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Abstract 

The recently reported TNIP1/GPX3 locus from AD GWAS studies was investigated. Using 

proteomics and other functional omics data, we identified evidence for a functional mechanism linking 

variants in this locus to decreased CSF GPX3 levels as AD progresses, suggesting a new potential target 

for intervention. 
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Main 

 Genomic studies in Alzheimer’s disease (AD) have identified dozens of genetic associations1–4, 

but connecting variants with downstream drug targets is challenging. Individual functional validation to 

determine the consequences of mutations in implicated genes may be costly and time-consuming. In 

recent years, AD research studies have collected a variety of multiomics data on a large scale, including 

transcriptomics, proteomics, and metabolomics. These molecular data sets can provide key 

intermediate information linking genes to AD risk. 

 Several recent large-scale GWAS reported and discussed the rs871269 variant within an intron 

of the TNIP1 gene (chromosome [chr] 5, base pair 151052827; all coordinates given in GRCh38 unless 

otherwise noted) as a protective variant for AD, with an odds ratio for AD case status of 0.96 (0.95-0.97) 

for the T allele, according to the Bellenguez et al. 2022 meta-analysis5,6. Wightman et al. additionally 

mention the rs34294852 variant (chr5:151053886), which is in low linkage disequilibrium (LD) with 

rs871269 in the East Asian (R2 = 0.29) and American (R2 = 0.22) populations but in lower LD (R2 = 0.14) 

among Europeans7. In terms of the functional connection of TNIP1 with AD, Wightman et al. noted that 

there was little previous discussion regarding TNIP1 and AD, but that of the three genes in the region of 

the variant (TNIP1, GPX3, and SLC36A1), TNIP1 seemed to have the strongest connection through its 

regulation by Bcl3 in mice microglia and the corresponding BCL3 gene, which had been associated with 

CSF amyloid-beta levels in humans. Bellenguez et al. noted the connection of TNIP1 with TNF-alpha, 

which was connected with the linear ubiquitin chain assembly complex (LUBAC), which itself is 

implicated in AD-relevant biology, including inflammation, microglia, and autophagy. Here, we use 

proteomics data from three different AD cohorts and annotation databases to investigate an alternative 

functional relationship of this locus to AD through the GPX3 gene. 

 Using newly generated mass spectrometry cerebrospinal fluid (CSF) proteomics data from the 

University of Wisconsin (mean age 66.1; 59.9% female; detailed description previously reported8), we 

searched for evidence whether either TNIP1 or GPX3 levels were associated with AD. Specifically, we 

conducted ANOVA analyses that examined the relationship of these two proteins in CSF with CSF 

amyloid- and CSF tau-defined categories of AD (total n = 137; 56 A-T-, 39 A+T-, and 42 A+T+; see 

Methods). We used these amyloid (A) and tau (T) categories since they are the major biomarkers and 

central to research-based definitions of the disease, where amyloid tends to change first followed by tau 

in the current model of AD (note that A-T+ is generally excluded as presumably non-AD pathology)9,10. 

TNIP1 was not been detected in the CSF in the University of Wisconsin cohorts, but GPX3 (after 

correction for age and sex; see Methods) showed a statistically significant difference across the AD 

continuum from A-T- to A+T- to A+T+ (ANOVA P = 1.5 x 10-5) with a significant decrease between the A-

T- and A+T+ categories (t-test P = 1.3 x 10-5) (Figure 1a). GPX3 was also significantly associated with 8 of 

the 9 tested individual markers of neurodegeneration and neuroinflammation (the Aβ42/Aβ40 ratio, 

phosphorylated tau [ptau], the ptau/Aβ42 ratio, alpha-synuclein, neurofilament light chain [NFL], 

neurogranin, YKL-40, and soluble TREM2 [sTREM2]), in each case negatively correlated with the 

biomarker except for Aβ42/Aβ40 (Figure 1b). 
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Figure 1: Associations of CSF GPX3 with AD-related measures in the Wisconsin ADRC and WRAP cohorts. a) The distribution of 

CSF GPX3 levels (after regressing out the effects of age and sex) significantly decreased across amyloid and tau (AT) positivity 

categories (n = 137). b) CSF GPX3 levels were significantly associated with all CSF biomarkers of neurodegeneration and 

neuroinflammation except for IL-6 (n = 137). In each case, GPX3 levels decreased as biomarker values indicated a worsening 

clinical profile. c) Across the cohorts (n = 137), no difference in GPX3 levels were observed by genotype of either AD-related 

variant. d) CSF GPX3 levels by both AT and genotype were summarized for both relevant SNPs at the TNIP1/GPX3 locus. Among 

participants who were A+T+ (n = 42), CSF GPX3 levels were significantly decreased for homozygous recessive carriers of the 

rs34294852 allele (n = 5 among A-T-; n = 3 among A+T-; n = 2 among A+T+). 

 We then examined the genotype-mediated effects on the GPX3 trajectory. Visually and 

analytically (via ANOVA and pairwise t-tests), there were no differences in GPX3 levels by just the minor 

allele count of either SNP alone (ANOVA P values were 0.95 and 0.10 respectively across genotypes for 

rs871269 and rs34294852; Figure 1c), indicating that no differences in GPX3 level were present by 

genotype across the population. However, when we viewed these protein levels and genotypes along 

with AD biomarker categories, a dose-response relationship emerged for the rs34294852 genotype. 

When GPX3 levels were analyzed as the outcome in a multiple linear regression with both AT category 

and SNP minor allele count (numeric coding) as predictors, a significant decrease in GPX3 levels per copy 

of the minor allele was observed (P = 0.041 for rs34294852; Figure 1d), suggesting that the TNIP1/GPX3 

locus-AD diagnosis relationship reported by GWAS might be mediated through changes in GPX3 level 

that might only become apparent when tau is abnormal in AD and particularly with homozygosity in the 

minor allele of rs34294852. In other words, changes in GPX3 levels might only be most evident for A+T+ 

individuals who are homozygous recessive for rs34294852. 

 Based on these results, we developed a hypothesis concerning the role of GPX3 in AD. GPX3 is a 

secreted glutathione peroxidase that works to protect the body from oxidative damage by reducing 

hydroperoxides11. AD has long been linked to oxidative stress, as have aging processes in general12,13. 
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The observed decline in GPX3 levels in individuals with AD might reflect insufficient or deteriorating 

capacity to manage oxidative stress by those with AD. This effect might be exacerbated among carriers 

of the minor allele of rs34294852, which presumably decreases expression of GPX3 by affecting an 

enhancer region interacting with the GPX3 gene. Given the rarity of the minor allele, the subtlety of the 

GWAS signal, and the presence of the SNP-protein association only in the context of AD, this mechanism 

might be hard to detect and perhaps only then under certain disease conditions (Figure 2). 

 

Figure 2: Proposed functional mechanism of the TNIP1 locus in AD. Our hypothesis for a functional mechanism connecting the 

variant rs34294852 within TNIP1 to AD outcomes is overlaid onto a map of the major omics data and the central dogma of 

biology. Major lines of post-GWAS functional evidence supporting this hypothesis are summarized in the right-hand list. 

 Were this hypothesis true, we would expect to see concordant evidence from AD 

transcriptomics experiments. First, we sought to understand which central nervous system cell types 

express GPX3 in general. Across the cell types in the Human Protein Atlas, GPX3 is most highly expressed 

in the proximal tubular cells of the kidney (20125.9 nTPM) and the Müller glia cells of the eye (5019.8 

nTPM). Among brain tissues, the overall expression was lower, but microglia had the highest expression 

(3.7 nTPM) among the non-neuronal cell types, followed by astrocytes (1.0 nTPM) and oligodendrocytes 

(0.4 nTPM) (Supplementary Figure 1)14. Within an AD cohort, where GPX3 might be more relevant given 

the heterogeneity of the microglia transcriptome15, RNA-seq data from the prefrontal cortex from the 

Religious Orders Study Memory and Aging Project (ROSMAP) showed that GPX3 transcript levels 

decreased in the prefrontal cortex from controls to AD diagnosis (P = 7 x 10-6; Supplementary Figure 2), 

but not in other brain regions16. 

 We also searched for evidence from functional genomics and transcriptomics experiments 

supporting a relationship between rs34294852 and GPX3 transcription. In terms of genome functional 

annotation, rs34294852 is located within the 6th intron of TNIP1 and downstream of the enhancer 

region GH05J151051 from GeneHancer17,18. Variant rs34294852 is predicted to alter the binding of the 

transcription factor MZF1 according to FeatSNP19, which is a database that aggregates brain-specific 

epigenetic data to examine the effects of genetic variants. In terms of expression quantitative trait loci 

(eQTL) data, variant rs34294852 is an eQTL for TNIP1 and GPX3 in blood, and it is also an eQTL for TNIP1 

in monocytes and neutrophils and for GPX3 for neutrophils20–22. Recognizing the relatively higher 

expression of GPX3 in microglia compared to other non-neuronal cell types and the implications of 
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microglia in AD, we investigated recent eQTL data for microglia and found that rs34294852 was an eQTL 

for GPX3 (P = 0.038)23. 

 With the evidence from the original AD GWAS and our follow-up CSF proteomics and 

biomarkers experiments, these additional functional and molecular data supported our central 

hypothesis: genetic variation at the TNIP1/GPX3 locus impacts expression of GPX3 through impaired 

enhancer activity that in turn exacerbates the observed decrease in GPX3 levels as amyloid and ptau 

accumulate in AD progression. In cohort studies, this pathway might be difficult to detect for several 

reasons: 1) the original GWAS effect was small; 2) the pathway might only be relevant to a subset of cell 

types (e.g., microglia); and 3) and the effect might be harder to observe for homozygous dominant or 

heterozygous rs34294852 genotypes. Moreover, the effect allele for rs34294852 (C) has a minor allele 

frequency ranging from 0.16 for East Asians on the low end to 0.25 for African/African Americans on the 

high end7, which makes homozygous recessive individuals fairly uncommon, as was the case in the data 

sets analyzed here. Indeed, our attempts to replicate the proteomics signal with other population 

cohorts were unsuccessful. Using data from the European Medical Information Framework-Alzheimer’s 

Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 242 participants), we performed an 

ANOVA analysis to see if GPX3 levels were different by AT category. No such difference was observed (P 

= 0.96), even when stratified by rs34294852 genotypes (Supplementary Figure 3) or controlling for age, 

sex, or study site. Similarly, no GPX3-AD association was observed using the Knight ADRC’s discovery and 

replication CSF proteomics data sets at Washington University in St. Louis (n = 1,168 and 597 

participants, respectively). The differential abundance of GPX3 levels was not significantly different 

between A+T+ and A-T- individuals (P = 0.90 and P = 0.51, respectively) (Supplementary Figure 4). 

Differences in populations, proteomics technologies (mass spectrometry vs. aptamer-based), and 

amyloid and tau phenotyping might have affected the replication in addition to the other challenges 

noted above. 

 Nevertheless, the observed multiomic evidence connecting variation at this locus to AD through 

GPX3 expression, combined with our understanding of oxidative stress in AD and GPX proteins’ role in 

combating such stress, provide a compelling hypothesis for an alternative functional mechanism at this 

locus that may occur in concert with any effects through TNIP1. Several functional experiments would 

be a reasonable next step in exploring this hypothesis: 1) using a gene-editing experiment to validate the 

impact of genetic variation at rs34294852 on GPX3 expression; 2) using proteomics analysis on a 

microglia cell line to validate GPX3 expression; and 3) using a cell or organismal model of AD to assess 

the longitudinal expression of GPX proteins in connection with oxidative stress burden and its 

relationship to changes in tau level. More broadly, the post-GWAS analyses here demonstrate the utility 

of multiomic cohort data in the investigation of GWAS loci and their mechanisms of action, which can 

lead to new insights into Alzheimer’s disease with the ultimate goal of identifying new therapeutic 

targets. 
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Methods 

University of Wisconsin ADRC and WRAP cohorts 

 The discovery proteomics data set came from the University of Wisconsin Alzheimer’s Disease 

Research Center (ADRC)24 and Wisconsin Registry for Alzheimer’s Prevention (WRAP)25 cohorts, which 

have been described in detail previously8. This study was performed as part of the GeneRations Of 

WRAP (GROW) study, which was approved by the University of Wisconsin Health Sciences Institutional 

Review Board. Participants in the ADRC and WRAP studies provided written informed consent. Briefly, 

the data used here came from CSF samples taken from lumbar punctures (LPs) performed on middle- 

and older-aged participants in the ADRC and WRAP cohorts. All CSF samples were assayed between 

March 2019 and January 2020 at the Clinical Neurochemistry Laboratory at the University of 

Gothenburg. CSF biomarkers were assayed using the NeuroToolKit (NTK) (Roche Diagnostics 

International Ltd, Rotkreuz, Switzerland), a panel of automated Elecsys® and robust prototype 

immunoassays designed to generate reliable biomarker data that can be compared across cohorts. 

Measurements with the following immunoassays were performed on a cobas e 601 analyzer (Roche 

Diagnostics International Ltd, Rotkreuz, Switzerland): Elecsys β-amyloid (1–42) CSF (Aβ42), Elecsys 

Phospho-Tau (181P) CSF (ptau), and Elecsys Total-Tau CSF, β-amyloid (1–40) CSF (Aβ40), and interleukin-

6 (IL-6). The remaining NTK panel was assayed on a cobas e 411 analyzer (Roche Diagnostics 

International Ltd, Rotkreuz, Switzerland), including markers of synaptic damage and neuronal 

degeneration (neurogranin, neurofilament light protein [NFL], and alpha-synuclein) and markers of glial 

activation (chitinase-3-like protein 1 [YKL-40] and soluble triggering receptor expressed on myeloid cells 

2 [sTREM2]). Participants were categorized as amyloid positive (A+) and tau positive (T+) based on the 

CSF amyloid (Aβ42/Aβ40 threshold = 0.046) and tau (ptau threshold = 24.8 pg/mL) measurements, as 

determined through previous work26. The fourth possible category of amyloid negative and tau positive 

(A-T+) was not included in this study as these samples were considered to represent non-AD 

pathological change9. A total of nine established CSF biomarkers for AD were analyzed in this study: the 

Aβ42/Aβ40 ratio, ptau (pg/mL), the ptau/Aβ42 ratio, NFL (pg/mL), alpha-synuclein (pg/mL), neurogranin 

(pg/mL), YKL-40 (ng/mL), sTREM2 (ng/mL), and IL-6 (pg/mL). NFL and IL-6 were log10-transformed to 

better normalize them due to right skew. 

 Genotyping was performed on these participants using DNA from whole blood samples. ADRC 

samples genotyped by the Alzheimer’s Disease Genetics Consortium (ADGC) at the National Alzheimer’s 

Coordinating Center (NACC) using the Illumina HumanOmniExpress-12v1_A, Infinium 

HumanOmniExpressExome-8 v1-2a, or Infinium Global Screening Array v1-0 (GSAMD-24v1-

0_20011747_A1) BeadChip assay, while WRAP samples were genotyped with the Illumina Multi-Ethnic 

Genotyping Array at the University of Wisconsin Biotechnology Center27. Strict quality control (QC) steps 

and imputation to the Michigan Imputation Server28 and the Haplotype Reference Consortium (HRC) 

reference panel29 were performed. All individuals used in this study were of European ancestry. 

Throughout this paper, genomic coordinates are referred to by the GRCh38 genome build. 

 Proteomics data were generated on the CSF samples using an in-house single-shot nano-liquid 

chromatography-tandem mass spectrometry (nLC-MS/MS) method8,30 and the raw data quantified with 

MaxQuant31,32 using fast LFQ and a full human proteome with isoforms downloaded from UniProt 
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(downloaded June 14, 2017). Protein abundance data were extracted from the LFQ intensity from the 

“proteinGroups.txt” output file. Strict QC steps were applied to the data, yielding a final set of 915 

quantified proteins for the 137 participants. All time-variable data (age, proteomics, CSF biomarkers) 

were quantified on the same LP sample per participant; there was no sample time discrepancy between 

any of the data points for an individual. 

 The effects of age at sample LP and sex were first regressed out in a linear regression model 

(GPX3 ~ age + sex), leaving the residuals for GPX3, which was the main variable of analysis in this data 

set. First, an ANOVA analysis was performed across the three AT-defined categories to look for a 

difference in GPX3 level, with pairwise t-tests also performed for each pair of AT categories and the 

results visualized with box plots. Second, GPX3 residual-biomarker associations were estimated for each 

biomarker separately using a linear regression model. A Bonferroni correction for the number of 

biomarkers tested (P = 0.05 / 9 = 0.0056) was used as the threshold for significance. Each biomarker was 

plotted against the GPX3 residuals, with a fitted regression line showing the relationship. 

For genotype-stratified analysis, the box plots of GPX3 by AT category were repeated but with 

additional stratification by the count of minor alleles (T allele) for rs34294852. A linear regression was 

also performed with GPX3 residuals regressed on an indicator variable for A+T-, an indicator for A+T+, 

and the minor allele count for the variant (coded 0/1/2). 

 

GPX3 eQTL analysis 

Microglia eQTL summary statistics were accessed through the European Genome-Phenome 

Archive (EGAD00001005736) and the Wellcome Sanger Institute Data Access Committee. All sequence 

datasets were aligned to human genome assembly GRCh38. Simple linear regression was used to map 

eQTLs with twenty-five principal components (PCs). The eQTL associations for GPX3 were extracted for 

the analysis in this paper. Study designs and method details of microglia eQTL mapping have been 

described elsewhere23. 

 

EMIF-AD MBD cohort 

The European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker 

Discovery (EMIF-AD MBD) study is a European multicenter study that aims to identify novel biomarkers 

for diagnosis and prognosis in the predementia stages of AD33. EMIF-AD MBD combines existing clinical 

data and samples of 1,218 individuals with normal cognition (controls), mild cognitive impairment (MCI), 

or mild dementia from prospective cohort studies. The study collected baseline clinical data, MRI scans, 

plasma, DNA, CSF samples, and follow-up diagnosis. 

DNA was extracted locally at the collection site (n = 805) or from whole blood (n = 148) using 

QIAamp DNA Blood Mini Kit (QIAGEN GmbH, Hilden, Germany) at the University of Lübeck. Genetic 

samples were genotyped with the Illumina Global Screening array (GSA) custom content (Illumina, Incl) 
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at the Institute of Clinical and Medical Biology (UKSH, Campus-Kiel). Quality control and imputation (HRC 

panel29) have been described in depth elsewhere34,35.  

CSF was collected with lumbar puncture, as described previously33. CSF Aβ1-42 and total tau were 

measured locally with INNOTEST ELISA or INNOBIA AlzBio3 INNOBIA AlzBio3 (Fujirebio, Ghent, Belgium). 

Cut-offs for Aβ1-42 and total tau were cohort-specific in EMIF-AD. Because EMIF-AD centers had used 

different approaches to determine Aβ1-42 cut-offs, potentially leading to center-specific bias, we 

determined for each cohort specific cut-offs using unbiased Gaussian mixture modelling36. CSF GPX3 

proteins levels were measured using tandem mass tag (TMT) mass spectrometry and have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset 

identifier 10.6019/PXD01991037. GPX3 CSF protein levels were Z-score normalized with controls with 

normal Aβ1-42 and normal total tau as reference group. A full description on the quality check and 

normalization procedures have been described elsewhere34,38,39. 

A total of n = 242 subjects had genetic, AT category (CSF Aβ1-42 and total tau) and CSF proteomic 

data (i.e., GPX3) available (n = 242). Since normal CSF amyloid and abnormal CSF total tau (A-T+) 

probably reflects neurodegenerative disorders other than AD, we excluded subjects with A-T+ (n = 7) 

from further analysis, resulting in a total of n = 235 subjects (age in years mean (SD): 66.9 (8.1); female n 

(%): 127 (54%); AT category: 58 A-T-, 59 A+T-, 118 A+T+; diagnostic status: 105 controls, 64 MCI, 66 AD).  

GWAS analysis on GPX3 CSF levels was performed using PLINK software (v1.9) with covariate 

adjustment for population structure (PC1-3), age, and sex40. ANOVA analysis was performed to examine 

CSF GPX3 differences across AT categories, including separate analyses that additionally included age 

and sex or age, sex, and study site as covariates. 

Written informed consent was obtained from all participants or surrogates, and the procedures 

for this study were approved by the institutional review boards of all participating institutions, including 

the following (see Bos et al 2018 for full listing33): Aristotle University of Thessaloniki Medical School 

Ethics Committee; Ethics Committee of the Medical Faculty Mannheim, University of Heidelberg; Ethic 

and Clinical Research Committee Donostia; Ethics committee Inserm and Aix Marseille University; The 

Healthcare Ethics Committee of the Hospital Clínic; Central Clinical Research and Clinical Trials Unit 

(UICEC Sant Pau); INSERM Ethical Committee; Ethic Committee of the IRCCS San Giovanni di Dio FBF; 

Comitato Etico IRCCS Pascale - Napoli; Ethics Committee at Karolinska Institutet; Ethische commissie 

onderzoek UZ/KU Leuven; Research Ethics Committee Lausanne University Hospital; Medical ethical 

committee Maastricht University Medical Center; Committee on Health Research Ethics, Region of 

Denmark; Ethics committee of Mediterranean University; University of Lille Ethics committee; Ethical 

Committee at the Medical Faculty, Leipzig University; Ethical Committee at the Medical Faculty, 

University Hospital Essen; Ethics committee University of Antwerp; Ethical Committee of University of 

Genoa; Ethics Committee, University of Gothenburg; Human ethics Committee of the University of 

Perugia; and the Medical ethics committee VU Medical Center. 

 

Washington University in St. Louis cohorts 
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A total of 7,584 analytes were measured across 3,065 samples using SomaLogic’s Somascan 

platform. Participants were enrolled in the Memory and Aging Project (MAP) at the Knight Alzheimer’s 

Disease Research Center (Knight ADRC; n = 948), Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 

758), the Dominantly Inherited Alzheimer Network (DIAN; n = 495), Pau (n = 232), and Ruiz (n = 632) 

studies. All participants provided informed consent to allow their data and biospecimens to be included. 

The study was approved by an Institutional Review Board at Washington University School of Medicine 

in St. Louis. 

The expression level of 7,584 proteins was measured using a multiplexed, single-stranded DNA 

aptamer assay developed by SomaLogic. The protein levels were reported as relative units of intensity 

(RFU or Relative Fluorescence Unit). Initial data normalization was performed by SomaLogic using 

hybridization controls for intra-plate and median signal to account for inter-plate variances41,42 as well as 

normalization against an external reference to control for biological variances. A stringent quality 

check43 (QC) was performed in the normalized data matrix. At the end of the QC, 316 analytes and 83 

subjects were removed, resulting in a final matrix with 7,268 analytes and 2,982 subjects. 

CSF samples were collected in the morning after an overnight fast, processed, and stored at -80 

°C.  CSF data processing for each cohort are described in detail in the respective studies44,45. For CSF 

samples, case-control status was determined by the Clinical Dementia Rating (CDR) at the time of 

lumbar puncture. For this study, the CSF Aβ42 (A) and pTau181 (T) levels were used to perform the AT 

classification and biomarker positivity and negativity were used to perform the differential abundance 

analysis. These log-normalized CSF biomarker levels (AT) were used for dichotomizing each participant 

into biomarker positive (case) and negative (control), as previously described44. 

A multiple linear regression model was used to identify differentially abundant analytes 

between discovery (MAP and Ruiz; 497 AT+ and 671 AT- participants) and replication cohorts (ADNI and 

Pau; 360 AT+ and 237 AT- participants) where age, gender, plate ID, and the first two surrogate variables 

(SVs) were used as the covariates. 
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Figures 

Figure 1: Associations of CSF GPX3 with AD-related measures in the Wisconsin ADRC and WRAP cohorts 

Figure 2: Proposed functional mechanism of the TNIP1 locus in AD 

 

Supplementary Figures 

Supplementary Figure 1: GPX3 transcript expression levels in different brain cell types 

Supplementary Figure 2: GPX3 transcript expression levels across different brain regions 

Supplementary Figure 3: CSF GPX3 levels by AT category and rs34294852 genotype in the EMIF-AD MBD 

cohort 

Supplementary Figure 4: CSF GPX3 levels by AT category in the MAP/Ruiz and ADNI/Pau cohorts 
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