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Sarcoidosis is a complex systemic disease. Our study aimed to 1) identify novel alleles 

associated with sarcoidosis susceptibility; 2) provide an in-depth evaluation of HLA alleles and 

sarcoidosis susceptibility; 3) integrate genetic and transcription data to identify risk loci that may 

more directly impact disease pathogenesis.  

We report a genome-wide association study of 1,335 sarcoidosis cases and 1,264 controls of 

European descent (EA) and investigate associated alleles in a study of African Americans (AA: 

1,487 cases and 1,504 controls). The EA cohort was recruited from National Jewish Health, 

Cleveland Clinic, University of California San Francisco, and Genomic Research in Alpha-1 

Antitrypsin Deficiency and Sarcoidosis. The AA cohort was from a previous study with subjects 

enrolled from multiple United States sites. HLA alleles were imputed and tested for association 

with sarcoidosis susceptibility. Expression quantitative locus and colocalization analysis were 

performed using a subset of subjects with transcriptome data. 

49 SNPs in HLA-DRA, -DRB9, -DRB5, -DQA1, and BRD2 genes were significantly associated 

with sarcoidosis susceptibility in EA. Among them, rs3129888 was also a risk variant for 

sarcoidosis in AA. Classical HLA alleles DRB1*0101, DQA1*0101, and DQB1*0501, which are 

highly correlated, were also associated with sarcoidosis. rs3135287 near HLA-DRA was 

associated with HLA-DRA expression in peripheral blood mononuclear cells and 

bronchoalveolar lavage.  

In summary, we identified several novel SNPs and three HLA alleles associated with 

sarcoidosis susceptibility in the largest EA population evaluated to date using an integrative 

analysis of genetics and transcriptomics. We also replicated our findings in an AA population.    
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Introduction 

Sarcoidosis is a complex systemic disease affecting between 45-300/100,000 persons in the 

United States[1]. While environmental and genetic susceptibility factors have been associated 

with sarcoidosis[2-4], the driving risk factors for disease are still largely undefined. Previous 

genome-wide association studies (GWAS) have consistently implicated the HLA region as 

harboring genetic risk loci based on single nucleotide polymorphisms (SNPs)[5-12], while 

candidate gene studies have implicated specific HLA alleles such as DRB1*1101, DRB1*1501, 

and DQB1*0602[13, 14]. The strong role of the HLA region for sarcoidosis disease risk is 

consistent with exposure and immune-based associations observed in patients, as well as the 

heterogeneous disease course.  

Most sarcoidosis genetic studies have focused on genotype data, limiting understanding of 

potential functional genetic features associated with disease status. Studying the impact of risk 

alleles on gene expression can provide the first step in understanding their potential biological 

impact[15]. This is especially true for complex diseases since the majority of genetic variants 

robustly associated with these diseases fall in non-coding regions of the genome[16]. While the 

function of non-coding regions was unknown in the past, there is substantial evidence that many 

of them influence disease risk through regulatory effects, including those that impact gene 

expression[15]. Hence, integrating genetic and transcriptomic data may identify loci with a more 

direct or functional effect on disease pathogenesis.  

To identify genetic risk factors for disease and study their effects on gene expression, we 

conducted a genome-wide association study in European American (EA) population that 

includes follow-up of risk alleles on gene expression in peripheral blood as well as lung cells. 

We confirm the strong role of the HLA region in sarcoidosis risk and demonstrate both novel 
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SNPs and classical HLA alleles associated with disease and influencing HLA expression. We 

replicated some of these findings in a large African American (AA) population.   
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Materials and Methods 

Study design and population: 

This GWAS used a two-phase approach to identify genome-wide significant SNPs associated 

with sarcoidosis; additional details are present in Supplemental Methods. DNA samples from 

sarcoidosis cases and controls were obtained from National Jewish Health (NJH), University of 

California, San Francisco, Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis 

(GRADS) consortium [17], and Cleveland Clinic Foundation. Sarcoidosis case definition was 

based on the ATS/ERS/WASOG statement[18]. After quality control (see below), 818 cases and 

981 controls (Phase 1) and 517 cases and 283 controls (Phase 2), all self-reported EA ancestry 

(Table 1 and Figure 1), reflected the majority of the race/ethnicities seen in our clinics. A subset 

of study participants had peripheral blood mononuclear cell (PBMC) and/or bronchoalveolar 

lavage (BAL) cell RNA sequencing data available through GRADS study[17, 19]. We tested 

significant SNPs identified in our EA two-phase approach in an AA study population. The AA 

GWAS summary statistics were obtained from a published study[5] with updated imputations 

since publication of those data. 

Genome-wide genotyping: 

DNA was extracted from whole blood using the PAXgene Blood DNA kit. Genotyping was 

performed using the Illumina HumanOmini 2.5 BeadChip to interrogate ~ 2.4 million markers. 

The markers were derived from the 1000 Genomes Project[21], including all three HapMap 

phases, 19K SNPs across the MHC, and over 41K non-synonymous SNPs. Genotyping was 

conducted at Hudson Alpha Biotechnology Institute (Huntsville, AL https://hudsonalpha.org/).   

Genotype quality control: 
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We used 1000 genomes data[21] to infer ancestry-informative principal components (PCs), 

which were projected onto cases and controls. We prioritized SNPs with minor allele frequency 

(MAF)>0.03 and Hardy-Weinberg Equilibrium p>0.001 in cases and controls evaluated 

separately and <10% missing data. 

Imputation of additional genotypes and HLA variants for the EA population: 

We imputed genotypes using combined case and control discovery samples for all 1000 

genomes SNPs. We imputed classical HLA alleles using R package HLA Genotype Imputation 

with Attribute Bagging (HIBAG)[27].  

RNA sequencing and quality control: 

Total RNA was extracted, and RNA-sequencing was conducted as outlined[19]. We followed a 

similar quality control procedure for both PBMC and BAL samples and removed RNA samples 

with an unmapped read rate >20% and mitochondrial read rate >0%. We removed outlier 

samples through PC analysis; the EA individuals who also had gene expression data available 

were included in the expression quantitative trait analyses. 

Statistical analysis:  

Single-SNP association test and meta-analysis 

We tested for association between each SNP and sarcoidosis using Snptest (v2)[28] as 

described previously[29]. To obtain an overall measure of association with sarcoidosis, we 

performed a meta-analysis of Phase 1 and Phase 2 using summary statistic data and the 

weighted inverse normal method[30] as implemented in the software METAL[31]. Genome-wide 

significance was defined as meta-analysis p<5×10−8. Genome-wide significant SNPs identified 

in our EA population were tested in the AA population. Statistical significance for these SNPs 
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was defined as p<0.05/(number of significant SNPs in EA). We compared our GWAS results to 

previously identified loci in other studies including SNPs in ANXA11 (rs1049550, rs1953600, 

rs2573346, rs2784773)[32], RAB23 (rs1040461)[9], C100RF67 (rs1398024)[33], OS9 

(rs1050045)[8], CCDC88B (rs479777)[7], and NOTCH4 (rs715299)[5]. Statistical significance 

for these a priori SNPs was defined as p<0.0056(0.05/9 SNPs). 

Classic HLA alleles analysis 

We used logistic regression models to test for association between dosage of each imputed 

HLA allele and sarcoidosis. Given strong a priori associations with the HLA region, we used 

p<0.00011(0.05/448 HLA alleles tested) as statistical significance. We compared our HLA 

results to previously identified HLA alleles in other studies, including DRB1*1101, DRB1*1501, 

and DQB1*0602[13, 14]. We used a p=0.016(0.05/3 alleles) to determine statistical significance 

for a priori alleles.   

Conditional Models 

To assess the independence of single-SNP effects from HLA risk alleles, we computed 

multivariable logistic regression models where HLA risk alleles were included as covariates in 

the model, and each SNP, one at a time, was tested for association (i.e., association adjusted 

for HLA risk alleles).  

Expression quantitative locus (eQTL) and colocalization analysis 

For those sarcoidosis cases with gene expression data from GRADS, we performed 

colocalization analysis using eCAVIAR[34] to identify variants with evidence for colocalization of 

disease and cis eQTL associations. The algorithm estimates the posterior probability that the 

same variant is casual in both GWAS and eQTL studies while accounting for linkage 
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disequilibrium (LD). We included all SNPs within the defined gene boundary of the significant 

SNP in the analysis (+/-25K base pairs) and tested for association between those SNPs and 

gene expression. The threshold for significance was set as a colocalization posterior probability 

(CLPP)>0.001, as suggested by eCAVIAR[34]. The same approach was applied to imputed 

HLA alleles. We tested for association between HLA alleles and gene expression in two tissues 

(BAL and PBMC). In addition, using GRADS data, we conducted a comprehensive cis-eQTL 

search using the publicly available database, Genotype-Tissue Expression (GTEx)[36, 37]. The 

GTEx project was supported by the Common Fund of the Office of the Director of National 

Institutes of Health, NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for analyses 

described in this manuscript were obtained from the GTEx Portal on 05/31/2022.  
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Results 

Descriptive analysis of GWAS in EA: 

We enrolled 3,141 subjects genotyped on the Illumina array. After quality control (Figure 1), we 

included n=2,599 subjects (1,335 cases and 1,264 controls) in the analysis (Table 1); 818 

cases (49% female/51% male) and 981 controls (37% female/63% male) in Phase 1 and 517 

cases (53% female/47% male) and 283 controls (71% male/29 % female) in Phase 2. For eQTL 

analyses,  paired genotype-transcription data was available for 136 genotype-BAL transcription 

and 193 genotype-PBMC transcription samples.  

GWAS identifies HLA region associations with sarcoidosis:  

The meta-analysis of Phase 1 and 2 data identified 49 SNPs reaching GWAS significance. The 

r2 LD plot of those SNPs and the top seven SNPs representing all significant SNPs (r2>0.70) are 

shown in Figure S1. Those top seven SNPs were rs9269233, rs9271346, rs35656642, 

rs28589559, rs9276935, rs3129888, and rs71549283 (Table 2), located across HLA-DRA, -

DRB9, -DRB5, -DQA1, and BRD2 on chromosome 6. The remaining significant SNPs are 

shown in Table S1. With the much-reduced Phase 2 sample size compared to Phase 1, the 

Phase 2 p-value is not nominally significant, although effect sizes (odds ratios) were 

comparable, and both contribute proportionally to meta-analysis p-values. The Manhattan plot 

for SNP associations is shown in Figure 2A, and Figure 2B shows the locus-specific plot for 

all significant SNPs highlighting the seven top SNPs. For the seven top SNPs, we used a 

stepwise approach to adjust for other SNPs (Table S2), and found rs9269233, rs9276935, 

rs28589559, and rs3129888 still nominally significant after adjustment (all p<0.01). Other top 

SNPs with p<5 x 10-5 are shown in Table S3. In the AA cohort, rs3129888 was also significantly 

associated with increased risk of sarcoidosis (Table 2). When we compared our results to 
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previously-identified loci from other GWAS studies, we found SNPs in ANXA11 were nominally 

significant (Table S4) in the meta-analysis (p<0.0056).   

Classic HLA alleles are associated with sarcoidosis:   

Nine HLA alleles were significantly associated with sarcoidosis susceptibility (p<0.00011, Table 

3 and Table S5). Three HLA alleles had a p-value<5 x 10-8: DRB1*0101, DQA1*0101, and 

DQB1*0501. All three HLA alleles were highly correlated and protective against sarcoidosis. We 

found three candidate HLA alleles, DRB1*1101, DRB1*1501, and DQB1*0602, significantly 

associated with increased risk of sarcoidosis (Table 3). 

GWAS SNPs in HLA are independent of HLA allele associations: 

Although the p-values were attenuated slightly, each genome-wide significant SNP remained 

associated with sarcoidosis after adjustment for each of the HLA risk alleles (Table 4). We then 

adjusted for all three HLA risk alleles, and the effects of each SNP on odds ratios were largely 

unchanged after adjustment (Table S6). Interestingly, there was a significant interaction 

between rs9271346 and DRB1*0101 (p=0.02, Table S7).  

eQTL and colocalization analyses demonstrate an association between SNPs and gene 

expression: 

Colocalization analysis was conducted across five genes: HLA-DRA, -DRB9, -DRB5, -DQA1, 

and BRD2. We found no significant colocalization when we assumed only one casual SNP in 

the region. The model assuming two casual SNPs in the region demonstrated that rs3135387 

colocalized with both PBMC and BAL cell expression levels of HLA-DRA (CLPP=0.003 and 

0.002, respectively). Other nearby SNPs, rs3129888, and rs3135390, within the HLA-DRA 

region also showed significant colocalization posterior probability with PBMC gene expression 
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(CLPP=0.002, Figure S2). A comprehensive cis-eQTL search of whole blood and lung from 

GTEx is shown in Table 5. In brief, rs9269233 demonstrated significant eQTL for HLA-DRB9 

expression in whole blood, while rs9271346, rs35656642, and rs28589559 were significant 

eQTLs for expression of HLA-DQA1 in whole blood and lung. The colocalization analysis for the 

three genome-wide significant HLA alleles showed that DRB1*0101 was the most significantly 

associated with sarcoidosis susceptibility and with expression levels in PBMC and BAL among 

sarcoidosis patients for DRB1, DQA1, DQB1, and DRB9 (all CLPPs>0.001). The DRB1*0101 

risk allele was positively associated with PBMC DQB1 gene expression (p=0.03, Figure 3A) 

and negatively associated with BAL DRB9 gene expression (p=0.03, Figure 3B). 
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Discussion 

We identified 49 SNPs associated with sarcoidosis in this largest EA GWAS of sarcoidosis; one 

of these SNPs, rs3129888, was also associated with sarcoidosis in an AA GWAS. All SNPs are 

on Chromosome 6 in the well-known HLA risk region. While we evaluated previously identified 

GWAS SNPs a priori and found an association with ANXA11, we found no other SNPs outside 

the HLA region associated with sarcoidosis. Using colocalization and eQTL analysis, we found 

rs3135387 colocalizes with PBMC and BAL gene expression of HLA-DRA in our EA population. 

HLA DRB1*0101, DQA1*0101, and DQB1*05*01 were significantly associated with sarcoidosis, 

while DRB1*0101 was also associated with expression of PBMC HLA-DQB1 and BAL HLA-

DRB9. These results suggest that in sarcoidosis, the HLA region is likely functional, impacting 

gene expression and disease development.  

The most significant SNP associated with sarcoidosis in our study, rs9269233, is between HLA-

DRB9 and HLA-DRB5. This association with rs9269233 was only modestly attenuated after 

adjustment for sarcoidosis-related HLA alleles (adjusted p=2.15x10-7), suggesting that 

rs9269233 is an independent risk allele for sarcoidosis in the region. The A allele of this SNP 

showed increased risk of sarcoidosis, has not been reported in other studies and was not 

significant in AA cohort. Potentially this may indicate that sarcoidosis pathogenesis differs 

between EA and AA, and in fact, other studies have found different risk variants in EA and AA 

subjects[38]. In a previous GWAS[38], rs1964995, also located between HLA-DRB9 and HLA-

DRB5 (r2 with rs9269233=0.53), showed a protective effect in non-Lofgren sarcoidosis vs. 

controls in a white Swedish cohort. Interestingly, rs1964995 increases the risk of rheumatoid 

arthritis (RA) in AA, although not in EA[39]. rs9269233 has been found to be an eQTL for HLA-

DRB9 gene expression in whole blood in our analysis using the GTEx database. In addition to 

rs9269233, the presence of at least one DRB1*0101 allele was significantly associated with 

HLA-DRB9 gene expression in BAL cells. HLA-DRB9 is a pseudogene that is transcribed into 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.22281070doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281070


RNA but does not encode proteins. However, pseudogenes can regulate other protein-coding 

genes[40]; our findings suggest this may be the case with DRB9 in our population. In previous 

studies, HLA-DRB loci were found to group into five major haplogroups (DR1, DR8, DR51, 

DR52, and DR53), which differ by alleles at functional DRB genes (DRB3, DRB4, or DRB5) and 

DRB pseudogenes (DRB2, DRB6, DRB7, DRB8, or DRB9)[41]. The HLA-DRs are associated 

with various diseases, including sarcoidosis[42], which is usually thought to have implications 

for antigen presentation. Our data suggests that these associations may reflect gene expression 

regulation that is not currently known to be functional but may impact immune responses in 

sarcoidosis.   

Two other significant SNPs associated with sarcoidosis, rs9271346, and rs35656642, are both 

near HLA-DQA1 (<25K base pairs). rs9271346 was nominally significant in AA and EA in a 

previous study[5], with the same allele associated with risk in each, although it did not reach 

genome-wide significance (p=0.007 in AA and 8.63x10-6 in EA). rs35656642 is a novel risk 

variant for sarcoidosis that has not been described previously, and we found the same allele 

associated with sarcoidosis in AA. Both SNPs are also eQTLs in lung tissue and whole blood 

based on publicly available datasets, although we did not find associations in lung BAL cells in 

our study. A study found rs2187668 near gene HLA-DQA1 significantly associated with 

Lofgren’s syndrome[38], while another reported three SNPs (rs28609302, rs9273113, 

rs9272594) in this region associated with ocular sarcoidosis vs. controls in US AA(2 x 10-7 to 6 

x 10-6)[43]. Of note, a subpopulation from the AA cohort was used in our study. We found low 

LD between those previously reported SNPs and the SNPs in our EA population(absolute r2 

0.06-0.58), indicating that the findings in our EA population are unlikely simple replications of 

previously-identified SNPs.   

Except for rs3129888 (p=1.52x10-6), significant SNPs in EA were not significantly associated 

with sarcoidosis in AA. The rs3129888 G allele, located in an HLA-DRA intron, increased 
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sarcoidosis risk. This finding is consistent with a study on Lofgren’s syndrome in Sweden, 

Germany, and a US AA population[38]. Our US EA samples are distinct from the European 

cohort, but our AA population largely overlaps with the US AA population[38]. 

We found three HLA alleles significantly associated with sarcoidosis, all of which are highly 

correlated with each other. DRB1*0101 and DQB1*0501 showed a protective effect on 

sarcoidosis risk, consistent with a previous study from the UK, Netherlands, and Japan[44]. In 

this previous study, DRB1*0101 was protective against lung-predominant sarcoidosis, Lofgren’s 

syndrome, and uveitis. The sarcoidosis patients in our study included all subtypes of disease. 

When we searched the database from another large study using 13,835 EA individuals from five 

US sites of the Electronic Medical Records and Genomics (eMERGE) network[45] (using the 

International Classification of Diseases code as the definition for diseases), DRB1*0101, 

DQB1*0501, and DQA1*0101 were all protective for sarcoidosis but increased risk of RA (Table 

S8). These opposite genetic effects are consistent with a study of pleiotropy between 

sarcoidosis and RA, which demonstrates higher RA polygenic risk score associated with a 

protective effect of sarcoidosis[46], and another epidemiologic study demonstrating a lower 

prevalence of RA in a British sarcoidosis cohort vs. the general population[47]. While RA and 

sarcoidosis are both inflammatory diseases, this may imply that their disease pathogenesis is 

distinct and drivers of one disease protect from development of the other. Each of the 

previously-reported sarcoidosis HLA risk alleles, DRB1*1101, DRB1*1501, and DQB1*0602, 

showed a nominal increase in the risk of sarcoidosis in our study. DRB1*1101 allele was 

previously associated with increased risk of sarcoidosis in AA and European descent 

individuals[14]. DRB1*1501, which is in high LD with DQB1*0602, has been associated with 

increased risk of severe pulmonary sarcoidosis in individuals of European descent[13]. Of note, 

these HLA alleles were not the strongest risk alleles in our study, and this might be due to sub-

populations (e.g., race/ethnicity) or varied phenotypes in our cohort compared to others. For 
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example, our cohort is likely a mixture of different sarcoidosis phenotypes (e.g., cardiac, ocular, 

cutaneous, etc.) as we did not restrict enrollment to specific phenotypes. Future GWAS studies 

would benefit from focusing on specific sarcoidosis phenotypes or those with specific organ 

involvement to explore genetic drivers of sarcoidosis manifestations, including neurological, 

cardiac, or specific pulmonary phenotypes of sarcoidosis.   

There are limitations to our study. First, we included a heterogeneous population of sarcoidosis 

patients we various phenotypes; this could reduce our study’s power to identify novel SNPs 

versus European studies focused on Lofgren’s syndrome. Regardless, we found HLA 

associations linked to other sarcoidosis phenotypes in previous studies, like DRB1*1101 and 

*1501. Second, we have gene expression data available on only a subset of participants for the 

eQTL analyses, impacting power to identify other eQTLs in our study. To help mitigate this 

limitation, we used the GTEx database to enhance our evaluation of associations between 

SNPs and gene expression.  

In summary, our findings provide convincing evidence that HLA alleles are an important 

contributor to risk of sarcoidosis not only in our EA population but also in an AA population with 

genotyping already available. In addition to traditional GWAS SNPs and imputed HLA variants, 

we also explored how these genotypes are associated with gene expression in both PBMC and 

BAL cells using integrated analysis and demonstrated showed potential gene expressions 

impacted by these risk variants. Our future studies will explore these potential variants/genes 

and their mechanistic implications.  
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Table 1: Sample size and sex for Phase 1 and Phase 2*  

 All (N= 2599) Phase 1 (N=1799) Phase 2 (N=800) 

Sex Sarcoidosis 
(n= 1335) 

Control 
(n=1264) 

Sarcoidosis 
(n=818) 

Control 
(n=981) 

Sarcoidosis 
(n=517) 

Control 
(n=283) 

  Female, n (%) 671 (50 %) 565 (45%) 399 (49%) 364 (37%) 272 (53%) 201 (71%) 
  Male, n (%) 664 (50%) 699 (55%) 419 (51%) 617 (63%) 245 (47%) 82 (29%) 

*Phase 2 DNA samples became available after the Phase 1 group had been genotyped (see Materials and 
Methods). 
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Table 2. Summary of top 7 genome-wide significant SNPs of the genome-wide association study of sarcoidosis (p-value<5x10-8) 

 
European American Cohort African American Cohort 

 Phase 1 Phase 2 Meta-analysis 
  

SNP Chr position Minor allele Nearest gene (+/-25K) MAF case OR (95% CI) p-value MAF case OR (95% CI) p-value OR (95% CI) p-value MAF case OR (95% CI) p-value 

rs9269233 6 32451762 A HLA-DRB9 0.38 1.73 (1.48,2.01) 5.67E-13 0.34 1.08 (0.85,1.36) 0.54 1.50 (1.32,1.71) 2.32E-10 0.32 1.09 (0.81,1.47) 0.56* 
rs9271346 6 32583468 C HLA-DQA1 0.27 1.71 (1.45,2.02) 1.53E-10 0.24 1.14 (0.89,1.47) 0.30 1.51 (1.32,1.74) 3.73E-09 0.24 1.19 (1.05,1.34) 0.01 

rs35656642 6 32583610 A HLA-DQA1 0.32 0.66 (0.58,0.76) 5.73E-09 0.34 0.84 (0.67,1.05) 0.12 0.71 (0.63,0.80) 1.19E-08 0.29 0.87 (0.78,0.98) 0.02 

rs28589559 6 32587716 T HLA-DQA1 0.08 0.50 (0.40,0.63) 2.90E-10 0.13 0.91 (0.67,1.23) 0.55 0.62 (0.52,0.74) 2.46E-08 0.13 0.93 (0.80,1.08) 0.33 

rs9276935 6 32936441 C BRD2 (inside gene) 0.05 0.51 (0.39,0.68) 1.26E-06 0.05 0.56 (0.37,0.84) 0.006 0.53 (0.42,0.66) 2.72E-08 0.01 0.87 (0.55,1.40) 0.57 
rs3129888 6 32411726 G HLA-DRA (inside gene) 0.27 1.63 (1.38,1.91) 3.71E-09 0.25 1.15 (0.90,1.48) 0.26 1.47 (1.28,1.68) 3.21E-08 0.27 1.36 (1.20,1.54)1.52E-06

rs71549283 6 32505038 A HLA-DRB5 0.33 0.61 (0.51,0.72) 9.70E-09 0.34 0.83 (0.63,1.10) 0.20 0.66 (0.57,0.77) 4.22E-08 0.20 0.86 (0.64,1.17) 0.34* 
SNP: single nucleotide polymorphism; Chr: chromosome; MAF: minor allele frequency; OR: odds ratio; 95% CI: 95% confidence interval 
*The results of rs9269233 and rs71549283 in the African American cohort did not pass the imputation quality control. The result was obtained from the sequencing data on 932 subjects. 

  

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted O

ctober 17, 2022. 
; 

https://doi.org/10.1101/2022.10.13.22281070
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2022.10.13.22281070


Table 3. Association between HLA alleles and sarcoidosis. 

 
Phase 1 Phase 2 

 

 Dosage frequency Univariate results Dosage frequency Univariate results Meta-analysis 

HLA allele Cases Controls OR (95% CI) p-value Cases Controls OR (95% CI) p-value OR (95% CI) p-value 

Novel alleles* 
         

 

  DRB1*0101 0.07 0.18 0.35 (0.26, 0.48) 1.46E-11 0.09 0.23 0.31 (0.20, 0.47) 3.51E-08 0.34 (0.26, 0.43) 2.27E-18 

  DQA1*0101 0.12 0.22 0.53 (0.42, 0.68) 2.61E-07 0.12 0.29 0.34 (0.24, 0.50) 1.09E-08 0.47 (0.38, 0.57) 1.09E-13 

  DQB1*0501 0.13 0.24 0.61 (0.49, 0.75) 5.45E-06 0.12 0.30 0.39 (0.28, 0.55) 6.03E-08 0.53 (0.45, 0.64) 1.37E-11 

Candidate alleles     
  

    
   

 

  DRB1*1101 0.15 0.11 1.57 (1.13, 2.18) 7.05E-03 0.14 0.12 1.58 (0.91, 2.73) 0.10 1.57 (1.19, 2.08) 1.67E-03 

  DRB1*1501 0.40 0.27 1.56 (1.30, 1.86) 1.03E-06 0.35 0.29 1.20 (0.90, 1.61) 0.21 1.45 (1.25, 1.69) 1.75E-06 

  DQB1*0602 0.39 0.26 1.57 (1.31, 1.88) 1.11E-06 0.34 0.27 1.23 (0.91, 1.66) 0.19 1.47 (1.26, 1.72) 1.53E-06 

OR: odds ratio; 95% CI: 95% confidence interval 
*P-value < 5 x 10-8, remaining significant HLA alleles (P<0.00011) are listed in Table S5 
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Table 4. P-values of the three genome-wide significant SNPs adjusted by HLA alleles (one at a time) 

     
Without HLA adjustment DRB1*0101 DQA1*0101 DQB1*0501 

SNP Chr Position Minor allele Nearest gene (+/-25K) p-value p-value p-value p-value 

rs9269233 6 32451762 A HLA-DRB9 2.32E-10 2.22E-07 2.41E-07 1.35E-07 

rs9271346 6 32583468 C HLA-DQA1 3.73E-09 1.85E-07 5.93E-08 2.17E-08 

rs35656642 6 32583610 A HLA-DQA1 1.19E-08 7.22E-05 4.81E-05 1.87E-05 

rs28589559 6 32587716 T HLA-DQA1 2.46E-08 0.03 0.02 3.88E-03 

rs9276935 6 32936441 C BRD2 (inside gene) 2.72E-08 2.43E-07 1.46E-07 1.49E-07 

rs3129888 6 32411726 G HLA-DRA (inside gene) 3.21E-08 1.38E-06 1.45E-06 1.22E-06 

rs71549283 6 32505038 A HLA-DRB5 4.22E-08 4.26E-05 3.96E-05 4.66E-05 

SNP: single nucleotide polymorphism; Chr: chromosome; MAF: minor allele frequency; OR: odds ratio; 95% CI: 95% confidence 
interval 

  

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted O

ctober 17, 2022. 
; 

https://doi.org/10.1101/2022.10.13.22281070
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2022.10.13.22281070


Table 5. Genotype-Tissue Expression Portal (GTEx) Cis-eQTL in lung and whole blood for associated SNPs.  

SNP Nearest 
gene (+/-
25K) 

Common for Lung and Whole blood *Unique for Lung *Unique for Whole 
blood 

rs9269233 HLA-DRB9 HLA-DQA2, HLA-DQB1, HLA-DQB1-AS1, HLA-
DRB1, HLA-DRB5, HLA-DRB6 

LY6G5C, STK19B C4A, CYP21A2, 
HLA-DQB2, HLA-
DRB9 

rs9271346 HLA-DQA1  CYP21A2, HLA-DQA1, HLA-DQA2, HLA-
DQB1, HLA-DQB1-AS1, HLA-DQB2, HLA-
DRB1, HLA-DRB5, HLA-DRB6, HLA-DRB9 

HCG23, XXbac-
BPG154L12.4 

LY6G5B, TNXB 

rs35656642 HLA-DQA1  HLA-DQA1, HLA-DQA2, HLA-DRB5, HLA-
DRB6, LY6G5B 

HCG23, LY6G5C, XXbac-
BPG154L12.4 

CYP21A1P, HLA-
DRB1 

rs28589559 HLA-DQA1 

HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-
DRB6, HLA-DRB9 

HLA-DOB, NOTCH4, 
TAP2 

HLA-DQB1, PBX2 

rs3129888 

HLA-DRA 
(inside 
gene) 

C4A, CYP21A2, HLA-DQA2, HLA-DQB1, HLA-
DQB1-AS1, HLA-DRB5, HLA-DRB6, HLA-
DRB9, STK19B 

HCG23, HLA-DQA1, HLA-
DRB1, XXbac-
BPG154L12.4 

HLA-DQB2 

*Unique gene with its gene expression affected by the specific SNPs only in the specific tissue. For example. rs9269233 only affects 
STK19B gene expression in the lung but not in the whole blood.  
rs9276935 were not eQTLs in lung or whole blood tissue; rs71549283 was not found in the GTEx database as of 5/31/2022 
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Figure 1. CONSORT flow chart for the GWAS samples. This figure outlines the exclusion of the 
subject in Phase 1 and Phase 2 respectively.   

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.22281070doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.13.22281070


Figure 2.  2A) Manhattan plot for SNP associations, with significant associations in the HLA 
region of chromosome 6. 2B) Locus-zoom plot for significant SNPs in chromosome 6 (position: 
32381726-32984689); rs9269233 is the most significant SNP and r2 values with other significant 
SNPs are low.  
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Figure 3. A) PBMC DQB1 gene expression (variance stabilizing transformation [VST] 
normalized counts) and presence/absence of DRB1*0101 allele. Individuals with one 
DRB1*0101 allele have higher PBMC DQB1 gene expression compared to those with none. B) 
BAL DRB9 gene expression (VST normalized counts) and presence/absence of DRB1*0101 
allele. Individuals with one DRB1*0101 allele have higher BAL DRB9 gene expression.  
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