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Abstract 
 
Background: Most amyotrophic lateral sclerosis (ALS) patients lack a monogenic mutation. 
This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish 
replication cohort using polygenic scores. 
Methods: ALS (n=219) and healthy control (n=223) participant samples from University of 
Michigan were genotyped and assayed for the C9orf72 hexanucleotide expansion. Polygenic 
scores excluding the C9 region were generated using an independent ALS genome-wide 
association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver 
operating characteristic curves evaluated the association and classification between polygenic 
scores and ALS status, respectively. Population attributable fractions and pathway analyses 
were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used 
for replication. 
Results: Polygenic scores constructed from 275 single nucleotide polymorphisms had the best 
model fit in the Michigan cohort. A standard deviation increase in ALS polygenic score 
associated with 1.28 (95%CI 1.04-1.57) times higher odds of ALS with area under the curve of 
0.663 versus a model without the ALS polygenic score (p-value=1x10-6). The population 
attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 
80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for 
important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 
132 single nucleotide polymorphism polygenic score, yielded similar logistic regression findings 
(odds ratio: 1.13, 95%CI 1.04-1.23). 
Conclusion: ALS polygenic scores can account for cumulative genetic risk in populations and 
reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS 
risk models. 
 
Keywords: amyotrophic lateral sclerosis, polygenic risk, polygenic scores, classification 
 
What is already known on this topic 
 
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease caused in part by 
genetic factors, and methods to account for ALS polygenic disease risk are needed. 
 
What this study adds 
 
An ALS polygenic score reflects disease risk in the population and helps ascribe the magnitude 
of the risk. 
 
How this study might affect research, practice or policy 
 
ALS polygenic scores can assign the overall distribution of genetic risk in a population and can 
be used to screen individuals at higher risk. 
  



Main Text 
 
Introduction 
 
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by 
rapidly progressive muscle weakness and death within 2 to 4 years from symptom onset1 2 with 
50% of patients manifesting cognitive or behavioral dysfunction.1 2 ALS is traditionally divided 
into familial and sporadic forms. Familial ALS, comprising 10-15% of persons with ALS, includes 
individuals with a family history of ALS or related diseases, whereas sporadic ALS represents 
individuals without a family history. Under a monogenic model, a single risk gene is associated 
with a greater likelihood of developing ALS3 or contributes to a distinct phenotypic outcome, 
such as earlier age of disease onset.3 4 Since 1994, over 40 genes have been associated with 
ALS.5 The non-coding chromosome 9 open reading frame 72 (C9orf72) hexanucleotide 
expansion is the most common genetic form of ALS and is observed in 40% of familial and 10% 
of sporadic ALS in mixed European populations.6 7 Superoxide dismutase 1 (SOD1), TAR DNA 
binding protein 43 (TARDBP), and fused in sarcoma (FUS) are the next most common genes 
with polymorphism frequencies of around 1% or less in sporadic cases.8 Importantly, most ALS 
patients do not carry a single causative ALS risk gene mutation. Further, heritability estimates of 
ALS range from around 20% for genome-wide complex trait analysis and 60% for twin data9 and 
ALS shares some genetic risk with other diseases and conditions.10-12 It is increasingly clear that 
many common polymorphisms may contribute a small amount of disease risk.13 Since most ALS 
patients do not have a monogenic cause, it is crucial to understand the genetic contribution to 
ALS beyond single highly penetrant mutations.  
 
We hypothesize that cumulative genetic risk for ALS can be summarized using polygenic 
scores. To our knowledge, the utility of a polygenic score for ALS, independent of C9orf72 
status, has not been tested to understand the associations with ALS and ALS risk prediction. 
The goals of the current study were to develop a genome-wide ALS polygenic score using an 
independent ALS cohort of participants not previously included in any genome-wide association 
study (GWAS) and test the score contribution to ALS risk models independently of C9orf72 
status.  
 
Methods 
 
University of Michigan samples: Study procedures of this Institutional Review Board approved 
longitudinal case/control study are published (see Supplemental Methods).14-16 All participants 
provided informed consent. DNA extraction, genome-wide genotyping, C9orf72 repeat 
expansion assay, and data processing followed published protocols and are presented in 
Supplementary Methods and Supplementary Figures 1-3. 
 
Spanish Neurological Consortium: Participants were recruited across several sites in Spain as 
previously published17 or as part of the ALS Genetic Spanish Consortium (ALSGESCO) as 
previously published18 (see Supplemental Methods). All participants provided informed consent 
and the study received local ethics board approval. The coordination and use of samples for this 
publication were approved by the institutional review board of the National Institute on Aging. 
DNA extraction, genome-wide genotyping, C9orf72 repeat expansion assay, and processing 
followed published protocols are presented in Supplementary Methods. 
 
Polygenic scores were developed using published methods19-21 and were derived from an 
independent GWAS of 20,806 ALS cases and 59,804 controls22 (See Supplementary Methods). 
Developed polygenic scores both included and excluded the C9orf72 region (Figure 1). 



Consistent with Polygenic Score Reporting Standards,23 for each SNP included in the polygenic 
score, the identifier, chromosome, position, weight, and p-value of association with ALS were 
provided (Supplementary Table S1). 
 
Statistical analysis, including summary of case and control populations, regression models, 
classification attributable fraction calculation, and sensitivity analyses are presented in 
Supplementary Methods. Gene pathway analysis examining the overall biological functions of 
polygenic score genes was performed (Supplementary Methods). 
 
Finally, to assess robustness of the polygenic score in the University of Michigan samples, a 
second Spanish Neurological Consortium cohort that was not part of the ALS GWAS was 
examined to test for replication (Supplementary Methods). 
 
Results 
 
Study Participants  
The primary analysis included 442 participants (223 controls and 219 ALS cases) (Table 1). 
Family history of ALS was present in 7.8% of ALS cases and 0% of controls. The C9orf72 
repeat was present in 5.9% of ALS cases and 0% of controls. No age differences occurred 
between ALS and control participants, although the male participant proportion was higher in 
the ALS (59.0%) versus control (48%, p-value = 0.027) group. There were 24 participants 
excluded for missing genetic, demographic, or ALS assessment data (Supplementary Figure 
S1B), who had similar characteristics to the included sample (Supplementary Table S2). 
 
Genetic Data Characteristics and Polygenic Score Optimization 
SNPs were measured at 1,748,250 positions. SNPs missing genomic location data, with 
missingness frequency of >1% of samples, with minor allele frequency < 5%, or out of Hardy-
Weinberg equilibrium (p-value < 10-6) were removed, leaving 601,350 measured autosomal 
SNPs (Supplementary Figure S2). Imputation resulted in 47,109,465 SNPs. Imputed SNPs 
with an imputation quality R-squared value less than 0.5 and SNPs with a minor allele frequency 
< 1% were filtered. The final dataset had 8,179,459 imputed SNPs (Supplementary Figure 
S3). 
 
The C9orf72 region on chromosome 9 spanned from 27.4 Mb to 27.7 Mb. Following pruning, 5 
SNPs were present in this region (Figure 1). Of these, one SNP rs3849943, located at position 
27,543,382, was associated with C9orf72 expansion status (fisher p-value = 0.00001). Because 
our goal was to estimate the cumulative genetic risk for ALS beyond the C9orf72 expansion, the 
primary polygenic score excluded this entire region out of caution. We constructed polygenic 
scores, including SNPs based on their association with ALS in an independent GWAS. 
Polygenic score performance was highest when constructed using a p-value threshold of 
approximately 10-4, using 275 SNPs (Supplementary Figure S4). At this threshold, the 
incremental R2 for the polygenic score was approximately 1.2%.  
 
For sensitivity analyses, we considered a polygenic score using all available SNPs post pruning 
(n = 254,307 SNPs), with an incremental R2 of approximately 0.4%. As another sensitivity 
analysis, we included SNPs in the C9orf72 region and observed polygenic score performance 
was also highest using a p-value threshold of approximately 10-4 (n = 280 SNPs) 
(Supplementary Figure S5).  
 



Associations Between Genetic Predictors and ALS Cases Status  
In bivariate analyses, ALS cases had higher mean ALS polygenic scores (average standardized 
score of 0.03) than controls (average standardized score -0.08) (p-value = 0.11) (Supplemental 
Figure S6). We examined the roles of genetic variables and family history in analyses adjusted 
for age, sex, and five genetic principal components. In the full study sample (n = 442 
participants), a one standard deviation increase in ALS polygenic score was associated with 
1.28 times higher odds of ALS (95% CI: 1.04, 1.57) (Table 2), after also adjusting for C9orf72 
repeat expansion status and family history of ALS. These findings were consistent when we 
subset the sample to participants lacking a C9orf72 repeat or family history of ALS (N = 416 
participants). A one standard deviation increase in ALS polygenic score was again associated 
with 1.28 times higher odds of ALS (95% CI: 1.04, 1.57).  
 
ALS Case Classification Performance 
Beyond association testing, we were interested in the performance of genetic factors in 
classifying ALS cases and controls (Figure 2). Our base classification model adjusted for sex, 
age, and five genetic principal components had an area under the curve (AUC) of 0.591. Adding 
family history of ALS alone to the base model increased AUC to 0.631 and improved 
classification over the base model (likelihood ratio test p = 0.06). Including C9orf72 repeat 
status as a covariate on top of the base model and family history increased the AUC to 0.647 
and improved classification (likelihood ratio test p-value < 0.001). Adding the ALS polygenic 
score following family history and C9orf72 repeat status further raised AUC to 0.663 and 
improved classification (likelihood ratio test p-value < 0.001). To assess prediction accuracy, we 
split datasets into training and testing and performed five-fold cross-validation. These AUC 
results were 0.539 for the base model, 0.588 adding family history, 0.603 adding C9orf72 repeat 
status, and finally 0.620 adding ALS polygenic score (Supplemental Figure S7). While the 
AUCs were attenuated, as a result of the sampling procedure, similar sequential prediction 
accuracy remained, highlighting the prediction capability. 
 
Attributable Fraction 
To assess the fraction of ALS cases attributable to genetic factors, we compared those in the 
highest 20th percentile of ALS polygenic score to the rest of the sample. We observed that 4.1% 
(95% CI: -9.1%, 17.3%) of ALS cases would be prevented if the highest 20th percentile of ALS 
polygenic score were at the level of the rest of the population. For the C9orf72 expansion, 6.3% 
(95% CI: -2.7%, 15.3%) of ALS cases would be avoided if they lacked the expansion.   
 
Sensitivity Analyses 
Sensitivity analysis (Supplementary Results, Table 2), including analysis around the C9orf72 
region, and an analysis restricted to European ancestry participants (Supplementary Table S3, 
Supplementary Table S3, Supplementary Figure S8), overall showed findings consistent with 
the main analysis.  
 
Gene Pathway Analysis 
In the 275 SNP associated genes, included the polygenic score, richR identified 65 highly 
enriched GO biological process terms, including several related to the neuronal system, such as 
“neuron differentiation”, “generation of neurons”, “neuron projection morphogenesis”, 
“neurogenesis” and “neuron development” (Figure 3, Supplementary Table S5). A total of nine 
KEGG pathways were significantly enriched at a nominal p-value < 0.05, which included 
“Glycosphingolipid biosynthesis-ganglio series”, “Fatty acid degradation” and “Pancreatic 
secretion” (Figure 4, Supplementary Table S6).   
 



Replication Results 
The Spanish cohort had 548 ALS cases and 2,756 controls, after removing 232 participants for 
missing age or C9orf72 information. Family history, C9orf72 expansion, and sex were 
associated with ALS case status (Supplementary Table S7). Due to differences in genotyping 
arrays and allele frequencies between the Michigan and Spanish cohorts, available SNPs varied 
between the two cohorts. To harmonize our analyses, we restricted to SNPs available in both 
cohorts, and the best performance in the Michigan cohort among overlapping SNPs resulted 
from a polygenic score consisting of 132 SNPs (p-value threshold=5 x 10-5). In the Spanish 
cohort, a one standard deviation increase in the harmonized ALS polygenic score was 
associated with 1.11 higher odds (95% CI: 1.01, 1.22) of ALS case status (p-value = 0.028), 
adjusted for sex, age, C9orf72 expansion, family history, and five genetic principal components. 
In the Michigan cohort, a one standard deviation increase in the harmonized ALS polygenic 
score was associated with 1.22 higher odds (95% CI: 1.00, 1.50) of ALS case status (p=0.04) 
when including all ancestries, mirroring results above with the 275 SNP polygenic score. When 
limiting to European genetic ancestry in the Michigan cohort, the harmonized 132 SNP 
polygenic score had a stronger association, where one standard deviation increase in ALS 
polygenic score was associated with 1.27 higher odds (95% CI: 1.03, 1.57) of ALS case status 
(p-value = 0.02). Meta-analysis of the Spanish cohort and Michigan cohort (all ancestry) 
resulted in an estimate of one standard deviation increase in ALS polygenic score being 
associated with 1.13 higher odds (95% CI: 1.04, 1.23) of ALS case status (p-value = 0.004) 
(Supplementary Figure S9). 
 
Discussion 
 
ALS risk factors are incompletely understood. Models that predict the steps involved in 
developing ALS24 are necessary to generate ALS risk profiles. Representing this genetic risk25 is 
critical as most individuals with ALS lack a monogenic ALS risk gene. Since genetic risk may be 
distributed throughout the genome, identifying polygenic risk facilitates an understanding of the 
multiple ALS pathological pathways. Here we developed a weighted polygenic score using a 
large ALS-control GWAS.13 This score differed significantly in ALS cases versus controls from 
an independent Michigan cohort. Further, this polygenic score represents important genes and 
biological functions in the pathophysiology of ALS.  
 
In the current study, the ALS polygenic score with the best model fit and lowest p-value was 
represented by 275 SNPs when excluding the region around C9orf72 and 280 SNPs when 
including the region. We tested other SNP combinations as determined by default PRSice-2 p-
value thresholds and a model including all SNPs. In each case, the model with fewer SNPs 
outperformed the larger models, suggesting that the genetic contributions to ALS are limited to a 
smaller subset of genes as opposed to a wide-ranging set of genes across more genomic 
regions. Next, we showed that a standard deviation increase in the ALS polygenic score raised 
ALS odds by 1.28 times in both models without and with the C9orf72 region. Interestingly, all 
risk increased when the C9orf72 region was included, even after adjusting for the C9orf72 
expansion, suggesting a possible role for alleles around the C9orf72 region on disease status, 
even in the absence of the repeat itself. Unsurprisingly, in these models, ALS risk was 
disproportionate for individuals with a family history or the C9orf72 expansion. Removing 
individuals with an ALS family history or a C9orf72 expansion did not change the impact of the 
polygenic score on ALS risk, meaning the polygenic score itself plays an essential role on the 
overall ALS risk profile. Additionally, findings persisted when restricting to a European genetic 
ancestry population. 
 



Polygenic scores summarize the combined effects that common and low-frequency alleles have 
on disease risk, thereby summarizing the genetic architecture of that disease.26 Multiple medical 
specialties utilize polygenic scores to explain risks such as cardiovascular disease, cancers, 
neurodegenerative diseases,19 26 and other phenotypic traits.10 While polygenic scores are 
gaining traction for ALS,27 few studies propose an ALS-specific polygenic score that can stratify 
populations at risk for ALS. 
 
In contrast to our methods, McCann and colleagues leveraged a list of 853 genetic variants with 
a changed amino acid sequence from a comprehensive literature search.28 After screening the 
population, 43 genetic variants from 18 genes were retained in the model, affecting 35.4% of 
their ALS population. However, the authors did not further develop polygenic scores.28 
Wainberg et al. identified individuals in the Arivale Scientific Wellness cohort at elevated genetic 
risk for ALS using polygenic risk scores developed through literature and sought linkages to 
proteomics, metabolomics, and other clinical laboratory information. This group found that 
increased Ω-3 and decreased Ω-6 fatty acid levels and higher IL-13 levels correlated with ALS 
genetic risk.27 Based on KEGG analysis of the polygenic score developed herein, we found 
enrichment of the fatty acid degradation pathway.29 
 
Placek and colleagues used sparse canonical correlation analysis to identify a polygenic score 
of cognitive dysfunction in an ALS population.30 Like our methods, the authors focused on SNPs 
achieving genome-wide significance in the Nicolas study13 and with risk loci in ALS and 
frontotemporal dementia. Of the 45 SNPs used in their models, 27 were associated with 
cognitive performance in their ALS population, involving the genes MOBP, NSF, ATXN3, 
ERGIC1, and UNC13A. Our polygenic score also included SNPs in MOBP, ATXN3, and 
UNC13A, thereby supporting its validity. Additional uses of polygenic scores in ALS include 
examining polygenic traits for other diseases that overlap with ALS.10 31 Although this was not 
our approach, such studies have yielded linkages between ALS and traits of schizophrenia, 
cognitive performance, and educational attainment.10 31 
 
Polygenic scores have shown utility in other neurodegenerative conditions, such as Alzheimer’s 
disease, to find those at high and low genetic risk.32 For example, a polygenic score derived 
from the International Genomics of Alzheimer’s Disease Project GWAS showed it could predict 
participants that would transition from mild cognitive impairment to late-onset Alzheimer’s 
disease.33 A similar approach using a polygenic score created from an Alzheimer’s cohort 
GWAS dataset associated with incident dementia in a large Swedish birth cohort.34 
 
Our disease classification model further supports the utility of our polygenic score. Our 
polygenic score improved model performance, even one that included the most prevalent ALS 
risk gene, the C9orf72 expansion. In Alzheimer’s, similar findings are noted, where a polygenic 
risk score was able to classify Alzheimer’s cases versus controls with an AUC of 0.83, even 
when excluding APOE4 carriers.35 This indicates that these genetic models are beneficial in 
case classification, even when considering strong genetic risks, which superimpose on 
polygenic risk. Another analysis similarly showed that polygenic scores in Alzheimer’s disease 
could classify patients accurately and that the prediction improved when incorporating additional 
variables such as sex and age.36  
 
Since polygenic scores often overlap in persons with and without a disease of interest, focusing 
on patients with polygenic scores in distribution tails may offer better predictive power.37 Thus, 
to add further perspective to this polygenic risk, we showed that 4.1% of ALS cases could be 
avoided for individuals with the highest 20% of polygenic score if an intervention were possible. 
While this population attributable risk approach considers the fraction of disease caused by 



exposure, this idea can also be applied to genetic data.38 39 For example, a study of polygenic 
scores in cutaneous squamous cell carcinoma showed that removing all risk alleles from a 
population would decrease the risk of this cancer by 62%.40 The authors argue that identifying 
those at the highest genetic risk could inform programs for skin cancer screening, with the 
caveat that interactions of SNPs with environmental factors41 are not included in the model. A 
parallel approach is also proposed for breast cancer to help identify populations that would 
benefit from targeted risk reduction strategies.42 A similar analysis has shown changes in the 
prevalence of type 2 diabetes, breast cancer, hypertension, and myocardial infarctions, if a 
proportion of polygenic risk is removed or enhanced in the population.43 Currently, there is no 
biomarker or tool that can definitively predict who will develop ALS later in life. Therefore, even if 
the polygenic score can only explain a small number of individuals at risk, it could be an 
important screening method for risk reduction. 
 
Replication of these findings is important to determine the generalizability of the results. We 
used genotype and ALS phenotype data from an independent Spanish cohort as a replication 
cohort. Although the SNPs included in the polygenic score were adjusted due to the available 
overlap of SNPs in both datasets, there was consistency in the magnitude of the polygenic 
score effect, further providing support for our proposed polygenic score. Replication of polygenic 
scores is critical to ascertain that the methods and population background used to develop the 
score is generalizable.37 Further, replication cohorts can determine which risk variants are 
applicable across diverse populations.44 Replicating polygenic scores in ALS remains important, 
although this requires large numbers of samples from participants not included in GWAS used 
to derive SNP weights.  
 
We next queried how this set of SNPs impacts disease pathobiology. Through gene enrichment 
and pathway analysis, we showed that this polygenic score selects multiple pathways relevant 
to ALS biology, including synaptic signaling, regulation of protein metabolic process, neuron 
projection, and axon guidance. Using KEGG pathways, we also identified important ALS 
biological functions, including glycosphingolipid biosynthesis and fatty acid degradation.16 45 
Saez-Atienzar et al. used a cohort of 78,500 individuals to develop a polygenic score for 
biological pathways and cell types to determine involvement in ALS.46 Significant pathways 
included those involved in neuronal development and differentiation with an emphasis on the 
cytoskeleton. Of these pathways, the cytoskeleton pathway was significant for individuals both 
with and without the C9orf72 repeat expansion, whereas the autophagosome pathway was only 
significant for C9orf72 carriers. Overlapping enriched GO pathways in our polygenic score with 
those of Saez-Atienzar et al. included neuron projection morphogenesis, cell morphogenesis 
involved in differentiation, neuron development, cellular component morphogenesis, cell 
development, and cell projection organization. The overall overlap shows that these two 
different methods for developing a polygenic score selects similar pathways. Other studies of 
gene expression in ALS have also identified dysregulated metabolic pathways and cytoskeletal 
pathways.47 
 
This study has limitations. Due to cost and a research interest in common genetic variants, we 
performed genome-wide genotyping instead of whole genome sequencing. While whole 
genome sequencing would allow us to better account for genetic background, the method we 
used are validated across many studies. In addition, the study population size is small 
compared to the number of individuals impacted by ALS. However, the sample size here was 
limited to participants not included in prior GWASs and is thus a strength. This is important 
since developing polygenic scores from participants that are already in the reference GWAS 
may lead to biased results. Also, since we did utilize a lower-cost genotyping strategy imputed 
to maximize overlap with the ALS GWAS used for weights, these methods could be beneficial 



for population screening where the cost of whole genome sequencing is not economically 
feasible. 
 
Conclusion 
In conclusion, we find that a polygenic score for ALS can account for cumulative genetic risk in 
the population and reflect cellular processes that are relevant to ALS. If further validated, this 
polygenic score can be a valuable tool for ALS risk models and the design of ALS prevention 
studies. 
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Tables 
 
Table 1. Included study sample characteristics by ALS case and control status for shared 
ancestry cohort. 
 
Characteristic Control 

N = 2231 
ALS 

N = 2191 
p-

value2 
ALS polygenic score with  
   C9orf72 region removed -0.08 (-0.73, 0.64) 0.03 (-0.55, 0.74) 0.11 

ALS polygenic score with  
   C9orf72 region included -0.13 (-0.74, 0.65) 0.08 (-0.56, 0.75) 0.080 

C9orf72 Expansion Status   <0.001 
Negative 223 (100%) 206 (94%)  
Positive 0 (0%) 13 (5.9%)  

Family History of ALS 0 (0%) 17 (7.8%) <0.001 
ALS Onset Segment   - 

Bulbar 0 (0%) 59 (27%)  
Cervical 0 (0%) 80 (37%)  
Lumbar 0 (0%) 73 (33%)  
Respiratory 0 (0%) 1 (0.5%)  
Thoracic 0 (0%) 4 (1.8%)  
Generalized 0 (0%) 2 (0.9%)  
Not applicable 209 (100%) 0 (0%)  

Age (years) 65 (58, 71) 67 (59, 73) 0.4 
Sex   0.027 

Female 115 (52%) 90 (41%)  
Male 108 (48%) 129 (59%)  

Self-Reported Race/Ethnicity   0.037 
Asian 2 (0.9%) 1 (0.5%)  
Black or African American 11 (5.0%) 2 (0.9%)  
Hispanic or Latino 5 (2.3%) 3 (1.4%)  
White or Caucasian 203 (92%) 213 (97%)  
Missing 2 0  

Multi-Ancestry Genetic PC1 0.0080 (0.0077, 0.0082) 0.0080 (0.0078, 0.0082) 0.9 
Multi-Ancestry Genetic PC2 -0.020 (-0.020, -0.020) -0.020 (-0.020, -0.019) 0.6 
Multi-Ancestry Genetic PC3 -0.0079 (-0.0086, -0.0071) -0.0080 (-0.0085, -0.0071) 0.7 
Multi-Ancestry Genetic PC4 -0.0095 (-0.0101, -0.0089) -0.0098 (-0.0102, -0.0090) 0.066 
Multi-Ancestry Genetic PC5 -0.004 (-0.007, 0.000) -0.004 (-0.007, -0.001) 0.8 
1Median (25th percentile, 75th percentile); n (%) 
2Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test 
ALS, Amyotrophic lateral sclerosis; N, number; PC, principal component 

 
 



Table 2. Regression results in the full sample used in sensitivity analyses (n=223 controls, n=219 ALS 
cases). 
Regression results provided are odds ratios and 95% confidence intervals within parentheses for association 
with ALS status. All Firth penalized logistic regression models were also adjusted for participant age, sex, and 
5 genetic ancestry principal components. Polygenic scores for ALS are based on weights in an independent 
genome-wide association study (Nicholas et al. 2018).13  
 

 C9orf72 region SNPs excluded from polygenic score C9orf72 region 
included 

 
Polygenic score  
(Pthreshold=0.0001,  

N= 275 SNPs) 

Polygenic score  
(Pthreshold=0.0001,  

N= 275 SNPs) 

Polygenic score 
(Pthreshold=1.0,  

N= 254,280 SNPs) 

Polygenic score  
(Pthreshold=0.001,  
N= 280 SNPs) 

Variable N = 442 
participants 

N = 416 
participants 

(without family 
history and/or 

C9orf72 
expansion) 

N = 442 participants N = 442 
participants 

Polygenic score 
(one standard 
deviation 
increase) 

1.28 (1.04, 1.57) 1.28 (1.04, 1.57) 1.13 (0.77, 1.66) 1.28 (1.05, 1.58) 

C9orf72 repeat 
(positive) 22.8 (2.8, 2954) - 20.7 (2.6, 2674) 21.4 (2.7, 2775) 

Family history of 
ALS (yes) 33.2 (4.3, 4268) - 32.6 (4.3, 4184) 32.7 (4.2, 4209) 

Age (10-year 
increase) 1.1 (0.91, 1.33) 1.1 (0.91, 1.33) 1.09 (0.9, 1.32) 1.09 (0.9, 1.32) 

Sex (male) 1.52 (1.02, 2.27) 1.52 (1.02, 2.28) 1.47 (0.99, 2.19) 1.53 (1.03, 2.29) 
SNP: single nucleotide polymorphism 
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Figures 
 
Figure 1. C9orf72 region of chromosome 9 visualized as a locus zoom plot.   
Single nucleotide polymorphisms (SNPs) are plotted by genomic position. The y-axis corresponds to -log10(p-values) from the ALS genome-wide 
association study (Nicholas et al. 2018). We considered the C9orf72 region to span from 27.4 Mb to 27.7 Mb on chromosome 9 as illustrated with 
the blue dashed box. In an independent sample, our primary polygenic score excluded the C9orf72 region, and a sensitivity polygenic score 
included these SNPs. The SNP highlighted by the green diamond (rs3849943, located chr9:27543382) was associated with C9orf72 repeat status 
(fisher p-value = 0.00001). Below the plot, positions of C9orf72 as well as other genes in the region are shown.  
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Figure 2. ROC Curve. Base model has sex, age, ancestry principal components. (n = 442) 
Receiver operating characteristic curve (ROC) for classification of ALS and control participants. The base model includes sex, age, and 5 genetic 
principal components and has an area under the curve (AUC) of 0.591. Adding family history to the base model increases the AUC to 0.631 
(likelihood ratio test p-value = 0.06). Adding C9orf72 expansion in addition to family history increases the AUC to 0.647 (likelihood ratio test p-value 
< 0.001). Adding polygenic score (PGS, region around C9orf72 removed) in addition to family history and C9orf72 expansion improves the AUC to 
0.663 (likelihood ratio test p-value < 0.001).  
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Figure 3. Highly enriched gene ontology (GO) biological processes 
The 50 most significantly enriched biological functions using GO are illustrated in dot plots. Rich Factor refers to the proportion of single 
nucleotide polymorphism (SNP) associated genes belonging to a specific term. The color indicates the level of significance  (-log10Padj). The 
numbers correspond to the number of SNP associated genes belong to the term. 
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Figure 4. Highly enriched KEGG pathways. 
The significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are illustrated in dot plots. Rich Factor refers to the 
proportion of single nucleotide polymorphism (SNP) associated genes belonging to a specific term. Node size (Gene number) refers to the 
number of SNP associated genes within each term and node color indicates the level of significance (-log10p-value). 
 

 
 


	Abstract
	Main Text
	Introduction
	Methods
	Results
	Study Participants
	Genetic Data Characteristics and Polygenic Score Optimization
	Associations Between Genetic Predictors and ALS Cases Status
	ALS Case Classification Performance
	Attributable Fraction
	Sensitivity Analyses
	Gene Pathway Analysis
	Replication Results

	Discussion
	Conclusion
	Acknowledgments
	Funding
	Competing interests
	Authors’ contributions
	Data and Code Availability
	References

	Tables
	Table 1. Included study sample characteristics by ALS case and control status for shared ancestry cohort.
	Table 2. Regression results in the full sample used in sensitivity analyses (n=223 controls, n=219 ALS cases).

	Figures
	Figure 1. C9orf72 region of chromosome 9 visualized as a locus zoom plot.
	Figure 2. ROC Curve. Base model has sex, age, ancestry principal components. (n = 442)
	Figure 3. Highly enriched gene ontology (GO) biological processes
	Figure 4. Highly enriched KEGG pathways.


