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1 Abstract 1 

Background: Clinical decisions about Heart Failure (HF) are frequently based on measurements 2 

of left ventricular ejection fraction (LVEF), relying mainly on echocardiography measurements for 3 

evaluating structural and functional abnormalities of heart disease. As echocardiography is not 4 

available in primary care, this means that HF cannot be detected on initial patient presentation. 5 

Instead, physicians in primary care must rely on a clinical diagnosis that can take weeks, even 6 

months of costly testing and clinical visits. As a result, the opportunity for early detection of HF is 7 

lost.  8 

Methods and results: The standard 12-Lead ECG provides only limited diagnostic evidence for 9 

many common heart problems. ECG findings typically show low sensitivity for structural heart 10 

abnormalities and low specificity for function abnormalities, e.g., systolic dysfunction. As a result, 11 

structural and functional heart abnormalities are typically diagnosed by echocardiography in 12 

secondary care, effectively creating a diagnostic gap between primary and secondary care. This 13 

diagnostic gap was successfully reduced by an AI solution, the Cardio-HART™ (CHART), which 14 

uses Knowledge-enhanced Neural Networks to process novel bio-signals. Cardio-HART reached 15 

higher performance in prediction of HF when compared to the best ECG-based criteria: sensitivity 16 

increased from 53.5% to 82.8%, specificity from 85.1% to 86.9%, positive predictive value from 17 

57.1% to 70.0%, the F-score from 56.4% to 72.2%, and area under curve from 0.79 to 0.91. The 18 

sensitivity of the HF-indicated findings is doubled by the AI compared to the best rule-based ECG-19 

findings with a similar specificity level: from 38.6% to 71%.  20 

Conclusion: Using an AI solution to process ECG and novel bio-signals, the CHART algorithms 21 

are able to predict structural, functional, and valve abnormalities, effectively reducing this 22 

diagnostic gap, thereby allowing for the early detection of most common heart diseases and HF in 23 

primary care. 24 

 25 
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2 Introduction  1 

Cardiovascular disease (CVD) remains the leading cause of disease burden in the world, with 18.6 2 

million CVD deaths registered in 2019 [1]. Heart Failure (HF) affects a large spectrum of this 3 

population, occurring at all ages and equally in both genders, with 38 million people affected 4 

globally [2]. HF increases with age, high blood pressure, obesity, and diabetes. Early detection is 5 

critical to accessing appropriate and timely treatment to achieve the best possible outcomes [3]. 6 

Nearly 80% of all HF diagnoses are initially made in emergency care [4], and this is despite over 7 

60% of these same patients presenting to primary care with signs and symptoms of HF in the 6 8 

months before their diagnosis. Delay and missed diagnoses are common, typically confirmed only 9 

after symptoms have become obvious and severe damage has set in. Estimates for delays for a 10 

HFrEF diagnosis ranges from several months in Germany to up to a year in Ireland, with serious 11 

delays in France, Netherlands, Sweden, and the UK [5]. For HFpEF, in an ongoing study of AF in 12 

the UK, it was reported as 12+ months [6].  13 

ECG and natriuretic peptide testing play a role in the clinical decision leading to a HF diagnosis, 14 

but they have limitations that contribute to high false positive and low detection rates in the early 15 

phase. Access to echocardiography is all too often delayed due to backlogs and long waiting lists. 16 

HF is characterized mainly by echocardiography measurements, and to a much lesser extent, ECG 17 

measurements, that can identify functional and structural heart abnormalities [7], which underpin 18 

the HF condition. LVEF, LV global longitudinal strain (GLS) [7][8][9] or LV volume or stroke 19 

volume (SV) [8] could be useful for early detection of HF, but these echocardiography 20 

measurements are only available in secondary care, not in primary care. Due to the lack of a non-21 

invasive medical device for use in primary care able to provide echocardiography equivalent 22 

findings, the opportunity for early detection of HF is missed.  23 

This research analyses the use of novel bio-signals enhanced with AI, to provide echocardiography 24 

equivalent findings for use in primary care settings, enabling the early detection of HF. Such bio-25 

signals can provide a more precise estimation of structural and functional cardiac abnormalities 26 

that include LVEF, GLS, SV, LV mass index (LVMI), and left atrial volume index (LAVI) 27 

parameters for detecting and predicting HF.  28 

A breakthrough technology from Cardio-Phoenix™, Cardio-HART™, based on complementing 29 

and augmenting ECG and PCG with a novel bio-signal of a physiological nature, is analysed in this 30 

paper. It is a low-cost, non-invasive, cardiac assessment system for use in patient care settings, for 31 
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the early detection of CVD, including myocardial infarction, functional and valve abnormalities, 1 

and HF, including its phenotype, HFpEF, HFmrEF, or HFrEF. 2 

2.1 Characteristic Nature of Heart Failure 3 

HF is mainly categorized based on LVEF, including HFpEF (50≤LVEF), HFmrEF 4 

(50>LVEF>40), and HFrEF (40≥LVEF) as confirmed by the recent guidelines [3][10]. However, 5 

HF diagnostic rules and algorithms include structural heart disease criteria according to guidelines 6 

[3][10][11]. To achieve a clinically meaningful outcome, each HF category should be characterized 7 

by its characteristic dysfunctions, for which LVEF has limitations [12]. LVEF alone is 8 

insufficiently sensitive for subtle LV systolic dysfunction caused by regional wall motion 9 

abnormality (WMA), which is better detected by mitral annular systolic excursion or systolic 10 

velocities or LV global longitudinal strain (GLS) [7][8][9]; LVEF correlates less with long-axis 11 

functional reserve of the LV or with peripheral blood flow. Still, LVEF, GLS, or SV could be 12 

useful for the early detection of HF with the extension of structural criteria [13].  13 

2.1.1 HFpEF characteristics  14 

HFpEF should be suspected in patients with typical HF symptoms and signs (S3 heart sound, 15 

displaced apical pulse, and jugular venous distension) of chronic heart failure [14].  16 

HFpEF is suspected when an echocardiography finding of a normal LVEF is paired with relevant 17 

structural heart disease or diastolic dysfunction (DD) [3][10][14]. However, HFpEF cannot be 18 

diagnosed from a single echocardiographic parameter, but inclusion of functional and structural 19 

parameters (AF, E/e’, RVSP, GLS, LAVI, LVMI) with risk factors (Elder Age, Hypertensive, 20 

Obesity) together with a natriuretic peptide test can better define this heterogeneous disorder 21 

[11][15]. Additionally, HFpEF patients are also likely to have QRS, QTc, and PR interval 22 

prolongation or pacemaker on ECG, compared to non-HF patients [15]. 23 

2.1.2 HFmrEF characteristics  24 

Patients with HFmrEF have a different clinical profile, but more similar to patients with HFpEF 25 

[16], primarily mild LVSD, but with features of DD. The diagnostic criteria for HFmrEF include 26 

any relevant structural heart disease, such as LVH or LAE or DD besides symptoms and the mildly 27 

reduced EF (LVEF of 40-49%) [10]. HFmrEF patient’s typical structural abnormality is mild 28 

DCM, the typical functional abnormality is WMA with either MI or ST-T deviation, and the 29 

typical electrophysiological problem is AFib, PAC, and lower T wave axis (valve diseases are less 30 

typical when compared to HFpEF) [13]. 31 



©2022 Cardio-Phoenix Inc.  Page 5 of 27 

2.1.3 HFrEF characteristics   1 

HFrEF is most commonly associated with DCM or CAD [17]. LVSD and moderate AS commonly 2 

occur together; patients with moderate AS and concomitant LVSD are at high risk for clinical 3 

events including all-cause death, hospitalization for HF, and aortic valve replacement [18]. HFrEF 4 

group of patients have the highest levels of comorbidity and severity: the typical structural 5 

abnormalities are the DCM, left and right atrial and ventricular enlargement; the typical functional 6 

abnormality is LVSD, the typical hemodynamical problem is mitral/tricuspid regurgitation and PH, 7 

and all the common ECG abnormalities show higher prevalence, including LVH and RVH criteria 8 

[13]. 9 

2.2 Bio-Signal Characteristics 10 

Diagnosing HF related abnormalities using synchronized bio-signals depends on the prediction 11 

capability of the underlying echocardiographic characteristics associated with HF. This article 12 

demonstrates that other non-invasive bio-signals, phonocardiography, and mechano-physiological, 13 

can be used to augment and complement ECG in such a way that they can provide comparable 14 

accuracy and reproducibility estimation of LV systolic and diastolic function, regarding 15 

echocardiography, with clinically acceptable diagnostic power.  16 

The bio-signal capabilities to assess systolic dysfunction and typical signs and comorbidities of HF 17 

are discussed in the following subsections.  18 

2.2.1 Electrocardiogram 19 

ECG interpretation can reach high performance if the condition is related to the electrophysiology 20 

of the heart, such as specific arrhythmias, premature beats, atrioventricular blocks, and bundle-21 

branch blocks. But ECG is less clear in the case of mechano-physiological or hemodynamical 22 

abnormalities.  23 

ECG has some signs for the mechano-physiological diseases, typically the repolarization 24 

abnormalities, (abnormal ST-T) associated to CAD, the abnormally high QRS voltages as a 25 

manifestation of ventricular hypertrophy and abnormal P-wave voltages related to atrial 26 

enlargement.  27 

The standard reading of ECG shows low sensitivity (20-50%) with moderate-high specificity (85-28 

90%) for ventricular hypertrophy [19][20] and atrial enlargement [21][22], where these structural 29 

abnormalities are defined by standard LVMI, IVSd, RWT, LAVI, and RAVI echocardiographic 30 

parameters. In practice, this results in high levels of FN.  31 
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Some recent ECG processing, shows the prediction capability for severe systolic dysfunction and 1 

moderate/severe aortic stenosis (AS) [23], but the results demonstrate that the ECG signs 2 

(essentially inverted T-waves) are not sufficiently specific for any disease and the PPV remains 3 

low, 10-30%, again leading to higher levels of FP. ECG signals processed with state-of-the-art 4 

NNs can arguably reach workable sensitivity for patients having LVEF<35% [24]. However, the 5 

positive predictive value (PPV) is typically low (10-30%), because ECG signs for low EF do not 6 

have sufficient specificity.  7 

2.2.2 Phonocardiography 8 

Phonocardiography (PCG) signals capture heart sounds that contain useful and familiar 9 

information about the condition of the heart for the early detection and diagnosis of some heart 10 

diseases [25], in particular, valve diseases [26] and HF [27]. The acoustic waveform of PCG 11 

caused by the movement of blood in the cardiovascular system is considered an important indicator 12 

in the diagnosis of several CVDs [28] and hemodynamic findings, such as Atrial Stenosis, or “AS” 13 

[29]. Advanced electronic stethoscopes can detect heart murmurs [26] with higher performance, 14 

including some valve diseases, and with moderate performance for mitral and aortic regurgitation 15 

[30]. 16 

2.2.3 Mechano-physiological force 17 

Bio-signal measuring mechanical physiological force correlates to cardiac activity [31], which has 18 

similar measurement characteristics to GLS and SV [32][33], because it can capture both wall 19 

motion at four different auscultation points and myocardial contractility. The characteristics of 20 

these signals contain useful information that correlates with cardiovascular physiological and 21 

pathological processes [34] and dysfunctions. This method can predict systolic and diastolic left 22 

ventricular function in ischemic heart disease, as indicated by basic research [35][36]. For 23 

example, one study resulted in a high correlation between the change in signal derived “g-value” 24 

and the change in EF% (r=0.87) [37]. 25 

Extensive research and development has resulted in a bio-signal that measures cardiac 26 

characteristics of a mechano-physiological nature (MCG). Together, when this novel bio-signal is 27 

synchronized and combined with ECG and PCG bio-signals, they can provide sufficient 28 

characteristic information about cardiac dysfunctions associated with various CVDs, including HF. 29 

However, the extraction of cardiac dysfunction from these signals requires effective processing 30 

techniques by an advanced AI system.  31 
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2.2.4 Systolic Time Intervals 1 

Systolic time intervals are an alternative bio-signal-based evaluation of abnormal LV systolic 2 

function [38], which can be measured by synchronized bio-signals of an electrical, hemodynamic, 3 

and physiological nature: systolic ejection time (SET) [39], systolic performance index 4 

(PEP/LVET) [40], and electromechanical activation time (EMAT) [41].  5 

Research pairing bio-signals with ECG has been shown to predict some cardiovascular diseases 6 

[35], e.g., systolic and diastolic function in ischemic heart disease [36]. The measurement of PEP 7 

and LVET is a common point between ECHO and bio-signals, and a study resulted in a 0.6-0.8 8 

correlation between ECHO-based and bio-signal based PEP measurements [42].  9 

2.3 Organization of the Article 10 

In the introduction, we share background knowledge about how the bio-signals are able to detect 11 

heart failure. In methods, a brief summary of the Cardio-HART algorithm is provided, focusing on 12 

its unique modeling. Then, in the results, the performance of the Cardio-HART solution is 13 

presented and compared to a traditional ECG. The discussion looks at the implications of the 14 

solution in health care systems and is followed by a conclusion. 15 

3 Methods  16 

The CHART system captures and its AI processes three types of bio-signals. Each bio-signal has 17 

its own strengths: 18 

• ECG – Electro-physiological abnormalities: arrhythmias, premature beats, atrioventricular 19 

blocks, bundle-branch blocks, etc. 20 

• MCG – Mechano-physiological abnormalities: hypertrophy, atrial enlargement, systolic or 21 

diastolic dysfunction, cardiomyopathy, myocarditis, myocardial infarction, ischemia, or 22 

other wall motion problems 23 

• PCG - Hemodynamic diseases: valve stenosis, valve regurgitation, hypertension (arterial or 24 

pulmonary hypertension) 25 

CHART’s AI, synchronously combines and processes the ECG, PCG, and MCG bio-signals to 26 

predict, with high probability, LV systolic and diastolic dysfunctions, as well as structural and 27 

valve related abnormalities connected to HF, similarly to ECHO in the form of HART-findings. 28 
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HART-findings™ are disease equivalent to ECHO-findings, but derived using bio-signals rather 1 

than from images as in Echocardiography1.  2 

As abnormalities and comorbidities of HF are essentially diagnosed primarily by ECHO and to a 3 

much lesser extent by ECG, the classification of HF can be commonly resolved by CHART’s AI.  4 

As ECHO is only available in secondary care, the prediction of HF lacks an appropriate device for 5 

use in primary care.  6 

3.1 Cardio-HART Algorithm  7 

Cardio-HART is an AI-powered, cardiac diagnostic system for use in clinical care settings, 8 

including primary and secondary care. It starts in a clinical care setting where the CHART device 9 

first captures the bio-signals, ECG, PCG, and MCG, and then uploads them to the cloud for AI 10 

processing. The CHART AI then outputs a wide range of medical findings or endpoints, consistent 11 

with cardiac dysfunction.  12 

As a result, Cardio-HART has the diagnostic functionality characteristic of three different cardiac 13 

devices combined, including: 1) 12-lead ECG; 2) eStethoscope (Phonocardiography); and 3) 14 

Echocardiography.  15 

Uniquely, Cardio-HART can diagnose 14 HART-findings, typically only diagnosed by 16 

echocardiography in cardiology. The HART-findings are disease equivalent  to ECHO-findings. 17 

They are classified as “Normal/Mild/Abnormal” for the 14 common abnormalities listed in Table I, 18 

including: structural problems (LVH, DCM, RVE, LAE, RAE), functional problems (WMA, 19 

LVSD, DDIM), and valve problems (AS, MS, AR, MR, TR, PH).  20 

From these HART findings, HF is then classified into 4 phenotypes, consistent with their medical 21 

context: HF Unlikely, HFpEF, HFmrEF, and HFrEF.  22 

3.1.1 Cardio-HART AI  23 

Cardio-HART AI is an extensive set of interconnected and related algorithms that prepare, process, 24 

and analyze the medical information (see Fig. 1), to extract both signal-based findings and machine 25 

learning findings that together contribute to the final outputs related to heart disease and cardiac 26 

status, including: 27 

1. Signal preprocessing: cleaning the bio-signals using digital filters, artifact removal, and 28 
3D stabilization techniques.  29 

2. Signal segmentation – Heart cycles are segmented into characteristics points and into 30 
typical beats, taking advantage of synchronized bio-signals. The ECG is segmented 31 

                                                 
1 FDA requested that HART findings be used instead of Echo-findings to better indicate their bio-signal origin.   



according to standards: P- Q-, R-, R’-, S-, S’-, T-wave. Heart sounds segmented on PCG 1 
signals as: S1-onset, S1-peak, S1-offset, S2-onset, S2-peak, S2-offset. Aortic opening AO2 
and closure AC, mitral opening MO and closure MC are detected on the MCG signals.  3 

3. Signal measurements – Extracts measurement from the segmented bio-signals including 4 
amplitudes, intervals, time-frequency representation, cross-power spectrum density and 5 
statistical features. The important systolic time intervals can be calculated thanks to the 6 
synchronized and segmented bio-signals, such as PQ-, QRS-, QT-interval, Q-S1, Q-S2 7 
intervals, EMAT, PEP, LVET, etc. 8 

4. Signal-based findings: Medically important abnormalities are detected based on known 9 
medical rules. PCG sound amplitude measurements use semi-supervised parameters, e.g. 10 
for systolic murmur. It uses dynamic thresholds in function of patient characteristics, e.g. 11 
prolonged PQ interval using gender and heart rate normalized thresholding.  12 

5. Signal Transformation: This prepares the processed signals for the neural networks using13 
digital signal processing, segmentation-based alignment, and normalization. It reduces the14 
number of network layers and, indirectly, the required number of samples, which is key in15 
avoiding overlearning. Three main transformations are applied:  16 

1) typical beat averaging, which strongly reduces noise;  17 
2) aligned beat sequence (21 beats), which preserves beat variability;  18 
3) time-frequency representation, which highlights the frequency domain of the 19 
signals. 20 

6. Feature compression – This supervised process reduces the number of features to produc21 
disease-specific features. State-of-the-art feature compression methods are then used in 22 
multi-layer convolution neural networks to extract the medically useful information from 23 
the complex or multi-dimensional data (bio-signal). See Fig. 3 for architecture details. 24 

a. ECG: Convolutional long-short-term memory (LSTM) and convolutional capsule 25 
networks are utilized for processing the transformed ECG signal and its softmax 26 
classification layer is trained for the reference ECG findings (e.g., MI 27 
presence/absence).  28 

b. HART: Same architecture networks are applied as at ECG, but used PCG and MCG29 
signals too and trained for fitting 12 key echocardiographic measurements (LVEF,30 
LVMI, LAVI, E/A, etc.). Regularization techniques are implemented to prevent 31 
overlearning, and Pearson correlation is calculated as the ultimate performance 32 
metric, which reaches 0.5-0.8 values on the validation datasets. 33 

7. Machine-learning-based findings 34 
a. ECG: Knowledge-enhanced neural networks (KENN, similar to [52]) are used for 35 

classifying the complex multi-parameter2 ECG-findings (when the reference 36 
standard is not ECG), and the rest are rule-based according to ECG standards. 37 
KENN is a type of hybrid model, similarly to physics-enhanced neural networks, 38 
where the knowledge base rules are the primary model and NN (described in point39 
6) is the secondary or complementary model, which resolves borderline cases. The40 
KENN successfully regularized the NN and the NN becomes active only in specifi41 
cases when the rule is uncertain. The decision is based on maximum probability, 42 
which comes, first, from sigmoid probability-based rules, 43 

 44 

                                                 
2 multi-parameters mean more than one measurement is considered or required in the practical application o
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where x denotes measurements, t is the threshold of abnormal x, and s is a 1 
scale factor) and second, from NN softmax layer   2 

  3 
calculated for i=1..K classes, where z is the previous layer output.  4 
 5 

b. HART: Using both signal measurements and compressed features, the machine 6 
learning models address the echo-equivalence findings in triple-class format 7 
(Normal/Mild/Abnormal) as the top-level interpretation of heart failure and CVD – 8 
called HART-findings. Five feature selection methods are utilized, two are based on 9 
joint mutual information, one is based on Markov-blanket, one is eigenvector-based 10 
and one embedded in feature selection methods. Naïve Bayes, Discriminant 11 
Analysis, and Shallow Neural Network methods are used for classification. At the 12 
end of training, a wrapper-type feature selection method is used to prune the 13 
features. Ensemble learning selects the best combination from 5x3=15 models based 14 
on performance, overfitting, and expert supervision of selected features.  15 

8. HF indication – It is a head layer on Cardio-HART-findings, which uses rules related to 16 
classifying HF. It is described in the next section of 3.2. 17 

9. Cardio-HART report generation: Finally, the algorithm generates a colorful and multi-18 
page report demonstrating how the segmented signals result in the measurements and 19 
findings. The report additionally provides HF classification with estimated LVEF and 20 
decision support for primary care users. 21 

Given its overall size, parts of the algorithm (e.g., points 1-4) are not detailed in this paper. More 22 

details can be found in the Cardio-HART whitepaper, available by request on the official website3. 23 

3.1.2 Training and Validation 24 

Separate training and validation datasets were used. Training was provided using a unique training 25 

dataset of 14150 records, which was not used for performance validation. The neural networks split 26 

the training dataset into two, a training set and a test set. The ensemble feature selection and 27 

classification use a 5-fold cross-validation method on the training dataset to estimate performance. 28 

The finale classifiers are selected based on the maximum cross-validation performance and 29 

minimum estimated overfit. The overfit is estimated between training and cross-validation, but 30 

ultimately between cross-validation and external validation performance, see Fig. 2. 31 

                                                 
3 https://www.cardiophoenix.com/ 
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 1 

Figure 1 – Main modules of Complete Cardio-HART algorithm that predicts HART-Findings and indicates HF 2 

 3 

Figure 2 - Splitting database for training and validation and checking overfit of classification 4 



©2022 Cardio-Phoenix Inc.  Page 12 of 27 

3.2 HF indication model from HART-findings  1 

The innovation analyses three types of bio-signals (mentioned in Table 1) to identify characteristics 2 

for each disease measured at four cardiac auscultation points. Using state-of-the-art neural network 3 

techniques such as Convolutional Recurrent Network (LSTM) and Convolutional Capsule Network 4 

(CapsNet), it extracts the hidden, synchronized and localized medical information from the signals. 5 

The supervised training of these networks is made for key echocardiographic measurements, 6 

including LVEF, as it detailed in point 6b. These compressed features provide the main prediction 7 

capability based on the estimated LVEF and LVSD findings and other HART-findings, HF 8 

categories are indicated using rules, as demonstrated on the bottom part of Fig. 3.  9 
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 1 

Figure 3 – Cardio-HART block diagram for HART machine learning models and indicating HF  2 



3.3 Performance evaluation  1 

The common binary performance metrics are calculated for the HART-findings validation, 2 

presented in section 4.1: sensitivity (SE=TP/(TP+FN))4, specificity (SP=TN/(TN+FP)), positive 3 

and negative predictive value (PPV=TP/(TP+FP), NPV=TN/(TN+FN)), plus the prevalence is 4 

provided (PREV=(TP+FP)/( TP+FP+TN+FN)). 5 

In the ECG versus HART comparison, we chose appropriate ECG performance metrics to make a6 

fair comparison because ECG-findings have low specificity, typically for LVSD. The prevalence 7 

of ECG and ECHO-findings is imbalanced for the target population (typically 1-20%). Hence, the8 

sensitivity (a.k.a. recall) is relevant, but the PPV (a.k.a. precision) is more representative compare9 

to specificity. This is the reason for Precision-Recall Curve (PRC) analysis in addition to Receive10 

Operating Characteristic (ROC) analyses. The F-score is a combination of precision and recall and11 

is an appropriate scalar performance metric for binary classification to choose the best predictive 12 

ECG-finding for ECHO-findings. The F-score is an appropriate scalar performance metric for 13 

binary classification to choose the best predictive ECG-finding for ECHO-findings as the F-score14 

is a combination of precision and recall. Because of the imbalanced case (prevalence smaller than15 

50%), the beta was chosen to β=0.5 to regularize the too many false positives and ensure the 16 

prevalence-based balanced classification (denoted as “F05” on figures).  17 

 18 

4 Results 19 

4.1 Diagnostic Performance of HART-Findings™ 20 

The validation procedure of HART-findings is based on an ECHO-based ground truth. HART-21 

findings were validated with a database having both parallel bio-signals and ECHO assessment. 22 

The performance shows sensitivity ranging between 65-90% with 90%+ specificity and 5-20% 23 

disease prevalence (see Table 1).  24 

Independent validation was provided using two additional, external and independent, datasets 25 

reserved strictly for validation: the external validation (EVA) is on 6962 records and the 26 

independent validation (IVA) is on 2878 records. The independent datasets used for validation 27 

were collected in different medical centers with different cardiologists from the training dataset.  28 

                                                 
4

e 

e a 

ce 

the 

ared 

ver 

and 

e 

re 

an 

 



©2022 Cardio-Phoenix Inc.  Page 15 of 27 

Table 1 – External (EVA) and Independent (IVA) validation performance of 14 HART-findings by Cardio-1 
HART  2 

HART  
Finding 

SE% SP% PPV% NPV% PREV% 

EVA IVA EVA IVA EVA IVA EVA IVA EVA IVA 

LVH 80.9 77.2 81.1 95.7 60.6 77.9 92.2 95.5 26.5 16.5 

DCM 78.1 70.7 90.4 98.2 61.5 81.9 95.4 96.7 16.4 10.2 

RVE 67.1 69.7 94.9 97.9 49.4 44.2 97.5 99.3 6.9 2.3 

LAE 97.2 95.9 92.4 97.5 64.7 73.8 99.6 99.7 12.5 6.7 

RAE 85.9 61.8 92.6 96.9 50.4 50.0 98.7 98.1 8.0 4.7 

WMA 87.4 81.8 90.0 95.6 49.8 69.9 98.4 97.7 10.2 11.0 

LVSD 70.0 66.7 96.2 98.0 63.3 74.5 97.2 97.2 8.5 7.9 

DDIM 74.8 77.5 80.4 78.6 61.3 72.8 88.5 82.5 29.3 42.5 

AS 89.5 85.4 97.3 98.3 70.1 63.1 99.2 99.5 6.6 3.3 

MS 64.9 NA* 98.0 NA* 48.5 NA* 99.0 NA* 2.8 0* 

AR 64.6 69.9 86.9 94.5 57.1 62.4 89.9 96.0 21.4 11.5 

MR 70.3 83.3 84.6 97.2 60.7 70.9 89.4 98.6 25.3 7.5 

TR 72.5 64.0 89.7 96.6 61.6 58.7 93.5 97.3 18.5 6.9 

PH 67.0 79.5 95.9 99.0 52.4 71.4 97.8 99.4 6.2 3.1 

Average 76.4 75.6 90.7 95.7 58.0 67.0 95.5 96.7 14.2 10.3 

* EV database has not sufficient positive for MS 3 

4.2 ECG findings versus HART-Findings 4 

ECG’s limited diagnostic capability for the mentioned HF related structural abnormalities is 5 

confirmed by the literature, as is summarized in section 2.2.1. All too often, the ECG is 6 

nondiagnostic (inconclusive), and echocardiography confirmation is required. For example, 7 

patients with a classic description of anginal chest pain may have normal or non-specifically 8 

abnormal ECG, but evaluation of wall motion by echocardiography makes the diagnosis clear 9 

[43][44].  10 

HART-findings diagnostic capability for HF related ECHO-findings is demonstrated by its higher 11 

diagnostic performance compared to the standard ECG interpretation. This comparison is shown in 12 

Table 2 by 8 ECHO-findings, and the results confirm that the Cardio-HART solution is better 13 

when compared to the best ECG-findings.  14 

The most important and preselected rule-based ECG-findings are evaluated in this comparison:  15 

• Atrial Fibrillation (AF) 16 

• Leftward Axis (LAX) 17 

• Bundle Branch Block (BBB) including both Left and Right BBB 18 

• ST-T deviation (ST-T) when ST interval and T abnormal at the same time, but excluding 19 

non-specific ST deviation  20 

• T-wave abnormalities (TWA), including ischemic T-wave inversion,  21 
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• Atrial Abnormality ECG criteria (AA Crit.), including both Left and Right Atrial 1 

Abnormality 2 

• LV Hypertrophy ECG criteria (LVH Crit.) 3 

• Ventricular Hypertrophy (VH Crit.), including both LVH and RVH criteria 4 

• Myocardial Infarction ECG criteria (MI Crit.) including STEMI and pathological Q wave 5 

criteria 6 

• Minimum 3 HF indicator (Min.3HFi): minimum 3 abnormality occurs together from the 7 

following 9 HF indicator findings: AF, LAX, BBB, ST-T, TWA, AA Crit., VH Crit., MI 8 

Crit., or Tachycardia 9 

• Minimum 2 HF indicator (Min.2HFi): minimum 2 abnormality occurs together from the 9 10 

HF indicator findings. 11 

• Minimum 1 HF indicator (Min.1HFi): minimum 1 abnormality occurs together from the 9 12 

HF indicator findings. 13 

The top graph of Fig. 4 shows the F0.5-score performance comparison of all the examined ECG-14 

findings and HART-findings. The two bottom graphs compare the best ECG and HART-Findings 15 

in ROC and PRC. The area under the curve (AUC) is estimated based on the average sensitivity 16 

and specificity, which show a significant increase from ECG to HART as listed in Table 2: HART 17 

has higher sensitivity, specificity, and PPV, almost double the F0.5-score. 18 

HART-Findings resolve half of the FP or FN, and uncertainties in the detection of HF-related 19 

abnormalities compared to ECG findings, a breakthrough for the non-invasive and bio-signal-based 20 

HF screening task. 21 

Table 2 – List of HF related ECHO-findings and diagnostic performance of the best ECG-findings and HART-22 
findings 23 

HF 
category 

ECHO-
finding ECHO criteria Prev. 

Best ECG-
finding  
(by F0.5) 

Best ECG-finding 
performance HART-finding performance 

SE SP PPV F0.5 SE SP PPV F0.5 

Consider 
HFpEF 

DD E/A<0.75 or E/A>2 or 
E/e’>14 42.1% Min.1HFi 43.6 65.8 48.0 46.6 70.9 77.1 69.2 70.0 

LVH LVMI>130/108g/m2 19.5% LVH Crit.* 23.6 93.2 45.8 35.8 70.7 80.3 46.5 51.8 
LAE LAVI>34ml/m2 8.6% AF 37.1 94.6 39.5 38.8 81.2 88.8 40.7 47.8 
PH RVSP>40mmHg 2.8% AF 42.5 92.9 14.6 18.2 69.1 98.2 52.2 56.3 
WMA Hypo-/Dys-/Akinesis 13.3% MI Crit. 37.7 85.5 24.2 27.1 66.8 86.2 42.6 52.0 
AS AVpV>2.6m/s 5.0% LVH 33.7 91.2 16.9 19.9 84.1 98.4 74.1 76.8 

Consider 
HFmrEF 

mild 
low EF  LVEF≤50% 6.9% Min.2HFi 68.4 76.9 18.0 23.1 67.3 96.0 55.6 58.6 

Consider 
HFrEF low EF LVEF≤40% 1.5% B. Branch 

Block 34.3 92.6 6.1 8.0 54.3 99.1 46.9 48.9 

average 40.1 86.6 26.6 27.2 70.5 90.4 52.6 56.3 
* The ECG LVH criteria was manually selected despite the other ECG endpoints have higher F-score. 24 
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 1 

Figure 4 – Performance comparison of ECG-findings and HART-findings for HF related ECHO-findings 2 
A) F-score the overall prediction capability of the examined findings for ECHO-findings and average 3 

B) ROC comparison between ECG and HART, C) PRC comparison between ECG and HART 4 

4.3 HF performance by HART-findings 5 

The prediction of HF categories by the HART-findings is evaluated with the help of ground truth 6 

HF categories. To estimate the performance, validation datasets were used as mentioned in section 7 

4.1.  8 

Table 3 shows the HF quad-format confusion matrix for an external (EVA) and independent 9 

validation (IVA) dataset, and HF binary performance on these two datasets is compared to ECG 10 

summary performance. The joined validation (EVA+IVA) database is a multi-center database, 11 

which allows for enhancement of reproducibility and generalizability [45]. 12 
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Cardio-HART reached higher performance in prediction of HF when compared to the best ECG-1 

based criteria: sensitivity increased from 53.5% to 82.8%, specificity from 85.1% to 86.9%, 2 

positive predictive value from 57.1% to 70.0%, and the F0.5-score from 56.4% to 72.2%. -3 

calculated for combined validation sets, see performance under EVA+IVA in Table 3.  4 

Table 3 - Confusion matrix on HF classification by the Cardio-HART system and Binary Performance 5 
Evaluation of HF classification by Cardio-HART system compared to ECG’s best HF criteria (Min.2HFi) 6 

Confusion Matrix – External Validation (EVA) 
Cardio-HART 

HF indication by signal-based Cardio-HART findings  
Absent HFpEF HFmrEF HFrEF Summa  

Reference HF by consensus  
ECHO- and ECG-finding  

Absent (non-HF) 4,090 752 74 0 4,916  

Consider HFpEF 288 920 126 10 1,344  

Consider HFmrEF 32 222 284 16 554  

Consider HFrEF 0 26 56 66 148  

Summa 4,410 1920 540 92 6,962  

Confusion Matrix – Independent Validation (IVA) 
Cardio-HART 

HF indication by signal-based Cardio-HART findings  

Absent HFpEF HFmrEF HFrEF Summa  

Reference HF by consensus  
ECHO- and ECG-finding  

Absent (non-HF) 2,146 118 0 0 2,264  

Consider HFpEF 108 196 32 12 348  

Consider HFmrEF 30 94 66 6 196  

Consider HFrEF 0 18 14 38 70  

Summa 2,284 426 112 56 2,878  

Binary Performances 
Cardio-HART vs. ECG 

Minimum 2 HF indicator  
by ECG 

Consider HF prediction by 
Cardio-HART 

 EVA IVA EVA+IVA EVA IVA EVA+IVA 
Sensitivity (SE%) 55.4 47.2 53.5 84.4 77.5 82.8 
Specificity (SP%) 82.1 91.6 85.1 83.2 94.8 86.9 
Positive Predictive Value (PPV%) 56.4 60.4 57.1 67.6 80.1 70.0 
Negative Predictive Value (NPV%) 81.6 86.5 83.2 92.7 94.0 93.2 
F0.5-score (F05%) 56.2 57.2 56.4 70.4 79.6 72.2 
HF Prevalence (PREV%) 29.4 21.3 27.0 29.4 21.3 27.0 
 

Fig. 5 shows the parametric ROC and PRC comparison of HF prediction between selected ECG-7 

findings and the Cardio-HART (CHART) HF model, which is based on its own signal-based 8 

HART-findings. On the sensitivity/1-specificity plane (ROC), the individual ECG-findings have 9 

conspicuously low sensitivity from 5 to 35%, such as Atrial Fibrillation, ST-T deviation, MI, or B. 10 

Branch Block. The Minimum 1 HF indicator ECG criteria shows lower specificity, which means 11 

high false positives in the real-world situation. A more acceptable low false positive rate was 12 

provided by the Minimum 2 HF indicator ECG criteria, which reached 53.5% sensitivity 13 

(evaluated in Table 3). The minimum 3 HF indicator has a high specificity of 93% but reaches only 14 

poor sensitivity of 31%. The PRC confirms the ROC results but complements them with PPV, 15 

which makes it more visible, showing that both the PPV and sensitivity are increased by Cardio-16 

HART compared to the best ECG criteria.  17 
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 1 

Figure 5 – ROC and PRC analysis of Cardio-HART (CHART) and various ECG criteria for HF detection 2 

5 Discussion  3 

The HFmrEF and HFrEF categories of HF can be successfully detected with models that predict 4 

low LVEF or simply LVSD. In contrast, HFpEF is a complex and diversified condition that cannot 5 

be classified as only diastolic HF or as an abnormal ECG patient. HFpEF detection relies on 6 

simultaneous abnormalities such as arrhythmias, structural heart diseases (LVH, LAE), valve 7 

diseases (most prevalent are AR, AS, MR, TR) and diastolic dysfunction. HART-findings can 8 
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effectively detect these underlying conditions using multiple but synchronized bio-signals that can 1 

define HF.  2 

5.1 Implications 3 

HFpEF is where the greatest beneficial treatments can be made to improve HF [3][46]. Although 4 

studies have shown that the death rate for HFpEF is comparable to HFmrEF, it is lower than 5 

HFrEF [47][48]. Yet, HFpEF accounts for half of all hospitalizations of patients over 65 [49], 6 

posing a significant burden to healthcare.  7 

The implications of this breakthrough technology will resonate throughout the healthcare system 8 

starting in Primary Care, where this low-cost, non-invasive, immediate use on initial patient 9 

presentation will, 1) drastically reduce time to diagnosis from months, to one day; 2) enable early 10 

detection of HF, by phenotype; which in turn 3) provide access to treatments earlier, 4) reduce the 11 

damage caused by delayed diagnosis; 5) reduce failures to diagnose, especially in women patients 12 

[50]; and, 6) clinically proven to reduce unnecessary referrals to cardiology [51]. The potential 13 

costs savings to healthcare are significant. 14 

The impact also accrues to cardiology; they will get a better patient. As a direct substitute for ECG, 15 

prior to conducting a full echo examination, the implications are [51]: 1) screening for true 16 

negative patients that don’t need an echo; 2) screening for the presence of HF, valve disease, and 17 

myocardial infarctions, when the incoming referral fails to indicate these conditions; and critically, 18 

3) providing a “big picture” of a patient’s overall cardiac status and revealing potential 19 

comorbidities that might otherwise be missed.  20 

Cardio-HART is not a substitute for echocardiography when echocardiography is indicated. 21 

However, where echocardiography might not be available, CHART can provide substantially 22 

equivalent insight into the patient’s condition that can help determine the patient’s pathway and its 23 

priority based on urgency and severity. Various uses in secondary care include: 1) pre-surgery to 24 

determine if the patient has a cardiac abnormality, in particular HF, that might put the patient at 25 

risk during surgery; 2) respiratory care, where COPD and CVD often exist together; 3) Oncology, 26 

for early diagnosis of radiation induced heart disease, especially HF; 4) Emergency, after 27 

stabilization, confirm first if heart related or not, and then determine appropriate patient pathway; 28 

and 5) cardiology in general, where patient rounds could be done on the basis of ECHO findings, 29 

including HF, and not merely ECG.  30 

Abnormalities associated with the right heart side are indicative of HFrEF, especially right atrial 31 

and ventricular enlargement. The bio-signal diagnostic capability for the right side of the heart has 32 

already been indicated by various research, e.g., TR prediction through ECG RAE criteria and 33 
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PCG/MCG murmurs [59] or analysis of second heart sound splitting in evaluation of PH [60]. 1 

Compared to ECG RVH criteria, HART RAE and HART RVE findings are far more sensitive 2 

criteria, relevant for COPD patients, in particular those at risk of HF.  3 

In all cases, CHART AI, in the form of HART findings, provides for a more immediate 4 

determination of a patient’s cardiac status and access to treatment. 5 

5.2 Conclusion 6 

Detection of HF should be on initial patient presentation to primary care, provided by non-7 

cardiologists [3]. The standard ECG has limitations and is not sufficiently sensitive or specific for 8 

physiological cardiac dysfunction and, as a result, generates many false positives. There is an 9 

urgent, unmet medical need in primary care for diagnosing HF, in particular the heart structural, 10 

functional, and hemodynamic abnormalities that define the specific condition, as this would allow 11 

for the immediate start of treatment as per the guidelines, thereby stopping disease progression. In 12 

a world of backlogs and long wait-times, this is critical to better patient outcomes.  13 

HART-findings have been shown to address this unmet medical need. Cardio-Phoenix’s Cardio-14 

HART solution provides an understanding of both left heart side abnormalities (LVH, LAE, MR, 15 

and WMA) and right heart side abnormalities (RVE, RAE, TR, and PH) and can detect the origin 16 

and severity of HF. That enhances diagnosis, risk stratification, and prioritization for patients. 17 

Cardio-HART HF prediction reaches significantly higher overall performance compared to the best 18 

ECG criteria, with sensitivity of 83%, specificity of 87% and a positive predictive value of 70%. 19 

Higher sensitivity means lower false negatives and early detection. Similar specificity means a not 20 

higher rate of false positives, typically a major problem for CNN-like solutions.  21 

These clinically meaningful results are thanks to the fact that Cardio-HART's complex machine 22 

learning system processes not only ECG signals but also two other bio-signals, PCG and MCG, 23 

that together combine to help provide a multi-dimensional perspective of cardiac dysfunctions 24 

critical in identifying HF and other major CHART findings. Significantly, Cardio-HART’s AI 25 

strategy is based on learning networks that incorporate the last 50 years of knowledge about these 26 

bio-signals and cardiac dysfunctions, which we call Knowledge-enhanced Neural Networks.  27 
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8 Appendices 1 

8.1 Abbreviations  2 

ECG Electrocardiography 
ECHO Echocardiography 
PCG Phonocardiography 
MCG Mechanical force bio-signal 
CHART Cardio-HART™ from Cardio-Phoenix 
HART ECHO-like findings estimated by Cardio-HART AI system 
HF Heart Failure 
HFpEF HF with preserved ejection fraction 
HFmrEF HF with mildly reduced ejection fraction 
HFrEF HF with reduced ejection fraction 
LSTM Long short-term memory network 
HHT Hilbert–Huang transform 
PSD Windowed Power Spectrum Density 
MFCC Mel-frequency cepstral coefficients 
JMIM Joint Mutual Information Maximization 
JRMI Renyi entropy-based Joint Mutual Information 
ECFS Eigenvector Centrality Feature Selection 
FSMB Markov blanket-based Feature Selection 
KENN Knowledge-enhanced neural networks 
BNP Natriuretic peptides 
LVSD Left Ventricular Systolic Dysfunction 
ALVSD Asymptomatic LVSD 
DD Diastolic Dysfunction 
DDIM Impaired Relaxation type DD 
LVH Left Ventricular Hypertrophy 
RVH Right Ventricular Hypertrophy 
DCM Dilated Cardiomyopathy 
RVE Right Ventricular Enlargement 
LAE Left Atrial Enlargement 
RAE Right Atrial Enlargement 
WMA Wall Motion Abnormality 
AS  Aortic Stenosis 
MS  Mitral Stenosis 
MR  Mitral Regurgitation 
AR  Aortic Regurgitation 
TR  Tricuspid regurgitation 
PH  Pulmonary Hypertension 
CAD  Coronary Artery Disease 
AF  Atrial Fibrillation 
LAX Leftward Axis 
BBB Bundle Brach Block 
ST-T ST interval and T abnormal 
MI  Myocardial Infarction 
LVH LV Hypertrophy 
RVH RV Hypertrophy 
LVEF  Left Ventricular Ejection Fraction [%] 
GLS Global longitudinal strain 
SV  Stroke Volume 
FP  False positive 
FN  False negative 
SE Sensitivity 
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SP Specificity 
PPV Positive Predictive Value 
F05 F-score with β=0.5 
AVpV Aortic Valve Peak Velocity [m/s] 
MV-E Mitral Inflow E Wave Velocity [m/s] 
E/A E/A Wave Velocity on Mitral Valve [m/s/m/s] 
LVMI Left Ventricular Mass Index [g/m2] 
LVIDd End-diastolic Left Ventricular Diameter [mm] 
LVIDs Endsystolic Left Ventricular Diameter [mm] 
LAVI Left Atrial Volume Index [mL/m2] 
RAVI Right Atrial Volume Index [mL/m2] 
RVSP Right Ventricular Systolic Pressure [mmHg] 
MRj/LA Mitral Regurgitation Jet Ratio in Left Atrium [%] 
TRj/RA Tricuspid Regurgitation Jet Ratio in Right Atrium [%] 

8.2 Declaration of Helsinki 1 

All patients were recruited in accordance with the Helsinki protocol and each provided written 2 

informed consent to participate. 3 
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