 ratio, 

ptau, the ptau/Aβ42 ratio, NFL, alpha-synuclein, neurogranin, YKL-40, sTREM2, and IL-6). Linear 

regression models were used to regress each CSF biomarker on each protein, controlling for age at CSF 

sample and sex and using a Bonferroni correction for the total number of tests (9 x 915 = 8,234 tests; P = 

0.05 / 8,234 = 6.07 x 10-6) (Table 2, Supplementary Table 8). For the sake of interpretation, effect 

estimates where the biomarker outcome was additionally Z-score normalized were also provided 

(“Effect size (std. biomarker)” columns). The results were summarized with a Q-Q plot showing the 

signal enrichment for each biomarker along with a sensitivity analysis where the regression models were 

repeated with the biomarker values randomly permuted to test the robustness of each biomarker’s 

signal enrichment (Supplementary Figure 12). The cross-biomarker relationships among the significantly 

associated proteins were then visualized as a bipartite graph using the R package tidygraph (version 

1.2.0)(112) and the Fruchterman-Reingold algorithm. A community structure network analysis was 

performed using the greedy hierarchical agglomeration algorithm(113) implemented in igraph (version 

1.2.5)(114) to identify clusters of proteins among the protein-biomarker associations. An upset plot was 

then created showing the set of significantly associated proteins unique to each subset of biomarkers 

(Supplementary Figure 13) using the UpSetR package (version 1.4.0)(115). Pathway enrichment analyses 

were performed as before comparing each biomarker’s set of significantly associated proteins 

(Supplementary Table 9). 

 

Replication of top pathway results in other AD proteomics cohorts 
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A replication data set from the Knight ADRC was used first to validate findings from the main analyses. 

The Knight ADRC data set included samples from CSF (n = 717) and plasma (n = 490). The recruited 

individuals from the Knight ADRC cohort were evaluated by Clinical Core personnel of Washington 

University. For individuals with CSF and plasma data, cases received a clinical diagnosis of AD in 

accordance with standard criteria, and AD severity was determined using the clinical dementia rating 

(CDR) scale(116) at the time of lumbar puncture (for CSF samples) or blood draw (for plasma samples). 

CSF was collected by LP after overnight fasting, centrifuged, and frozen at −80 °C as described 

previously(117–119). Blood was collected at the time of LP, and serum or plasma was obtained by 

centrifugation and stored at −80 °C. CSF samples were analyzed by immunoassay for β-amyloid 1–42 

(Aβ42), total tau, and tau phosphorylated at threonine 181 (p-tau) (INNOTEST, Fujirebio, Ghent, 

Belgium). The Institutional Review Boards of Washington University School of Medicine in St. Louis 

approved the study; research was performed in accordance with the approved protocols and 

participants provided informed consent. 

For deep proteomics characterization in the CSF and plasma tissues, the levels of 1,305 proteins were 

quantified using a different methodological approach from that used for the Wisconsin cohorts: the 

SOMAscan assay, a multiplexed, aptamer-based platform(120). The assay covers a dynamic range of 108 

and measures all three major categories: secreted, membrane, and intracellular proteins. The proteins 

cover a wide range of molecular functions and include proteins known to be relevant to human disease. 

As previously described by Gold et al.(120), modified single-stranded DNA aptamers are used to bind 

specific protein targets that are then quantified by a DNA microarray. Protein concentrations are 

quantified as relative fluorescent units (RFU). Aliquots of 150 μL of tissue were sent to the Genome 

Technology Access Center at Washington University in St. Louis for protein measurement. 

Quality control was performed at the sample and aptamer levels using control aptamers (positive and 

negative controls) and calibrator samples. At the sample level, hybridization controls on each plate were 
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used to correct for systematic variability in hybridization. The median signal over all aptamers was used 

to correct for within-run technical variability. This median signal was assigned to different dilution sets 

within each tissue. For CSF samples, a 20% dilution rate was used. For plasma samples, three different 

dilution sets (40%, 1%, and 0.005%) were used. 

As described in detail(121), additional quality control was performed by identifying and removing 

protein and analyte outliers by applying four criteria: 1) Minimum detection filtering. If the analyte for a 

given sample was less than the limit of detection (LOD), the sample was deemed an outlier. Collectively, 

if the number of outliers given an analyte was less than 15% of the total sample size, the analyte was 

kept. 2) Flagging analytes based on the scale factor difference. 3) Coefficient of variation (CV) of 

calibrators lower than 0.15, where the CV for each aptamer was calculated as the standard deviation 

divided by the mean of each calibrator at the raw protein level. 4) Interquartile range (IQR) strategy. 

Outliers were identified if the subject was located 1.5-fold of the IQR outside of either end of the 

distribution given the log10-transformation of the protein level. Analytes were kept after passing all the 

criteria above for the downstream statistical analysis. An orthogonal approach was used to call subject 

outliers based on IQR. After this second removal of analytes, subject outliers were examined and 

removed again. 

To obtain the proteomic signatures of sporadic AD status, CSF Aβ42, ptau/Aβ42, and ptau, differential 

abundance analysis was performed by using linear regression of the log-transformed protein levels. In 

each tissue, we performed surrogate variable analysis while protecting status and age to correct for 

unmeasured heterogeneity(122). Age at death or at measurement, gender, and the resulting surrogate 

variables were included as covariates.  

The Knight ADRC analyses were used as a replication data set for the top findings from the main 

analyses performed in the Wisconsin ADRC and WRAP, focusing on the significantly associated proteins 
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from the top implicated biological pathway from the protein-AT category and protein-biomarker 

analyses. The association of these proteins were compared to the results from the Knight ADRC 

association tests conducted in the CSF and plasma to see if their associations and directions of effect 

were replicated using a significance threshold corrected for the number of tested proteins in the 

replication (P = 0.05 / 9 = 0.0056) (Table 3, Supplementary Table 10). 

To provide replication using a more similar proteomics methodology to what was used for discovery 

analysis here, the top findings were assessed against the published results from Higginbotham et al. 

2020(26) and Johnson et al. 2020(24). Both of these data sets used a mass spectrometry-based 

approach for proteomics and reported differential protein expression results based on clinical 

diagnoses. Higginbotham et al. reported differences in CSF protein levels between AD and control 

participants (n = 20) while Johnson et al. reported differences in brain protein levels between healthy 

controls, asymptomatic AD, and AD participants (n = 453). A nominal P value threshold (P = 0.05) was 

used for replication. 

 

Secondary analysis of insulin-related proteins 

Based on the results of the AT category and biomarker associations and the pathway analysis suggesting 

a relationship with glucose regulation (described below), the set of proteins excluded during the QC 

process due to low sample size was examined for proteins related to insulin signaling pathways, 

including any of the GLUT proteins (SLC2A family), insulin (INS), insulin receptor (INSR), insulin-like 

growth factor 1 (IGF1), IGF-1 receptor (IGF1R), insulin receptor substrate 1 (IRS1), IRS 2 (IRS2), 

phosphoinositide 3-kinase (PI3K), RAC-alpha serine/threonine-protein kinase (AKT1), mechanistic target 

of rapamycin (mTOR), and glycogen synthase kinase 3 (GSK3A). Proteins that failed the missingness 

threshold of 33% but were present for 50% or more of samples were investigated further but without 
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the use of imputed data points. The relationships between the proteins and AT category (Supplementary 

Figure 14) and the CSF biomarkers (Supplementary Figure 15) were plotted, with ANCOVA and linear 

regression analyses to test for association between the proteins and AT category and the CSF 

biomarkers performed as previously (Supplementary Table 11). 

 

Secondary analysis of glycolysis and TCA cycle metabolites 

In order to see if the implicated pathways observed from the proteomics analyses were also implicated 

within the metabolomics data, a second form of validation of the main proteomics findings around 

glucose metabolism was performed using the CSF metabolomics data available in the WRAP and WI 

ADRC cohorts (described above). Focusing on the 10 available metabolites from the “Glycolysis, 

gluconeogenesis, and pyruvate metabolism” and “TCA cycle” superpathways (namely, 1,5-

anhydroglucitol (1,5-AG), alpha-ketoglutarate, citrate, glucose, glycerate, isocitrate, lactate, malate, 

pyruvate, and succinylcarnitine (C4-DC)) (Supplementary Table 12), the same AT category and CSF 

biomarker association analyses performed for the proteomics data were performed again but with these 

10 metabolites instead of the proteins. The discovery phase of this analysis was performed using the 136 

participant CSF samples from the proteomics analysis that also had CSF metabolomic data available from 

the same matched CSF samples. The results of the analysis were subjected to a Bonferroni-corrected P 

value threshold based on the number of metabolites tested (P = 0.05 / 10 metabolites = 0.005 for the 

metabolite-AT category association analyses; P = 0.05 / 10 metabolites / 9 biomarkers = 0.00056 for the 

metabolite-biomarker association analyses). Significantly associated metabolites were visualized with 

box plots (Supplementary Figure 16, Supplementary Table 13, Supplementary Table 14). 

Because the group of participants in the WRAP and ADRC cohorts with CSF proteomics data generated 

here was a subset of all of the participants with previously generated CSF metabolomics data, there 
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were an additional 363 unique participants with CSF metabolomics data whose samples were not 

included in the main proteomics work here (Supplementary Table 15). These participants’ CSF 

metabolomics data were used as an independent replication data set for this secondary metabolomics 

analysis. The same AT category and CSF biomarker association analyses were repeated, using the same 

Bonferroni-corrected P value thresholds as in the metabolomics discovery analyses (Supplementary 

Figure 16, Supplementary Table 13, Supplementary Table 14). 

 

Multiomic prediction of amyloid and tau 

With the conceptual shift toward defining AD with amyloid and tau biomarkers in a research 

context(11), understanding exactly what other aspects of biology correspond to amyloid and tau, 

especially in the CSF, is critical, but the relative connections between the different biological omes and 

amyloid and tau is unclear. Our fourth main objective was to investigate these relationships. We 

conducted a separate and joint predictive analysis of amyloid and tau categories using CSF proteomics, 

CSF metabolomics, genomics, and demographic information. The CSF proteomic data set was combined 

with the CSF metabolomic, genomic, and demographic (age at sample and sex) data sets. After the 

quality control steps described previously for each ome, 136 of the 137 CSF samples had values for all of 

the multiomic features (915 proteins, 390 metabolites, 38,652 SNPs coded as dosages plus the APOE ε4 

allele count, and 2 demographic features) (one sample was excluded for lacking CSF metabolomics 

data). This multiomic data set was then used to predict different biomarker positivity states(82): 

Aβ42/Aβ40-positive, ptau-positive, and ptau/Aβ42-positive. Each ome (CSF proteome, CSF metabolome, 

genome, and demographics) was used individually along with a fifth multiomics predictor set 

(comprising all omes) to predict each outcome with an elastic net(123) model (R package glmnet(124), 

version 4.0-2; alpha parameter = 0.5). When different CSF-based measurements were used for an 
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individual (e.g., MS-derived CSF protein level, CSF biomarkers from the NTK platform, CSF metabolite 

levels, etc.), those measurements were all performed on or refer to the same underlying CSF sample; 

there was no sample date discrepancy between CSF measurements for a given participant. 

For each biomarker and predictor pair, the procedure was the same. First, one-third of the data was 

held out as a testing set and the remaining two-thirds used as the training set. Within the training set 

data, 100-iteration, 3-fold cross-validation was used to select the best lambda value (11 possible values 

ranging from 10-5 to 1) according to AUC using the tidymodels(125) R package (version 0.1.3). The best-

performing model was then run on the entire training data set using the chosen lambda and used to 

predict the outcome on the held-out testing data set. The performances of the different omic models 

were then compared with ROC curves and 2D histograms showing the raw biomarker levels against the 

predicted classifications for each biomarker for each subject (Figure 4). The mean model metrics across 

each of the 4,000 folds were calculated (Supplementary Table 16). 
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Table 1: Summary of sample demographics and CSF biomarkers 

Table 2: Top 3 significantly associated proteins for each biomarker 

Table 3: Replication of implicated glucose metabolism-related proteins in the Knight ADRC 

 

Figures 

Figure 1: CSF proteomics descriptive analyses 

Figure 2: Proteins associated with AT category 

Figure 3: Network analysis of protein-biomarker associations 

Figure 4: Multiomic predictive model performance for amyloid and tau 
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