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1 Usage instruction for the supplementary notes

The purpose of this supplementary note is to provide a self-contained explanation of the
mathematical basis underlying our topic based model. Therefore, the materials are not
meant to provide new discoveries but to help readers to derive all of our inference methods
without referring to external materials (though we do listed references to text wherever
appropriate). As a consequence, we made no efforts to condense steps, and opt to expand
with more details when we feel it is necessary.

2 Generative process of a curve topic model

We constructed a Bayesian hierarchical model to infer latent risk profiles for common
diseases. In summary, the model assumes there exist a few disease topics that underlie

1



Figure 1: Plate presentation of generative model. M is the number of subjects, Ns is the
number of records within sth subject. All plates (circles) are variables in the generative
process, where the plates with shade w is the observed variable and plates without shade
are unobserved variables to be inferred. The generative process is described in the text.

many common diseases. Each topic is age-evolving and contain risk trajectories for all
diseases considered. An individual’s risk for each diseases is determined by the weights of
all topics. The indices in this note are as follows:

s = 1, ...,M ;

n = 1, ..., Ns;

i = 1, ...,K;

j = 1, ..., D;

where M is the number of subjects, Ns is the number of records within sth subject, K is
number of topics, and D is the total number of diseases we are interested in. The generative
process (Figure 1) is as follows:

• θ ∈ RM×K is the topic weight for all individuals, each row of which (∈ RK) is
assumed to be sampled from a Dirichlet distribution with parameter α. α is set as a
hyper parameter.

θs ∼ Dir(α).

• z ∈ {1, 2, ...,K}
∑

s Ns is the topic assignment for each diagnosisw ∈ {1, 2, ..., D}
∑

s Ns .
Note the total number of diagnoses across all patients are

∑
sNs. The topic assign-

ment for each diagnosis is generated from a multinoulli distribution with parameter
equal to sth individual topic weight.

zsn ∼Multi(θs).
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• β(t) ∈ F(t)K×D is the topic which is K ×D functions of age t. F(t) is the class of
functions of t. At each plausible t, the following is satisfied:∑

j

βij(t) = 1.

In practice we use softmax function to ensure above is true and add smoothness by
constrain F(t) to be spline or polynomial functions:

βij(t) =
exp(pT

ijϕ(t))∑D
j=1 exp(p

T
ijϕ(t))

,

where pij = {pijd}, d = 1, 2, ..., P ; P is the degree of freedom than controls the
smoothness; ϕ(t) is polynomial and spline basis for age t.

• w ∈ {1, 2, ..., D}
∑

s Ns are observed diagnoses. The nth diagnosis of sth individual wsn

is sampled from the topic βzsn(t) chosen by zsn:

wsn ∼Multi(βzsn(tsn)),

here tsn is the age of the observed age-at-onset of the observed diagnosis wsn.

The value of interest in this model are global topic parameter β, individual (patient)
level topic value θ, and topic value z of each diagnosis. Based on the generative process
above, we notice each patient is independent conditional on α and β. Therefore, we could
adopt an EM strategy, where we first estimate θ and z, then estimate β which maximise
the evidence lower bound.

In the first step we could work on the likelihood function fore each patient to estimate
posterior distributions of patient specific variables θ and z. The likelihood function for sth

individual is as follows:

lnp(w, z, θ|α, β) = ln p(θ|α) +
Ns∑
n=1

{ln p(zn|θ) + ln p(wn|zn, β)},

p(θ|α) =
Γ(

∑K
i=1 αi)∏K

i Γ(αi)

K∏
i=1

θαi−1
i ,

p(zn|θ) = θ1(i=zn),

p(wn|zn, β(tn)) = β1(i=zn),1(j=wn)(tn).

(1)

Due to the computational cost of simultaneously modelling hundreds of diseases in the
biobank and the inference accuracy consideration (which we will explain in section 4), we
adopted a collapsed variational methods for this step. The method is motivated by [1].
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Detailed explanation on why we chose this rather sophisticated methods rather than the
commonly used mean filed methods is discussed in section 4, for those interested.

In the second step, we treated the β as parameter of the model and seek to maximise
the evidence function p(w|α, β) (obtained by integrate out θ and z from the likelihood
function). Directly working on the evidence function is implausible, therefore we work on
the evidence lower bound, where we made use of the posterior distribution q(z, θ) estimated
in previous step.

L(z, θ, β, α) = Eq{ln p(w, z, θ|α, β)− ln q(z, θ)}. (2)

We will see this is still not easily achieved, therefore we applied a local variational method
to find an approximate solution. For an easy introduction to local variational inference,
see chapter 10.5 of [2]. Details of the inference will be explained in section 3.

3 Inference of model posterior distribution and parameters

The model inference will be performed by alternation an E-step and a M-step. The EM
algorithm will guarantee good convergence properties. For both steps, variational methods
will be used to approximate the distribution, though the techniques are very different. We
have tested under realistic parameters, these approximated distribution are close to the
true distribution.

3.1 Collapsed variational inference to estimate patient-level posterior
distribution q(z, θ)

The variational inference aims to approximate posterior p(z, θ|w, α, β) using variational
distributions q(z, θ) that has some constraint on, which makes them easier to estimate.
The most widely used form of variational distribution is the factorised ones, where we
assume target posterior distributions are independently distributed, i.e. q(z, θ) = q(z)q(θ).
We will derive the inference using this assumption and compare it with the collapsed
variational inference in section 4.

The latent variable model using Dirichlet distribution is typically designed to model
text, where a document is equivalent as a patient in our model. A document will have
thousands of words (equivalent of our diagnoses), which provides strong information to
tolerate stronng assumptions on q(z, θ). To estimate a model with less diagnoses per
patient, flexible variational distributions are preferred for approximation accuracy. Here
we adopted a collapsed variational method, which is is more accurate than the mean-field
variational inference method. [1] The idea is to only assume a factorization over q(z), but
not between z and θ. Therefore the assumptions and lower bound of evidence became
(note we are considering likelihood function for only the sth patient from now on, as all of
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patients are independend conditional on α, β):

q(z, θ) = q(θ|z)
∏
n

q(zn),

L(z, θ, β, α) = Eq{ln p(w, z, θ|α, β)− ln q(z)− ln q(θ|z)}
= Eq(z){Eq(θ|z){ln p(w, z, θ|α, β)− ln q(θ|z)} − ln q(z)}

(3)

Maximise Eq(θ|z){ln p(w, z, θ|α, β)−ln q(θ|z)} with respect to q(θ|z) will give us q(θ|z) =
p(θ|w, z, α, β). The maximisation is achieved similarly to the mean-field approximation
where the evidence is decomposed into a lower bound and KL divergence, where lower
bound is maximised when KL divergence is 0. Using methods provided in Teh et al, the
lower bound could then be simplified to:

L(z, θ, β, α) = Eq(z){ln p(w, z|α, β)− ln q(z)}

The optimisation of this lower bound is same to those provided in collapsed gibbs
sampling, where we first marginalise over θ.

p(w, z|α, β) =
∫
θ

Γ(
∑K

i=1 αi)∏K
i Γ(αi)

K∏
i=1

θ
αi+

∑
n zni−1

i ·
K∏
i=1

D∏
j=1

β
∑

n zniwnj

ij

=
Γ(

∑K
i=1 αi)∏K

i Γ(αi)

∏K
i Γ(αi +

∑
n zni)

Γ(
∑K

i=1 αi +Ns)
·

K∏
i=1

D∏
j=1

β
∑

n zniwnj

ij .

(4)

From this marginal complete data likelihood, we could derive the conditional distribution
p(zn′ = k|z¬n′ ,w, α, β) (as in collapsed gibbs sampling) to evaluate the dependency within
z. Here ¬n′ refer to indices of all words excluding n′.

p(zn′ |z¬n′ ,w, α, β) =
p(zn′ , z¬n′ ,w|α, β)
p(z¬n,w|α, β)

=
p(z,w|α, β)

p(z¬n, w¬n|α, β)p(wn′ |α, β)

∝

∏K
i Γ(αi +

∑
n zni)

∏K
i=1

∏D
j=1 β

∑
n zniwnj

ij∏K
i Γ(αi +

∑
¬n′ zni)

∏K
i=1

∏D
j=1 β

∑
¬n′ zniwnj

ij

∝
K∏
i

(αi +
∑

n∈¬n′

zni)
zn′i

K∏
i=1

D∏
j=1

β
zn′iwn′j
ij .

(5)

For a large Ns, (αi +
∑

n∈¬n′ zni) will be approximately the same across n′, therefore zn′

will be less dependent on z¬n′ .

lim
Ns→∞

p(zn′ |z¬n′ ,w, α, β) ∝
K∏
i

[
(αi +Nsθi)

D∏
j=1

β
wn′j
ij

]zn′i
,
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where distribution of z factorises over n within a single subjects. Therefore, the q∗(z) in
equation 17 which factorises over n could approximate p(z|w, α, β) accurately. However,
Ns is likely to be small in the patient dataset, therefore the mean-field approximation in
equation 17 would be less accurate as it does not include any dependency between zn
and z¬n′ . We therefore adopt the strategies proposed by Teh et al to use variatioanal
distribution to approximate the marginal distribuion in equation 4:

ln q∗(zn′) = Eq(z¬n′ ){ln p(w, z|α, β)}

= Eq(z¬n′ ){
K∑
i=1

ln Γ(αi +
∑
n

zni) +

K∑
i=1

D∑
j=1

zn′iwn′j lnβij}+ const(zn′)

=
K∑
i=1

zn′i

(
Eq(z¬n′ ){ln(αi +

∑
n∈¬n′

zni)}+
D∑
j=1

wn′j lnβij

)
+ const(zn′)

(6)

We now have the form of multinomial distribution of zn′ . The key lies in how to estimate
Eq(z¬n′ ){ln(αi +

∑
n∈¬n′ zni)}. Teh et al [1] proposed a Gaussian approximation which

could improve computation efficiency by magnitudes. We first expand ln(αi +
∑

n∈¬n′ zni)
by Taylor expansion:

ln(αi +
∑

n∈¬n′

zni) = ln(αi + n0) +

∑
n∈¬n′ zni − n0

(αi + n0)
−

(
∑

n∈¬n′ zni − n0)
2

2(αi + n0)2
,

where we included only first two terms. If setting n0 = Eq(z¬n′ ){
∑

n∈¬n′ zni} =
∑

n∈¬n′ Eq{zni},
we get:

Eq(z¬n′ ){ln(αi +
∑

n∈¬n′

zni)} = ln(αi + n0)−
V arq[

∑
n∈¬n′ zni]

2(αi + n0)2
. (7)

where, V arq[
∑

n∈¬n′ zni] =
∑

n∈¬n′(1−Eq{zni})Eq{zni} .Plugging this into equation 6 and
notice the normalization of multinomial distribution, we get:

zn′i ∼ Cat
( (αi + n0) exp

(
− V arq [

∑
n∈¬n′ zni]

2(αi+n0)2
+
∑D

j=1wn′j lnβij
)

∑K
i=1(αi + n0) exp

(
− V arq [

∑
n∈¬n′ zni]

2(αi+n0)2
+
∑D

j=1wn′j lnβij
)). (8)

For prediction tasks, the posterior θ could be evaluated using distribution of z.

θ ∼ Dir(α+

Ns∑
n=1

Eq{zn})

The evidence lower bound over all subjects is as follows:
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L(z, θ, β, α) =Eq(z){ln p(w, z|α, β)− ln q(z)}

=
M∑
s=1

(
ln Γ(

K∑
i=1

αi)−
K∑
i

ln Γ(αi)− ln Γ(Ns +
K∑
i=1

αi)+

K∑
i=1

Eq(z){ln Γ(αi +
∑
n

zni)}+

Ns∑
n=1

K∑
i=1

E{zsni}
D∑
j=1

wsnj lnβij

)
−

M∑
s=1

( Ns∑
n=1

K∑
i=1

E{zni} lnE{zni}
)
,

(9)

where we need to approximate Eq(z){ln Γ(αi +
∑

n zni)}. Making use of the Stirling’s

approximation, we found ln Γ(z) = (z − 1
2) ln(z) − z + 1

12z + 1
2 ln(2π) could approximate

ln Γ(z) accurately for z > 1. Therefore, by plugging in Stirling’s approximation and reuse
equation 7 we could approximate this expectation:

Eq(z){ln Γ(αi +
∑
n

zni)} =Eq(z){(αi +
∑
n

zni) ln(αi +
∑
n

zni)

− 1

2
ln(αi +

∑
n

zni)− (αi +
∑
n

zni) +
1

12(αi +
∑

n zni)
+

1

2
ln(2π)}

=Eq(z){(αi + n0) ln(αi + n0) +
(
∑

n zni − n0])
2

2(αi + n0)

− 1

2
ln(αi + n0) +

(
∑

n zni − n0])
2

4(αi + n0)2

− (αi +
∑
n

zni)

+
1

12(αi + n0)
+

(
∑

n zni − n0])
2

12(αi + n0)3
+

1

2
ln(2π)}

=(αi + n0) ln(αi + n0)−
1

2
ln(αi + n0)− (αi + n0) +

1

12(αi + n0)

+ V arq[
∑
n

zni]
( 1

2(αi + n0)
+

1

4(αi + n0)2
+

1

12(αi + n0)3
)

+
1

2
ln(2π),

(10)

Note here the first order terms in Taylor expansion are cancelled after taking the ex-
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pectation and setting n0 =
∑

nEq{zsni}. The variance are computed by applying the
independent assumption over q(zn): V arq[

∑
n zni] =

∑
n(1−Eq{zni})Eq{zni}.

3.2 Estimate topic profiles β(t)

In the conventional topic modeling, the topic values could be estimated by directly max-
imising the evidence lower bound with a constraint

∑D
j=1 βij = 1, which is described in

section 4. Here we estimate the topic as functions of age by parameterising each βij as a
function of age. The only related term in likelihood function (equation 1) is:

ln p(wn|zn, β(tn)) =
K∑
i=1

zsni

D∑
j=1

wsnj lnπ(βij(tn)),

where we use softmax function to ensure topics are each a multinomial distribution:

π(βij(tn)) =
exp(βT

ijϕ(tn))∑D
j=1 exp(β

T
ijϕ(tn))

.

We used spline/polynomial functions to model age. The goal is to estimate spline/polynomial
coefficients βij = {βijd}, d = 1, 2, ..., P , where P is the degree of freedom that controls the
smoothness. ϕ(tn) is polynomial or spline basis. Notice here the scale of βij = {βijd} does
not matter, as we could subtract same intercept from the exponential in both numerator
and denominator to change in the scale. However, in practice we put a prior N (βij |0, σ2

0I)
on βij to regularise the search space of the gradient descent optimization described below.
Here we choose a non-informative prior with large variance, σ2

0 = 100.
To maximise the evidence lower bound, we notice that ln(·) is a concave function and

by Taylor expansion:

ln(

D∑
j=1

exp(βT
ijϕ(tsn))) ≤ ln ζ + ζ−1(

D∑
j=1

exp(βT
ijϕ(tsn))− ζ).

Therefore, by introducing a variational variable ζ, we find following lower bound of the
ELBO function L with respect to βij :

L[β] =
M∑
s=1

Ns∑
n=1

Eq{ln p(wn|zn, β(tsn))}

=

M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
βT
ijϕ(tsn)− ln(

D∑
j′=1

exp{βT
ij′ϕ(tsn)})

)
E{zsni}wsnj ≥

M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
βT
ijϕ(tsn)− ζ−1

sni

D∑
j′=1

exp{βT
ij′ϕ(tsn)} − ln ζsni + 1

)
E{zsni}wsnj .

(11)
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We could then apply a method called local variational inference to maximise the right hand
side of equation 11. We do this by updating β and ζ in turn. Take derivative with respect
to ζsni, we obtained following update:

ζsni =
D∑
j=1

exp{βT
ijϕ(tsn)} (12)

In order to update the lower bound with respect to β, we separate the terms containing
βij :

L[βij ] =

M∑
s=1

Ns∑
n=1

E{zsni}wsnjβ
T
ijϕ(tsn)−

M∑
s=1

Ns∑
n=1

E{zsni}ζ−1
sni exp{β

T
ijϕ(tsn)}.

There is no analytical solution for βij , but the lower bound is convex so we could maximize
the lower bound using following gradient information:

∇βij
L[β] =

M∑
s=1

Ns∑
n=1

(
E{zsni}wsnj −E{zsni}ζ−1

sni exp{β
T
ijϕ(tsn)}

)
ϕ(tsn) (13)

The gradient information of L[βij ] allows efficient numeric estimation of βij . However,

evaluating L[βij ] and ∇βij
L[β] is computational expensive due to exp{βT

ijϕ(tsn)}, which
require looping through s, n (the entire records set over all subjects!). The gradient descent
methods for estimating βij requires evaluatingL[βij ] and ∇βij

L[β] at each gradient step,
which prohibit scaling up the model to large data set. To solve this problem in practice
we discretise tsn into years which allows us to pre-compute the sum of E{zsni}ζ−1

sni over all
incidences that happened at each age year. For each new βij , we could then sum over all
years, which reuses the sums computed. This trick significant reduced the computation cost
of evaluating L[βij ] and ∇βij

L[β] which makes the estimation of age topics over the entire
UK Biobank HES possible. In conclusion, we could update β using following psuedo-code:

Algorithm 1: Maximize local variationl lower bound

initialization;
for i← 1 to K do

for j ← 1 to D do

Update ζsni =
∑D

j=1 exp{β
T
ijϕ(tsn)} ;

Update βij to maximize L[βij ] ;

end

end

Note here we need to update ζsni for each j, while in practice we only update ζsni once
for each optimization of β to allow parallel computation over j.
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The above computation provide a point estimate for β, which we adopted when applying
our methods to empirical data. We also provide mathematical derivation for posterior
distributions of β, though we did not present results using this method to empirical data.
We use a Gaussian prior for βijd and perform full variational inference on β:

βij ∼ N (0, σ2I).

Here sigma is a hyperparameter that encourages sparsity.

L[β] =
M∑
s=1

Ns∑
n=1

Eq{ln p(wn|zn, β(tsn))}+
K∑
i=1

D∑
j=1

P∑
d=1

(
Eq{ln p(βijd)} −Eq{ln q(βijd)}

)

=
M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
Eq{βij}Tϕ(tsn)−Eq{ln(

D∑
j=1

exp(βT
ijϕ(tsn)))}

)
E{zsni}wsnj−

1

2σ2

K∑
i=1

D∑
j=1

P∑
d=1

Eq{β2
ijd} −

K∑
i=1

D∑
j=1

P∑
d=1

Eq{ln q(βijd)} ≥

M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
Eq{βij}Tϕ(tsn)− ζ−1

sni

D∑
j=1

Eq{exp(βT
ijϕ(tsn))} − ln ζsni + 1

)
E{zsni}wsnj−

1

2σ2

K∑
i=1

D∑
j=1

P∑
d=1

Eq{β2
ijd} −

K∑
i=1

D∑
j=1

P∑
d=1

Eq{ln q(βijd)}.

(14)

Following [3], we assumed an independent variational Gaussian distribution for each βijd:

βijd ∼ N (λijd, ν
2
ijd),

and observe the moment-generating function of Guanssian distribution is:

Eq{exp(βijdϕd(tsn))} = exp
(
ϕd(tsn)λijd +

ϕ2
d(tsn)ν

2
ijd

2

)
,

We obtain a tractable lower bound with respect to the variational parameters {ζsni, λijd, ν
2
ijd}:

Lζ,λ,ν2 =
M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
λT
ijϕ(tsn)− ζ−1

sni

D∑
j=1

exp{
P∑

d=1

(
ϕd(tsn)λijd +

ϕ2
d(tsn)ν

2
ijd

2

)
}−

ln ζsni + 1
)
·E{zsni}wsnj −

K∑
i=1

D∑
j=1

P∑
d=1

( 1

2σ2
ν2ijd +

1

2
ln ν2ijd

)
.

(15)
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4 Comparison of collapsed variational inference and mean
field varitional inference

A vast number of inference methods have been developed for models based on original
Latent Dirichlet Allocation. The most prominet of which are collapsed gibbs sampling
and mean field variational inference. For inference of model with exchangeable variables
using extremely large and noisy data set, it is desirable to have a deterministic method
such as variational inference. Collapsed variational inference makes less assumptions for
approximation, therefore the inferred distributions are strictly closer to the true poste-
rior distributions than the mean-field variational Bayesian methods. We will explain why
accuracy would be importance for the data we are considering in section 4.2.

4.1 Mean field variational inference to estimate patient-level posterior
distribution q(z, θ)

Please note this section is just a replication of [4] using our notation, which is provided
to make the note self-contained. We assume variational distributions for latent variables
θ and z are independent of each other, then we could get the variational lower bound for
the log likelihood of a single subject:

q(z, θ) = q(z)q(θ),

L(z, θ, β, α) = Eq{ln p(w, z, θ|α, β)− ln q(z, θ)}.
(16)

It is straightforward to estimate q(z) and q(θ) that maximise the lower bound L(z, θ, β, α):

ln q∗(θ) = ln p(θ|α) +Eq(z){
Ns∑
n=1

ln p(zn|θ)}+ const

=

K∑
i=1

(αi +

Ns∑
n=1

E{zni} − 1) ln θi + const,

ln q∗(z) = Eq(θ){
Ns∑
n=1

ln p(zn|θ)}+
Ns∑
n=1

ln p(wn|zn, β) + const

=

Ns∑
n=1

K∑
i=1

zni

(
E{ln θi}+

D∑
j=1

wnj lnβij

)
+ const.

(17)

We see that q(θ) factorises over i and q(z) factorises over n, i. Therefore, we get the
variational distribution for z and θ:

θi ∼ Dir(αi +

Ns∑
n=1

E{zni})

11



zni ∼ Cat
( exp

(
E{ln θi}+

∑D
j=1wnj lnβij

)∑K
i=1 exp

(
E{ln θi}+

∑D
j=1wnj lnβij

))
We then has the (m+ 1)th E-step as follows:

Em+1{ln θi} = Ψ(αi +

Ns∑
n=1

Em{zni})−Ψ(
K∑
i=1

(
αi +

Ns∑
n=1

Em{zni}
)
),

Em+1{zni} =
exp

(
Em+1{ln θi}+

∑D
j=1wnj lnβ

m
ij

)∑K
i=1 exp

(
Em+1{ln θi}+

∑D
j=1wnj lnβm

ij

) , (18)

where Em and βm refers to the estimation of previous step (mth step); Ψ is the digamma
function.

To perform the M-step, we maximize the lower bound L in equation 2 for the entire
population.

L(z, θ, β, α) =
M∑
s=1

(
ln Γ(

K∑
i=1

αi)−
K∑
i

ln Γ(αi) +

K∑
i=1

(αi − 1)E{ln θsi}+

Ns∑
n=1

K∑
i=1

(E{zsni}E{ln θsi})+

Ns∑
n=1

K∑
i=1

E{zsni}
D∑
j=1

wsnj lnβij

)
−

M∑
s=1

(
ln Γ(

K∑
i=1

(
αi +

Ns∑
n=1

E{zni}
)
)−

K∑
i=1

ln Γ(αi +

Ns∑
n=1

E{zni})+

K∑
i=1

(αi +

Ns∑
n=1

E{zni} − 1)E{ln θsi}+

Ns∑
n=1

K∑
i=1

E{zni} lnE{zni}
)

(19)

For β, we take terms in L and add Lagrange multipliers:

L[β] =
K∑
i=1

D∑
j=1

lnβij

M∑
s=1

Ns∑
n=1

E{zsni}wsnj +
K∑
i=1

λi(
D∑
j=1

βij − 1).

Set the derivative of L[β] with respect β to zero, we could get the (n+1)th update for beta:

βn+1
ij =

∑M
s=1

∑Ns
n=1E

n+1{zsni}wsnj∑D
j=1

∑M
s=1

∑Ns
n=1E

n+1{zsni}wsnj
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The terms in lower bound that contains α are:

L[αi] =

M∑
s=1

(
ln Γ(

K∑
i=1

αi)− ln Γ(αi) +

K∑
i=1

(αi − 1)En+1{ln θsi}
)
.

Take the derivatives with respect to α:

∂L[α]
∂αi

= M ·
(
Ψ(

K∑
i=1

αi)−Ψ(αi)
)
+

M∑
s=1

En+1{ln θsi}.

And the Hessian:

∇2
αL[α] = M · diag(−Ψ1(αi)

)
+M ·Ψ1(

K∑
i=1

αi),

where Ψ1 is the Trigamma function. We use the Newton-Raphson method the find the
maximal of α as described in [4]. In practice, we used α = 1 to put an uninformative prior
robust optimization.

4.2 Patient with a few diseases versus documents with many words

In section 3.1, we briefly explained why we chose to use collapsed variational inference over
a simpler mean-filed variational inference method. We will focus on the difference between
equation 17 and equation 5. For the mean-field variational distribution:

ln q∗(z) =

Ns∑
n=1

K∑
i=1

zni

(
E{ln θi}+

D∑
j=1

wnj lnβij

)
+ const,

which factorised over each of the N diagnosis. Therefore, the inferred distribution for each
zn is conditional i.i.d.

q(zn′ |z¬n′ ,w, α, β, θ) = q(zn′ |w, α, β, θ),

Here ¬n′ refer to indices of all diagnoses excluding n′. However, for collapsed VB, condi-
tional distribution depends on other diagnoses of the same patient:

q(zn′ |z¬n′ ,w, α, β) ∝
K∏
i

(αi +
∑

n∈¬n′

zni)
zn′i

K∏
i=1

D∏
j=1

β
zn′iwn′j
ij

The impact of the the dependency on the accuracy of posterior approximation depends
on the data structure. Most of topic modelling modes were designed for text modelling,
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where each document have a large word number Ns. In this case, (αi +
∑

n∈¬n′ zni) will
be approximately the same across n′:

lim
Ns→∞

p(zn′ |z¬n′ ,w, α, β) ∝
K∏
i

[
(αi +Nsθi)

D∏
j=1

β
wn′j
ij

]zn′i
,

where θi is the topic value for the sth document. We see z¬n′ no longer exist and q∗(z) in
equation 17 could approximate p(z|w, α, β) accurately. However, each patient on average
have 6.1 distinct diagnoses in UK Biobank HES, making Ns small for the mean-field ap-
proximation. Note, we do not need to assume independence of zn, it is a consequence of
assume independence between q(θ) and q(z), which is called induced factorisation in some
cases. (section 10.2.5 in [2]) In this cases collapsed VB models the dependency between zn
and z¬n′ and have better accuracy at approximating posterior distribution.
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