SUPPLEMENTARY MATERIAL

Supplementary material 1: Assessment visit measures

Anthropometry:_Standing height and sitting height were measured in duplicate to the nearest 0.1 cm using a stadiometer (Harpenden Stadiometer 2109, CMS Weighing Equipment Ltd, London, UK). Sitting height and chronological age were used to estimate years from peak height velocity (PHV), which was used as a marker of biological development according to the equations of Mirwald et al (2002). Weight was measured in duplicate to the nearest 0.1 kg using a digital scale (Mott electronic scale, model LC 2424, 20-g accuracy, Santa Rosa, CA). Waist circumference (WC) was measured in triplicate 4 cm above the navel using a standard anthropometry tape. All repeated measures were averaged. Body mass index (BMI) was calculated as weight/height ${ }^{2}$. Height, weight and BMI percentiles were calculated using the 2000 Centers for Disease Control growth charts and WC percentiles were calculated using reference values from 11- to 18 - year-old Canadian children. ${ }^{1,2}$ Each participant completed a selfassessment of secondary sex characteristics according to the method of Tanner - pubic hair development for boys or breast development for girls. ${ }^{3}$ Body composition was assessed using a whole body dual energy x-ray absorptiometry (DXA) (QDR 4500A, Hologic Inc., Waltham, MA, USA) in supine position. Accompanying software (Version 12.3) was used to determine whole body and trunk fat mass (BFM, in kg and \% of total body mass), lean mass (LBM, in kg and $\%$ of total body mass), bone mineral content (BMC, in kg and $\%$ of total body mass), bone mineral density (BMD, in $\mathrm{g} / \mathrm{cm}^{2}$).

Cytokine levels: A fasted blood sample was draw by venipuncture from the median cubital vein and collected in a 10 mL EDTA-coated tube. Plasma was isolated from blood samples using density gradient centrifugation and kept frozen until analysis. Plasma was analyzed for IL-6 and TNF- α concentrations using high sensitivity enzyme-linked immunosorbent assays (R\&D Systems Inc., MN). Samples were measured in duplicate and averaged; all samples were processed in accordance with the manufacturer's protocol. Intra-assay coefficient of variation (CV) for IL-6 was 4.08%, and CV of 3.78% for TNF- α.

Muscle strength: An isokinetic dynamometer system (Biodex IV, Biodex, Shirley, N.Y.) was used to measure isometric and isokinetic strength of the dominant knee extensors and elbow flexors. Isometric strength testing began with a specific warm-up (3 maximal voluntary contractions). Following a short rest, participants performed three 5-s maximal voluntary contractions, each separated by a $30-\mathrm{s}$ rest. For isometric knee extension testing, the knee joint was positioned at 90°. For isometric elbow flexion testing, the shoulder was positioned at 90° flexion, upper arm resting on the arm rest and the elbow at 90° flexion. Isokinetic strength was measured at three angular velocities: $60^{\circ} \cdot \mathrm{s}^{-1}\left(1.04 \mathrm{rad} \cdot \mathrm{s}^{-1}\right), 120^{\circ} \cdot \mathrm{s}^{-1} 2.09 \mathrm{rad} \cdot \mathrm{s}^{-1}$, and $180^{\circ} \cdot \mathrm{s}^{-1}$ (3.14 $\mathrm{rad} \cdot \mathrm{s}^{-1}$). The range of motion of the knee was $90^{\circ}(1.57 \mathrm{rad})$, starting with the knee flexed at $90^{\circ}(1.57 \mathrm{rad})$ and ending in full extension. The range of motion for the elbow was $100^{\circ}(1.74$ rad) starting with the elbow fully extended and ending in flexion. The testing protocol began with a specific warm up (3 contractions at a progressive effort). Following a short rest, participants performed three maximal voluntary contractions at each velocity, with each velocity separated by a 3-minute rest period. The order of angular velocities was randomized. For both isometric and isokinetic strength testing, participants were instructed to contract as fast and as
forcefully as possible. The highest torque was recorded in Nm and normalized to limb lean mass as measured by DXA $\left(\mathrm{Nm} \cdot \mathrm{kg} \operatorname{limb} \mathrm{LM}^{-1}\right)$.

Aerobic fitness: To assess aerobic fitness, participants completed the McMaster All-Out Progressive Continuous Cycling Test on an electromagnetically-braked cycle ergometer (Corival, Lode; The Netherlands). Inspired and expired gases $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{CO}_{2}\right)$ were continuously measured using a calibrated metabolic cart (Vmax29, SensorMedics, Yorba Linda, CA, U.S.A.). Heart rate (HR) was continuously measured using a Polar HR monitor (Polar Electro, Kempele, Findland). The following variables were calculated: peak oxygen uptake defined as the highest 30 -sec volume of oxygen uptake $\left(\mathrm{VO}_{2}\right.$ peak) and expressed in $\mathrm{L} / \mathrm{min}, \mathrm{ml} / \mathrm{kg}$ body mass $/ \mathrm{min}$ and $\mathrm{ml} / \mathrm{kg} \mathrm{LBM} / \mathrm{min}$; peak mechanical power ($\mathrm{W}_{\text {peak }}$) defined as the last workload achieved and prorated if the full 2-minute stage was not completed and expressed in watts (W), W/kg body mass and W / kg LBM; and peak $\mathrm{HR}\left(\mathrm{HR}_{\text {peak }}\right)$ was defined as the highest heart rate achieved during the cycling test and expressed in beats $/$ min. Percent predicted VO_{2} and workload peak were calculated using equations created from a repository of aerobic fitness tests results preformed in our laboratory. Work efficiency was also calculated based on the equation described by Garby. ${ }^{4}$

Max repetitions in 45 seconds: For bodyweight exercises, participants were asked to repeat the exercise as many times as they could in 45 seconds. Participants were times with a chronometer and the number of well-performed repetitions was recorded. Max repetition in 45 seconds testing was performed at the start of the training program and repeated at mid-training to adjust workloads.

1RM: For each resistance exercise, participants were first asked to lift a given load. Following the lift, participants were asked how their body felt while performing the exercise on a scale from 0 to 10 ($0=$ extremely easy, $10=$ cannot lift more than once $).{ }^{5}$ The load was increased by $1-5$ kg until a perceived difficulty of 10 was reached, which indicated a participant's 1-RM for a given exercise. The increments were dependent on the effort required for the lift and got progressively smaller as the participant approached the 1-RM. ${ }^{6}$ 1-RM was achieved within 6-10 repetitions, and used to standardize the training sessions. 1-RM testing was performed at the start of the training program and repeated at mid-training to adjust workloads.

Habitual physical activity: At the end of each assessment session (pre, mid, post), participants were given an ActiGraph GT3X accelerometer (ActiGraph LLC, Pensacola, FL) and instructed to wear the device around their waist over their right hip, during all waking hours for 7 days, with the exception of water activities. Participants were asked to complete a logbook to indicate any times the device was removed. When the device was returned, all data were downloaded in 3-sec intervals, cleaned and processed using ActiLife software. Only participants with at least 3 valid days of accelerometer wear per assessment period, defined as wearing the device for at least 10 hours per day, were included in the final analysis. Evenson cut points to quantify time spent in being sedentary, as well as light, moderate, and vigorous intensity physical activity. ${ }^{7}$ Data are reported as average minutes per day, normalized to average daily wear time of all participants for all sessions.

Supplementary material 2: Exercise intervention details

Each week participants completed 2 supervised training sessions with a trainer at McMaster University and 1 training session independently at home. Each supervised and home training session consisted of resistance training and aerobic exercises. A sample training week is provided in Supplementary table 1.

Supervised training sessions

Resistance training

At McMaster, the intensity of machine-based resistance exercises began at 40% of participants' baseline 1-RM, while body weight exercises began at 40% of maximum repetitions completed in $45-\mathrm{sec}$. As the training program progressed, the resistance exercise stimulus was increased in a step-wise fashion by alternating between increasing the intensity of exercise and the number of repetitions prescribed. After 8 weeks of training, $1-\mathrm{RM}$ and $45-\mathrm{sec}$ max were reassessed and new values were used to calculate subsequent workout intensities.

Aerobic exercises

The intensity of aerobic exercise was based on the participant's peak workload $\left(\mathrm{W}_{\text {peak }}\right)$ from the aerobic fitness test. To begin, participants performed continuous cycling for 3 minutes at $50 \% \mathrm{~W}_{\text {peak }}$, followed by 30 sec high intensity intervals at $80 \% \mathrm{~W}_{\text {peak }}$ separated by a 30 sec rest interval at $50 \% \mathrm{~W}_{\text {peak. }}$. Finally participants completed steady state cycling for 10 min at 40% of the participant's baseline $\mathrm{W}_{\text {peak }}$. As the training program progressed, the aerobic exercise stimulus was increased in a step-wise fashion by alternating between increasing duration and workload. After 8 weeks of training, $\mathrm{W}_{\text {peak }}$ was re-assessed and new values were used to calculate subsequent cycling intensities. HR was monitored continuously throughout the training sessions using a Polar HR monitor (Polar Electro, Kempele, Findland).

Home-based sessions

To ensure proper understanding of the home-based exercise protocol, one researcher (RGW) taught the participants each exercise, and provided them with a manual containing pictures and descriptions of the various exercises. Similar to the supervised sessions, considerations were made to ensure a continuous progression in the exercise stimulus during the home sessions. Participants were provided with a HR monitor to wear during home sessions to allow them to monitor exercise intensity.

Aerobic exercise included 30 sec intervals beginning at 80% of baseline $\mathrm{HR}_{\text {peak }}$ and steady state aerobic exercise beganning with 5 min at 40% of baseline $\mathrm{HR}_{\text {peak }}$. Bodyweight exercises began at 40% of maximum repetitions complete in 45 sec . After 8 weeks of training, $H R_{\text {peak }}$ and max reps in 45 sec were re-assessed and new values were used to calculate subsequent intensities. During each training session, the HR monitor recorded data, which was then uploaded to an online training log by an investigator. To encourage the completion of home sessions, the investigator contacted participants and/or their families weekly by e-mail, phone call or text message.

Supplementary Figure 1. Schematic of the study outline. After each assessment session, participants were given an accelerometer to wear for 7 consecutive days. For more information see "assessment visits" above. Striped bars indicate training time. PA Assessment= participant is wearing an accelerometer for PA monitoring, INT.= participant satisfaction interview.

Supplementary Table 1. Training protocol

McMaster University session protocol				Home session protocol$1 \mathrm{X} /$ WEEK	
	DAY 1		DAY 2		
5 min	WARM UP cycle	5 min	WARM UP cycle	5 min	WARM UP - skipping or activity of choice
$\begin{aligned} & 1-5 \\ & \min \end{aligned}$	AEROBIC Cycle - Intervals Start: 3 min @ $50 \% \mathrm{~W}_{\text {peak }}$ Intervals: 1-5 x 30s @ 80-100\% $\mathrm{W}_{\text {peak }}$, each followed by 30s @ $50 \% \mathrm{~W}_{\text {peak }}$ End: 3 min @ $50 \% \mathrm{~W}_{\text {peak }}$	$\begin{aligned} & 1-5 \\ & \min \end{aligned}$	AEROBIC Cycle - Intervals Start: 3 min @ $50 \% \mathrm{~W}_{\text {peak }}$ Intervals: 1-5 x 30s @ 80-100\% $\mathrm{W}_{\text {peak }}$, each followed by 30s (a) $50 \% \mathrm{~W}_{\text {peak }}$ End: 3 min @ $50 \% \mathrm{~W}_{\text {peak }}$	$1-5 \mathrm{~mm}$	AEROBIC Skipping or activity of choice Intervals 1-5x30s@80$100 \% \mathrm{HR}_{\text {peak, }}$ each followed by 30s rest
$\begin{aligned} & 10-20 \\ & \min \end{aligned}$	RT Leg Press Chest Press Lat Pull Down Low Back Extension Bicycle 1-3 sets, 12-15 reps, $40-70 \% 1$ - RM or max reps in 45 s	$\begin{aligned} & 10-20 \\ & \min \end{aligned}$	RT Leg Extension Leg Curl Pec Fly Seated Row Abdominal Crunches 1-3 sets, 12-15 reps, 40-70\% 1- RM or max reps in 45 s	10-20 min	RT Push Ups Wall Squats Band Rows Band Bicep Curls Band Tricep Extensions Plank 1-3 sets, $40-70 \%$ of max reps in 45 s
$\begin{aligned} & 10-20 \\ & \min \end{aligned}$	AEROBIC Cycle - Steady State	$\begin{aligned} & 10-20 \\ & \text { min } \end{aligned}$	AEROBIC Cycle - Steady State	5-15 min	AEROBIC Activity of choice - Steady State

	40-70\% $\mathrm{W}_{\text {peak }}$		40-70\% $\mathrm{W}_{\text {peak }}$		40-70\% HR ${ }_{\text {peak }}$
5 min	COOL DOWN - dynamic and static stretching	5 min	COOL DOWN - dynamic and static stretching	5 min	COOL DOWN - dynamic and static stretching

RT, resistance training. HR, heart rate. W, workload. Ranges in time, intensities and number of sets and repetitions reflect increases in the training stimulus over the course of the 16 -week exercise training program.

Supplementary table 2. Participant feedback on training program likes and dislikes

Likes	Frequency reported
Resistance training machines	6
Skipping exercises	1
Biking	1
Stretching	1
Exercise variety	1
Home sessions	1
McMaster training environment	2
BOOST drink	1
Positive feeling	1
Getting stronger	4
Dislikes	
Biking	6
Leg extensions	2
BOOST drink	1
Home sessions	1
Seated row	1

Supplementary Figure 2. Circulating cytokine levels. The grey lines denote data for individual participants at each time point. The grey bars demonstrate the group median at each time point. A single participant, IBDM-09, had abnormally high levels of IL-6 ($>110 \mathrm{pg} / \mathrm{mL}$) for all three assessment points; however, Freidman test results were unchanged when this participant was excluded.

*Patient has an ostomy pouch and cannot answer this question

*Patient has an ostomy pouch and cannot answer this question
Supplementary Table 7. Mucus in stool during the study

MUCUS IN STOOLS	M1W1	M2W2
IBDM01	None	None
IBDM02	None	None
IBDM03	None	None
IBDF04	None	Trace
IBDM05	N/A*	N/A*
IBDM06	N/A*	N/A*
IBDM07	None	None
IBDM08	None	None
IBDM09	N/A*	N/A*
IBDM10	None	None

*Patient has an ostomy pouch and cannot answer this question
Supplementary Table 8. Perianal discomfort during the study

PERIANAL DISCOMFORT	M1W1	M2W2	M2W3	M3W3	M4W1	M4W3
IBDM01	No	No	N/A	No	No	No
IBDM02	No	No	No	No	No	No
IBDM03	N/A	N/A	No	No	No	N/A
IBDF04	No	No	N/A	No	No	No
IBDM05	N/A*	N/A*	N/A*	N/A*	N/A*	N/A*
IBDM06	N/A*	N/A*	N/A*	N/A*	N/A*	N/A*
IBDM07	No	No	No	No	No	No
IBDM08	No	No	Yes	Yes	No	No
IBDM09	N/A*	N/A*	N/A*	N/A*	N/A*	N/A*
IBDM10	No	No	No	No	N/A	N/A
Supplementary Table 9. Nausea during the study						
NAUSEA	M1W1	M2W2	M2W3	M3W3	M4W1	M4W3
IBDM01	No	No	No	No	No	No
IBDM02	No	Yes	No	No	No	No
IBDM03	No	No	No	No	No	N/A
IBDF04	No	Yes	No	No	No	No
IBDM05	Yes	No	No	No	No	No
IBDM06	No	No	No	No	No	No
IBDM07	No	No	No	No	No	No
IBDM08	No	No	No	No	No	No
IBDM09	No	No	No	No	No	No
IBDM10	Yes	Yes	Yes	No	N/A	N/A

Supplementary Table 10. Vomiting during the study

VOMITING	M1W1	M2W2	M2W3	M3W3	M4W1	M4W3
IBDM01	No	No	No	No	No	No
IBDM02	No	Yes	No	No	No	No
IBDM03	No	No	No	No	No	N/A
IBDF04	No	Yes	No	No	No	No
IBDM05	No	No	No	No	No	No
IBDM06	No	No	No	No	No	No
IBDM07	No	No	No	No	No	No
IBDM08	No	No	No	No	No	No
IBDM09	No	No	No	No	No	No
IBDM10	No	No	No	No	N/A	N/A

Supplementary Table 12. Nutrition during the study

NUTRITION	M1W1	M2W2	M2W3	M3W3	M4W1	M4W3
IBDM01	Good	Good	Good	Good	Good	Good
IBDM02	Good	Good	Good	Good	Good	Good
IBDM03	Good	Good	Good	Good	Good	N/A
IBDF04	Good			Good	Some wasting	Some wasting
IBDM05	Good	Good	Good	Good	Good	Good
IBDM06	Some wasting	Some wasting	Good	Some wasting	Some wasting	Some wasting
IBDM07	N/A	Some wasting	Good	Some wasting	Some wasting	Some wasting
IBDM08	Good	Good	Good	Good	Good	Good
IBDM09	Good	Good	Good	Good	Good	Good
IBDM10	Some wasting	Some wasting	Some wasting	Good	N/A	N/A

APPETITE	M1W1	M2W2	M2W3	M3W3	M4W1	M4W3
IBDM01	Normal	Normal	Normal	Normal	Normal	Normal
IBDM02	Normal	Normal	Normal	Normal	Normal	Normal
IBDM03	Normal	Normal	Normal	Normal	Normal	N/A
IBDF04	Normal	N/A	N/A	Normal	Improved	N/A
IBDM05	Improved	Improved	Improved	Improved	Normal	Improved
IBDM06	Normal	Normal	Normal	Normal	Normal	Improved
IBDM07	N/A	Normal	Normal	Normal	Normal	Decreased
IBDM08	Normal	Normal	Normal	Normal	Normal	Normal
IBDM09	Normal	Normal	Normal	Normal	Normal	Normal
IBDM10	Decreased	Improved	Improved	Improved	N/A	N/A

Supplementary Table 14. Supplements taken during the study

SUPPLEMENTS	M1W1	M2W2	M2W3	M3W3	M4W1	M4W3
IBDM01	Vitamin D Iron Calcium	Vitamin D Iron Calcium	Vitamin D, Iron Calcium	Iron Calcium	Vitamin D	Vitamin D
IBDM02	No	No	No	No	B-12	No
IBDM03	No	N/A	No	N/A	No	N/A
IBDF04	No	N/A	N/A	Omega-3	N/A	N/A
IBDM05	No	N/A	N/A	No	No	No
IBDM06	No	No	No	No	No	No
IBDM07	N/A	No	No	No	No	No
IBDM08	Probiotics Multivitamins	Probiotics Multivitamins	Probiotics Multivitamins	Probiotics Multivitamins	Probiotics Multivitamins	Probiotics Multivitamins
IBDM09	No	Iron, Zoloft	No	No	No	No
IBDM10	No	No	No	Vitamin C, D	N/A	N/A

Supplementary Table 15 . Use of external feeds during the study

M2W3	M3W3	M4W1	M4W3
N/A	No	No	No
No	No	No	No
No	N/A	No	N/A
N/A	No	N/A	N/A
N/A	No	No	No
No	No	No	No
No	No	No	No
No	No	No	No
No	No	No	No
No	No	N/A	N/A

All other participants in this study were male

Reference:

1. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, et al. CDC growth charts: United States. Adv Data. 2000.
2. Katzmarzyk PT. Waist circumference percentiles for Canadian youth 11-18y of age. Eur J Clin Nutr. 2004. doi:10.1038/sj.ejen. 1601924
3. Taylor SJC, Whincup PH, Hindmarsh PC, Lampe F, Odoki K, Cook DG. Performance of a new pubertal self-assessment questionnaire: A preliminary study. Paediatr Perinat Epidemiol. 2001. doi:10.1046/j.1365-3016.2001.00317.x
4. Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation an lipogenesis. Acta Physiol Scand. 1987. doi:10.1111/j.1365-201X.1987.tb10613.x
5. Robertson RJ, Goss FL, Rutkowski J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003. doi:10.1249/01.MSS.0000048831.15016.2A
6. Faigenbaum AD, Milliken LA, Westcott WL. Maximal strength testing in healthy children. J Strength Cond Res. 2003. doi:10.1519/15334287(2003)017<0162:MSTIHC>2.0.CO;2
7. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008. doi:10.1080/02640410802334196
