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Simple Summary: Cancer is a complex ensemble of morphological and molecular features whose 1

role is still unclear. Moreover, their role may change in different areas of the same tumour. Artificial 2

intelligence (AI) allows pathologists to go beyond human perception and bias, and may help better 3

understand how these features influence disease progression. Furthermore, by capturing variation 4

intrinsic to the tumour, AI may improve the accuracy of current prognostic tools, such as Leibovich 5

Score (LS), in predicting patient outcome and response to therapy. For these reasons, we studied in 6

clear cell renal cell carcinoma (ccRCC) tissue, in which molecular features and their coexpression in 7

the same cell were quantified and mapped using AI-based image analysis software. We demonstrated 8

a novel approach for investigating ccRCC and revealed new potential biomarkers of prognosis which 9

may also be able to direct patients towards the most appropriate personalised therapy. 10

Abstract: Although Immune Checkpoint Inhibitors (ICIs) have significantly improved Clear Cell 11

Renal Cell Carcinoma (ccRCC) prognosis, about one third of patients experience recurrence. Cur- 12

rent prognostic algorithms like the Leibovich Score (LS) rely on morphological features manually 13

assessed by pathologists, and are therefore subject to bias. Moreover, these tools do not consider 14

the heterogeneous molecular milieu present in the Tumour Microenvironment (TME), which may 15

have prognostic value. We systematically developed a semi-automated method to investigate 62 16

markers and their combinations in 150 primary ccRCCs using multiplex Immunofluorescence (mIF), 17

NanoString GeoMx® Digital Spatial Profiling (DSP) and Artificial Intelligence (AI)-assisted image 18

analysis in order to find novel prognostic signatures and investigate their spatial relationship. We 19

found that coexpression of Cancer Stem Cell (CSC) and Epithelial-to-Mesenchymal Transition (EMT) 20

markers such as OCT4 and ZEB1 are indicative of poor outcome. OCT4 and the immune markers 21

CD8, CD34 and CD163 significantly stratified patients at intermediate LS. Furthermore, augmenting 22

the LS with OCT4 and CD34 improved patient stratification by outcome. Our results support the 23

hypothesis that combining molecular markers has prognostic value and can be integrated with 24

morphological features to improve risk stratification and personalised therapy. To conclude, GeoMx® 25

DSP and AI image analysis are complementary tools providing high multiplexing capability required 26

to investigate the TME of ccRCC, while reducing observer bias. 27

Keywords: multiplex; immunofluorescence; nanostring; image analysis; pathology; kidney; spatial 28

analysis 29

1. Introduction 30

Clear cell renal cell carcinoma (ccRCC) is the most frequent kidney cancer and the 31

deadliest genitourinary disease. Over 10,000 new cases are diagnosed annually, with 32

over 76,000 new RCC cases diagnosed in 2021 [1]. To date, the only curative method is 33
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nephrectomy, although 30% of patients experience recurrence [2]. Even though tremen- 34

dous progress has been made in systemic therapy with the advent of immune checkpoint 35

inhibitors (ICIs), around one third of patients present with metastasis, and their 5-year 36

survival drops to 12% [3,4]. 37

The current clinical gold standard prognostic tools are TNM staging and International 38

Society of Urological Pathology (ISUP) nuclear grading, obtained through Haematoxylin & 39

Eosin (H&E) staining of resected tissue sections. The former considers the tumour size (pT), 40

lymph node involvement (pN), and the presence of distant metastasis (pM); the latter takes 41

into account nucleolar prominence and morphology, as well as the presence of rhabdoid 42

and sarcomatoid features [5,6]. 43

Several prognostic algorithms have been built to assign prognostic scores to patients 44

and predict the risk of advanced disease. For instance, the widely used Leibovich score 45

(LS) predicts the risk of recurrence after surgery by considering pT, pN, tumour size, 46

nuclear grade, and the presence of necrosis (table 1). However, LS only considers tumour 47

morphological features, which are subjectively assessed by pathologists, while there is a 48

lack of general consensus about molecular features. For these reasons, current prognostic 49

tools, such as LS, are subject to inter-observer bias are unable to accurately predict patient 50

outcome and response to therapy [6,7]. 51

Other factors may influence tumour progression: ccRCC is characterised by a highly 52

heterogeneous Tumour Microenvironment (TME), in which hypoxia, blood vessels, stromal, 53

and immune cells play a crucial role for cancer progression. For example, variations in 54

immune escape mechanisms, such as PD-1/PD-L1 interaction, which are at the base of 55

some ICIs, are responsible for drug resistance [8]. Therefore, assessing molecular marker 56

expression such as PD-1 and PD-L1 could predict the response to therapy, and distinguish 57

patients who would benefit from treatment from those who would potentially experience 58

adverse effects. After exposure to chronic inflammation, cytotoxic T cells express high 59

levels of co-inhibitory receptors, including PD-1, LAG-3, TIM-3, and CTLA-4. This results 60

in T cell loss of function, and tumour adaptation to the immune response, favouring disease 61

progression. The main exhausted T cell molecular signature is represented by coexpression 62

of CD8 along with PD-1 and TIM-3 and was associated to poor prognosis in ccRCC [9]. 63

Moreover, recent evidence supports the hypothesis that high PD-1/PD-L1 expression 64

and increased regulatory T cell infiltration promote epithelial-mesenchymal transition 65

(EMT), a process in which epithelial cells acquire a mesenchymal phenotype [10]. These 66

signals lead to cytoskeleton reorganisation and cell motility, which are associated with inva- 67

siveness and metastatic potential in cancer [11]. The hallmark of EMT is the upregulation 68

of N-cadherin followed by the downregulation of E-cadherin [12]. Although the origin 69

of EMT is still unclear, evidence suggests that the transforming growth factor β (TGF-β) 70

induces EMT by activating transcription factors including vimentin, snail, and zinc finger 71

E-box binding homeobox 1 (ZEB1), which suppress epithelial cell proliferation [13–15]. 72

In particular, vimentin is involved in the cytoskeleton reorganisation [16], whereas ZEB1 73

represses E-cadherin expression and activates N-cadherin and vimentin expression [17]. 74

Interestingly, it has recently been shown that cancer stem cells (CSCs) require a hybrid 75

epithelial/mesenchymal phenotype in order to initiate cancer progression [18]. These de- 76

differentiated tumour cells hold self-renewal potential and cell motility which contribute to 77

tumour aggressiveness and poor prognosis [19]. 78

However, no standard CSC markers exist for ccRCC due to the high heterogeneity 79

of its TME, although some have shown a prognostic potential. For instance, CD44 is 80

involved in the regulation of stem cell features via the Wnt/b-catenin signalling pathway, 81

suggesting that this marker could contribute to EMT [20]. Moreover, CD44 was associated 82

with poor 5-year survival, high nuclear grade and recurrence in ccRCC [21]. To note, in 83

vitro studies using RCC cell lines observed that CD44 was upregulated in the presence of 84

tumour-associated macrophages (TAMs) [22]. 85

OCT4 has also been shown to be responsible for stemness, EMT, tumorigenesis, and 86

cell survival mechanisms [23]. In ccRCC, OCT4a, either alone or in combination with 87
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NANOG, was associated with stemness and poor prognosis [24]. CSCs have also been 88

shown to bind to CTLA-4 receptor causing CTLA-4 upregulation. These evidences suggest 89

that CSCs may also be involved in immune evasion and T cell exhaustion [25,26], showing 90

how all the mechanisms described above are strictly connected to each other symbiotically 91

modulating the TME. 92

Understanding the high ccRCC intra-tumour heterogeneity (ITH) is crucial for patient 93

stratification in order to achieve personalised therapy. Therefore, a better investigation of 94

ccRCC TME is necessary, and novel approaches, such as multiplex immunofluorescence 95

(mIF) and spatial profiling in situ can play a crucial role. Artificial intelligence (AI) and 96

machine learning (ML) applied to image analysis have revolutionised digital pathology, 97

allowing more precise quantification, generating more data, and overcoming inter-observer 98

variability [27]. 99

We systematically developed a semi-automated method to assess 62 and 158 features 100

in Tissue Microarray (TMA) and whole slide tissue sections, respectively. Subsequently, we 101

assessed their relationship and their correlation with outcome using ML-based statistical 102

tools (Figure 1). This approach may facilitate the discovery of novel molecular signatures 103

able to predict outcome and in order to choose the best therapeutic strategy and avoid 104

ineffective and potentially harmful drug administration. 105

Table 1. Leibovich score

Tumour status Score
pT1a 0
pT1b 2
pT2 3

pT3a 4
pT3b 4
pT3c 4
pT4 4

Lymph node involvement Score
pNx 0
pN0 0
pN1 0
pN2 0

Tumour size Score
<10cm 0
≥10cm 1

Nuclear grade Score
1 0
2 0
3 1
4 3

Necrosis Score
Absent 0
Present 1

Risk group Score
Low 0-2

Intermediate 3-5
High ≥6

2. Materials and Methods 106

2.1. Study population 107

Tissues samples resected from 150 patients who were diagnosed with ccRCC and 108

treated by radical nephrectomy between the years 1983 and 2018 were extracted from the 109

pathology archive in Edinburgh and verified by an experienced pathologist. Specimens 110
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were collected prior to therapy administration: none of these patients had therapy before 111

surgery, and none received immune blockade therapy. 112

The analysed cohort consisted of 60 females and 86 males: Gender of 4 patients was 113

not available. The average age was 64 years and mean follow-up was 60 months. 106 114

patients (70%) were reported to be deceased, of which 75 (50%) experienced cancer-related 115

death (CRD). 5-year survival rate was 66%. 46 patients (30%) experienced metastasis at the 116

time of diagnosis and for them, overall survival (OS) rate was 46% and 5-year survival rate 117

was 58%. 118

A total of 124 patients had LS data, although no necrosis data were available. The 119

majority of patients presented stage 3 and intermediate LS risk, while nuclear grades 2 120

and 3 were the most common. Finally, a total of 18 patients (14.5%) presented lymph node 121

involvement (pN=1) and 35 patients (28.2%) presented distant metastasis. More detailed 122

information is available in supplementary table A. 123

From each primary sample, 3 tissue punches were randomly collected and stored in 124

11 tissue microarray (TMA) blocks. Clinical information was retrieved from the patients’ 125

medical records, including age, sex, cancer-specific survival, time after initial surgery, TNM 126

stage and nuclear grade. The tissue samples, clinical data, and ethical approval for this 127

retrospective study were issued by the Research Tissue Bank and the SAHSC Bio Resource 128

on behalf of NHS Lothian (15/ES/0094). 129

2.2. Antibody optimisation 130

Antibodies were first optimised separately on optimisation TMAs, consisting of sev- 131

eral different normal and cancer tissues (RCC, breast, gastric, colon, prostate, tonsil, spleen 132

etc) and then on RCC TMAs from the study cohort. All antibodies were optimised first in 133

brightfield immunoperoxidase and then for immunofluorescence (IF). For tumour cell seg- 134

mentation in immunofluorescence (IF), a combination of CA9 and pan-Cadherin antibodies 135

was applied. The list of antibodies used, along with the dilution used is shown in Table B1 136

in the appendix. 137

2.3. Multiplex immunofluorescence 138

Formalin-fixed, paraffin-embedded (FFPE) tissues were first de-waxed in xylene 139

and then re-hydrated through descending concentrations of ethanol. In order to expose 140

epitopes, heat-mediated antigen retrieval was performed in an electric pressure cooker 141

using TRIS-EDTA buffer (pH 9). Subsequently, slides were treated with 3% hydrogen 142

peroxide to block endogenous peroxidase activity, and with protein block (Agilent, X090930- 143

2), in order to prevent non-specific staining. Slides were then incubated with primary 144

antibodies for either one hour or 30 minutes at room temperature, or overnight at 4°C. 145

After primary incubation, tissues were then incubated with secondary HRP-conjugated 146

or biotin-conjugated antibodies for 30 minutes at room temperature. Slides were treated 147

either with cyanine 3, cyanine 5, fluorescein, using Tyramide Signal Amplification (TSA) 148

system, or Alexa Fluor 750 (ThermoFisher, S21384), diluted in amplification diluent (Perkin 149

Elmer, FP1498) and antibody diluent (Agilent, S080983-2), respectively. Hoechst 33342 150

(ThermoFisher, H3570), diluted in PBS, was used for nuclear counterstaining. Finally, slides 151

were dehydrated in ethanol, air-dried and mounted using Prolong anti-fade mounting 152

medium (ThermoFisher, P36930). The full list of primary antibodies used is shown in 153

table B1 of the appendix. 154

2.4. GeoMx® Digital spatial profiling 155

2.4.1. Sample preparation 156

Slides were prepared according to the digital spatial profiling (DSP) FFPE Protein Man- 157

ual (MAN-10100-05). FFPE slides were baked for one hour at 60°C before being treated with 158

CitroSolv (Fisher, 22-143-975) and descending concentrations of ethanol. Antigen retrieval 159

in Citrate buffer (pH 6) was performed in a pressure cooker and slides were then washed 160

in TBS-T, blocked with Buffer W (Iba 2-1003-100) and incubated overnight at 4°C with 62 161
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Figure 1. Heatmap showing positive (red), negative (blue) or no (white) correlation among markers
assessed in the Whole Slides (WSs) after unsupervised clustering. 156 features were assessed,
including morphological features, molecular marker combination in tumour and immune cells, as
well as spatial analysis data. Only correlations with p < 0.05 after Chow-Denning correction are
shown. No negative correlations were reported.
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UV-cleavable Oligonucleotide-conjugated antibodies for DSP and Fluorescent-labelled anti- 162

bodies for visualisation (Pan Cadherin – Alexa Fluor 488, Syto83 - Alexa Fluor 532, CD3e 163

- Alexa Fluor 594, CD163 - Alexa Fluor 647). The Oligonucleotide-conjugated antibodies 164

consisted of five panels (immune cell profiling, immune activation status, immune cell 165

typing, tumour markers and drug targets), and are shown in table B2 of the appendix. 166

2.4.2. DSP and nCounter® Readout 167

After incubation, the slides were loaded into the GeoMx® digital spatial profiler, where 168

the tissues were scanned and digital images were generated for region of interest (ROI) 169

selection. Each TMA core corresponded to a ROI. Subsequently, ROIs were illuminated 170

with UV light and oligo tags were released into the aqueous layer just above the slide, 171

which was aspirated through a micro capillary tube and stored in a single well of a 96-well 172

plate. This process was repeated for each ROI. An average of 120 ROIs per slide were 173

collected. nCounter Readout was processed according to the GeoMx DSP Readout Manual 174

(MAN-10091-09), and as previously described [28,29]. 175

2.4.3. DSP Quality control and normalisation 176

Quality control was based on marker density and was automatically performed by the
nSolver® software by NanoString Technology. Data normalisation was based on mouse
IgG1 and IgG2 antibodies included in the antibody mix, which were considered as negative
controls. Raw data were converted to a log2 scale. For each ROI, corresponding to the TMA
core, the mean of the IgG1 and IgG2 was used to calculate the signal-to-noise ratio (SNR) as

SNR = X − IgG1 + IgG2

2
(1)

where X is the count of a single marker in a single ROI. Since NanoString suggests that 177

SNR should be > log2(3), values greater than 1.5 were considered a positive signal. In 178

order to keep the data intact, values below 1.5 were clamped to 1.5. 179

2.5. Image analysis 180

TMA images were analysed using Definiens® Tissue Studio. Around 10% of images 181

were used for training and several training rounds were performed to reach optimal results. 182

For each TMA core, tumour-stroma segmentation was performed and only the tumour 183

areas were considered since most cores consisted of over 90% tumour (Figures 2A and 184

2B). Nuclear segmentation was based on Hoechst channel. Subsequently, cells were recon- 185

structed virtually. In the case of tumour cells, the expansion followed the tumour mask 186

stain (Figure 2C). In the case of immune cells, the nuclear circumference was expanded by 187

a specific radius. Whole slide images were analysed with Indica Labs Halo® AI software. 188

Like with Tissue Studio, only tumour regions were considered after tumour-stroma seg- 189

mentation, and nuclear segmentation was based on Hoechst intensity. After segmentation, 190

Halo® AI was fed with hundreds of examples in order to distinguish three nuclear types: 191

tumour, immune and stromal nuclei (Figure 2D). Cell simulation was only performed by 192

expanding nuclear circumference since no tumour mask was used, and tumour cells were 193

recognised from their nuclear morphology. Subsequently, cells were classified accordingly 194

and single/multiple expressions were quantified. 195

Spatial analysis was also performed for whole slides using dHalo® software. Four 196

different analyses were performed: Infiltration analysis to determine the density of PD- 197

1+ T cells in 5 distance bands within and outside the tumour margin (Figure 3); nearest 198

neighbour analysis to determine the number of PD-1+ T cells nearby each PD-L1+ tumour 199

cell within a specific radius; proximity analysis to determine the distance of PD-1+ T cellos 200

from PD-L1+ tumour cells, and density heatmap analysis to visualise the density of PD-L1 201

tumour cell density across the tissue section (Figure 4). 202
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A B

C D

Figure 2. (A) TMA core showing nuclear (blue) and tumour (green) stain; (B) same TMA core
after tumour (orange) stroma (blue) segmentation in Definiens® Tissue Studio; (C) tumour cell
simulation following tumour mask: positive tumour cells are shown in dark yellow, while tumour
cells positive for PD-L1 are shown in bright yellow; (D) nuclear phenotyping only based on nuclear
morphology using Halo® AI showing tumour nuclei (green), immune nuclei (purple) and fibroblast
nuclei (yellow).
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Figure 3. Schematic representation of distance bands assessed in infiltration analysis. The tumour
margin is represented by the yellow line between band 5 and 6. Each band was 100µm in thickness.
Marker densities were quantified in each band separately as well as in multiple adjacent bands (see
figure 1).

A B

C D

E F

Figure 4. (A) Nearest neighbour analysis quantified the number of PD-1+ T cells nearby each PD-L1+

tumour cell within a specific radius; (B) Proximity analysis quantified the distance of PD-1+ T cells
from PD-L1+ tumour cells; (C) Proximity analysis, closer view; (D) Infiltration analysis quantified the
density of PD-1+ T cells in 5 distance bands within and outside the tumour margin; (E) Infiltration
analysis, distance bands visualised on the real image; (F) Density heatmap showing PD-L1+ tumour
cells distributed mainly on the tumour margin.
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2.6. Statistical analysis 203

Statistical analysis of 67 and 152 molecular features was performed in TMAs and WSs, 204

respectively, using R Studio (version 1.1.423) and Python (version 3.8). Seven morphological 205

features, including maximum diameter, pN, stage, Fuhrman grade, ISUP grade, classical 206

LS, and ISUP LS were also investigated in both experiments. Unsupervised clustering 207

according to Pearson’s correlation was used to investigate relationships between markers. 208

Cox’s proportional hazard method was used to predict 5-year and OS, where CRD was 209

considered as the event. OS and CRD data were collected from the Research Tissue Bank 210

of the Royal Infirmary of Edinburgh. We conducted two sets of experiments: one where 211

we took as input the continuous data, and another where each variable was binarised 212

into high and low after determining the optimal cutpoint in relation with outcome, using 213

the maximally selected rank statistics from the R package maxstat. Statistical significance 214

was evaluated using the likelihood ratio test and log-rank test to obtain p-values for the 215

continuous and categorical models, respectively. We exhaustively fit Cox models for every 216

combination of one, two, and three markers, and applied Chow-Denning correction [30] to 217

the p-values in order to account for multiple testing. Due to the vast number of models that 218

needed to be fit (in the order of millions), we ran the computation in parallel on 20 Linux 219

machines for approximately 12 hours using the Jug library [31] to parallelise the code. 220

3. Results (Tissue Microarray) 221

For each molecular marker, density was calculated by dividing the number of positive 222

cells by the TMA core area. Subsequently, average density of replicates was calculated. 223

3.1. Pearson’s correlation 224

Unsupervised clustering using Pearson’s correlation found positive correlation among 225

morphological, DSP-detected, and IF-detected markers, involved in immune response, 226

immune evasion, T cell exhaustion, as well as CSCs and EMT (Figure 5). 227

Among DSP markers, positive correlation was found between CD163 and CD4, CD44, 228

and CD68. CD3 was positively correlated with CD4, CD44, CD68, and CD8. Moreover, 229

CD44 was positively correlated with CD68. CD8 was positively correlated with CD4 and 230

CD68 (Figure 5). 231

Among IF markers, β-catenin was positively correlated with DSP Histone H3. PD1+CD8+
232

cells were positively correlated with CD8+LAG-3+ cells and with CD8+LAG-3+TIM-3+ cells. 233

Positive correlation was also found between ZEB1 and TIM-3, as well as CD8 and the 234

following markers: PD-1, PD-L1+ tumour cells, CD163, and LAG-3. Interestingly, positive 235

correlation was also found between CD8+LAG-3+ cells and CD8+PD-1+ cells (Figure 5), 236

indicating that PD-1 may contribute to an exhausted T cell phenotype. 237

3.2. Survival analysis 238

3.2.1. Univariate Cox regression 239

Overall, morphological features showed the highest significance. In particular, the LS 240

with the ISUP nuclear grade instead of the Fuhrman grade was the most significant feature, 241

and was associated with poor OS, see Figure 6A) and 5-year survival, see Figure 6B). Similar 242

results were obtained with pN, Fuhrman LS, and ISUP grade. Among molecular markers, 243

OCT4 alone and in combination with ZEB1 was associated with poorer outcome. Moreover, 244

OCT4+ZEB1+β-catenin was associated with 5-year survival. 245

CD8, total tumour cell density, and PD-L1- tumour cell density were associated with 246

longer OS and 5 year survival. CD34 density was associated with longer OS, while DSP- 247

detected VISTA was associated with longer 5-year survival. 248

3.2.2. Multivariate Cox regression 249

We exhaustively fit multivariate Cox regression models on every combination of 250

two and three features, in order to find combinations of markers that exhibit statistically 251

significant predictions of patient outcomes. For the TMA cohort with 74 features, we 252
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Figure 5. Heatmap showing positive (red), negative (blue) or no (white) correlation among molecular
markers assessed with DSP (black), IF (green), and morphological (purple) features, aggregating
the TMA core replicates by mean per patient. Only correlations with p < 0.05 after Chow-Denning
correction are shown.
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Figure 6. Volcano plots showing significant categorical univariate Cox regression features after
Chow-Denning correction and their correlation with OS (a) and 5-year survival (b). Features with
log(HR) > 0 are positively correlated with the event, whereas those with log(HR) < 0 are negatively
correlated.
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consequently fit (74
2 )+ (74

3 )+ (74
4 ) = 1, 218, 151 Cox models. After Chow-Denning correction, 253

we found numerous groups of markers that were predictive for OS or 5-year survival. 254

As expected, most of these groups included features which individually were already 255

statistically significant in the univariate model. However, some groups comprised entirely 256

of markers that were not statistically significant when considering the markers individually 257

in univariate Cox regression, but in combination achieved statistical significance. 258

In particular, coexpression of CD8 and LAG-3, representing an exhausted T cell pheno- 259

type, along with HLA DR, an isotype of the human leukocyte antigens, was identified as a 260

prognostic combination for 5-year survival, suggesting that MHC II plays a crucial role in T 261

cell exhaustion. OCT4 alone or coexpressed with vimentin, reached statistical significance 262

for OS and 5-year survival, respectively, after pairing with Arginase 1 (Arg1), suggesting 263

that CSC and EMT may be linked favouring cancer proliferation. OCT4 combination with 264

HLA DR was also associated with shorter 5-year survival. OCT4+vimentin+ cancer cells 265

also stratified patients by OS when combined with PD-1 expression and snail. Unexpectedly, 266

PD-1+ cell expression was associated with longer OS when combined with snail+vimentin+
267

tumour cells, therefore further investigation is needed. When OCT4+β-catenin+ cancer cell 268

expression was combined with TIM-3, detected through DSP, it showed shorter OS and 269

5-year survival. Instead, OCT4+ZEB1+β-catenin+ tumour cell expression showed shorter 270

OS when combined with snail+vimentin+ tumour cell expression. This set of marker groups 271

may provide insight into complex interactions between features that have an impact on 272

predicting patient outcome. Table 2 lists all pairs of markers (i.e. combinations of two) in 273

this category1. 274

As is evident in Figure 6A, Cox regression showed that OCT4+ZEB1+ tumour cells 275

were associated with CRD. However, tumour cells only expressing OCT4 were not found 276

to predict the outcome with statistical significance and neither did the ones only expressing 277

ZEB1. Furthemore, in bivariate Cox regression, OCT4+ and ZEB1+ in combination was 278

not a statistically significant predictor of outcome. This means that merely knowing the 279

densities of OCT4+ cells and ZEB1+ cells is insufficient; instead, knowledge of the density 280

of cells coexpressing both markers is required to arrive at a prediction carrying statistical 281

significance. This highlights the need for accurate and precise spatial analysis that can 282

identify co-registered markers on the same cell. This result also suggests that coexpression 283

of OCT4 and ZEB1 in tumour cells may not only be indicative of a dedifferentiation, but 284

also that CSC and EMT may be dependent mechanisms. 285

3.3. Integrated LS 286

While the LS is able to stratify patients into low, intermediate and high risk groups, 287

patients at intermediate risk still exhibit varied outcomes. In this section, we evaluate how 288

a combination of the LS with molecular markers can result in better stratification. 289

As baseline, we assessed the stratification ability of the traditional LS on the TMA 290

cohort. After scoring the patients, Kaplan-Meier analysis was able to accurately separate 291

high and intermediate risk groups (p < 0.0001) (Figure 7). Only six patients showed low 292

risk score (0-3), and were therefore excluded from the analysis. 293

Since traditional LS only relies on morphological data, we tested the stratification 294

ability of the molecular markers that resulted significant in survival analysis. In particular, 295

we found that two specific molecular markers were able to further stratify the patients 296

at intermediate risk according to ISUP LS: IF-detected OCT4+ tumour cell density was 297

used to stratify patients into intermediate-high and intermediate-low groups (Figure 8A). 298

Eight patients were excluded from this analysis since their OCT4 data were not available. 299

Similarly, CD34, detected through DSP, showed the same stratification ability (Figure 8B ). 300

To further demonstrate the prognostic value of these markers, they were integrated 301

in the LS algorithm. The patients were categorised in high and low risk according to 302

1 We mention some statistically significant combinations of more than two markers, but do not provide the full
list in this paper for the sake of brevity.
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Table 2. Table of pairs of markers that were insignificant in univariate Cox regression individually
(p > 0.05), but when used together as input to a multivariate Cox model achieved p < 0.05 after
Chow-Denning correction. Markers annotated with ↑ exhibit positive correlation with the event,
whereas ↓ denotes negative correlation.

survival markers p-value

5yr ↓ HLA-DR ↓ CD8+LAG3+ T cells 0.011
5yr ↓ ARG1 ↑ OCT4+ tumour cells 0.016
5yr ↓ TIM3 ↑ OCT4+β-catenin+ tumour cells 0.020
5yr ↓ ARG1 ↑ OCT4+vimentin+ tumour cells 0.027
5yr ↑ OCT4+vimentin+ tumour cells ↓ snail+vimentin+ tumour cells 0.030
5yr ↓ HLA-DR ↑ OCT4+vimentin+ tumour cells 0.038
5yr ↓ CD8+TIM3+ T cells ↑ TIM3+ cells 0.044

overall ↑ OCT4+vimentin+ tumour cells ↓ PD-1+ cells 0.011

overall ↑ OCT4+ZEB1+β-catenin+ tumour
cells ↓ snail+vimentin+ tumour cells 0.019

overall ↓ TIM3 ↑ OCT4+β-catenin+ tumour cells 0.022
overall ↑ OCT4+vimentin+ tumour cells ↓ snail+vimentin+ tumour cells 0.022
overall ↑ OCT4+vimentin+ tumour cells ↓ snail+ tumour cells 0.035
overall ↓ PD-1+ cells ↓ snail+vimentin+ tumour cells 0.037

Figure 7. Kaplan-Meier plot showing patient at high (yellow) and intermediate (blue) risk according
to ISUP LS.

(A) OCT4 stratification (B) CD34 stratification
Figure 8. Stratification of patients at intermediate ISUP LS, based on (A) OCT4 detected through
multiplex IF and (B) CD34 detected through DSP.
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(A) OCT4high (B) CD34high

Figure 9. Kaplan-Meier plots showing stratification of patients with integrated LS using (A) IF
OCT4high and (B) DSP CD34high.

marker expression and LS. Interestingly, OCT4high integrated in the ISUP LS was able to 303

significantly stratify patients (Figure 9A). The same result was obtained when CD34high
304

was integrated into the algorithm (Figure 9B). 305

4. Results (Whole Slides) 306

4.1. Pearson’s correlation 307

Positive correlation was found between CD8+ immune cells and PD-L1+ tumour cells, 308

between OCT4a+ tumour cells and ZEB1+SNAIL+ tumour cells. Interestingly, positive 309

correlation was also found between OCT4a+ tumour cells and mean tumour cell nuclear 310

area, although no correlation was found with tumour grade. Positive correlation was found 311

between PD1+CD8+ T cells and PD-L1+ tumour cells. TIM-3+PD-L1+ tumour cells were 312

positively correlated with PD-1+CD8+ T cells. 313

4.2. Cox regression 314

Categorical univariate Cox regression showed that ZEB1+snail+ tumour cells and 315

snail+CD44+ tumour cells were associated with longer OS and 5-year survival. Unexpect- 316

edly, snail+ZEB1+CD44+ tumour cell density was associated with longer 5-year survival 317

(Figure 11). Therefore, further analysis is needed in order to better reveal the role of these 318

markers. 319

Multivariate analysis showed that combination of PD1+ T cells and ZEB1+snail+ 320

predicted 5-year survival, whereas these two features did not reach statistical significance 321

alone. 322

Survival analysis was performed to predict OS and 5-year survival using the classic 323

ISUP and integrated LSs. The classic LS’s stratification ability in the WS cohort is shown in 324

Figure 12. 325

However, stratification of patients at intermediate risk did not show significant results 326

due to the small sample size. 327
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Figure 10. Heatmap showing positive (red), negative (blue) or no (white) correlation among mor-
phological (black) and IF (green) markers in the WS cohort after unsupervised clustering. Features
including OCT4a and ZEB1 showed the most correlation, while the only negative correlation was
found between the Fuhrman LS and ZEB1+ tumour cells.
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Figure 11. Volcano plots showing significant categorical univariate Cox regression features after
Chow-Denning correction and their correlation with (A) OS and (B) and 5-year survival in the WS
cohort. Features with log(HR) > 0 are positively correlated with the event, whereas those with
log(HR) < 0 are negatively correlated.
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Figure 12. Patients belonging to the whole slide cohort stratified at high (yellow) and low (blue) risk
according to the ISUP LS.

5. Discussion 328

Although in recent years systems pathology has made great steps, it still lacks stan- 329

dardised methods with high-plex capability, which are necessary to investigate the complex 330

tumour microenvironment. Nanostring GeoMx® DSP overcomes this problem by allowing 331

a high-plex, spatially-resolved assessment of FFPE sections while retaining tissue integrity 332

[32]. In our work, this high-throughput method allowed the identification of positive 333

correlations between a large number of markers. In particular, the CSC marker CD44 334

was positively associated with immune markers, such as CD163, indicating a role of M2 335

macrophages in tumour dedifferentiation, or CD3 and CD4, which are indicative of an 336

immune response. These findings support the hypothesis of a crosstalk between CSCs and 337

TAMs, where TAMs exert a trophic function on stem cells while, in turn, CSCs drive M2 338

macrophage polarisation [33]. This mechanism may represent an innovative therapeutic 339

target. 340

Combining GeoMx® DSP with mIF is a novel strategy to select specific regions of 341

interest (ROIs) and obtain more precise information about the role that each marker plays 342

in different areas of the tumour. In this study, GeoMx® DSP was performed using TMAs 343

to allow assessment of a greater number of patients and acquire more robust data. In 344

this setting, each ROI corresponded to a single TMA core. This allowed assessment 345

of co-localisation and hence the relationship among markers. In multivariate analysis, 346

OCT4 and ZEB1 co-expression was only significant for prognosis when the two molecules 347

co-expressed in the same cell. When detected separately, the markers (that is, without 348

co-localisation information) and used as two separate input features in a multivariate model 349

did not reach statistical significance. 350

ZEB1 is a transcription factor that promotes epithelial-to-mesenchymal transition 351

(EMT) by downregulating the epithelial marker E-cadherin, therefore facilitating cell motil- 352

ity and cancer dissemination [34].In whole slides, ZEB1 correlated with longer overall 353

survival (OS) when co-expressed in the same cell with snail, and longer 5-year survival 354

when co-expressed with CD44 and snail, suggesting that ZEB1 is not the only determinant 355

of outcome and that other factors may prevent EMT in these patients. By contrast, in TMAs, 356

levels of ZEB1 were associated with shorter OS and 5-year survival when co-expressed 357

with OCT4, consistent with the possibility that OCT4 and ZEB1 both play a role in the 358

acquisition of either a CSC or EMT phenotype [35]. Further investigation is required. 359

The difference between whole slide and TMA may be because whole slide incorporates 360

tumour core and invasive margin, whereas TMA cores were usually sampled from tumour 361

core. ZEB1, snail, CD44, and OCT4 have been reported in the literature to be involved in 362

tumour de-differentiation [36], therefore it is plausible that this mechanism occurs in the 363

tumour core, which is more often hypoxic and hosts stem cell niches [37]. 364
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We have shown a pipeline of work that can be used to interrogate samples of cancer 365

from patients using several analytical approaches. AI-based image analysis of both mIF 366

and DSP produces an overwhelming amount of data which was possible to analyse only 367

with machine learning-based statistical methods and required computational capability 368

alongside substantial engineering efforts in terms of parallel computing to exhaustively as- 369

sess all feature combinations. When analysing large volumes of data, the risk of overfitting 370

is proportional to the number of features analysed, and further increases when the number 371

of patients is not large enough [38]. We applied Chow-Denning correction [30] to account 372

for multiple testing, which is slightly less conservative than Bonferroni correction [39]. 373

However, further validation with an external cohort is required to confirm our findings. 374

It is noteworthy that samples were taken before therapy administration, and no therapy 375

information was available in our metadata, so different therapeutic strategies may have 376

been applied to the patients, therefore differently influencing outcome. This is important 377

to consider also due to the large time span between the first and last sample collection, 378

which may also be influenced by the evolution of operative techniques in sample collection. 379

Another aspect to take into account is the deterioration of the FFPE tissue quality, since it 380

has been reported that antigen quality may decay with time especially those expressed in 381

the nucleus or on the cell surface [40]. However, we have conducted many studies using 382

quantitative mIF and this has not appeared to be a problem. Moreover, mRNA extraction 383

from similar old FFPE samples was previously validated [41], while no significant mRNA 384

deterioration was found when FFPE slides at different storage time were compared after 385

DSP analysis [42]. 386

To conclude, both statistical analyses in whole slide and TMA samples found that 387

morphological features on their own were stronger predictors than the molecular ones. An 388

AI-based approach to better profile morphology of ccRCC TME could help standardise 389

prognostic tools and overcome inter-observer bias. However, when molecular markers were 390

integrated in the LS, the accuracy in stratifying patients at intermediate risk significantly 391

improved. Therefore, molecular markers are crucial for identifying differences that are 392

not noticeable by only looking at the tumour morphology. Moreover, adding prognostic 393

immune markers to these scoring algorithms may add important information about ICI 394

response, and may be crucial to apply the appropriate personalised therapy. 395
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Table A. Clinical data.

Gender Male Female NA
86 (57%) 60 (40%) 4 (3%)

Age (years) Mean Min Max
64 32 94

Follow-up
(months) Mean Min Max

60 4 252
Status at end

of FU Dead Alive NA

102 (68%) 40 (26.6%) 8 (5.3%)

Cancer-
related death Yes No NA

75 (50%) 75 (50%) -

Metastasis at
diagnosis Yes No NA

46 (30%) 105 (70%) -

Leibovich
Score risk High Intermediate Low

17 (13.7%) 99 (79.8%) 8 (6.5%)

Lymph-node
involvement Yes No NA

25 (16%) 125 (84%) -

Stage 1 2 3 4 NA
8 (6.5%) 11 (8.9%) 100 (81.5%) 4 (3.2%) -

ISUP Grade 1 2 3 4 NA
19 (15.3%) 49 (39.5%) 30 (24.2%) 3 (2.4%) -

Conflicts of Interest: Raffaele De Filippis was partly funded by Nanostring Technologies for his PhD. 416

Sarah Warren and Andrew White are employed by NanoString Technologies. 417

Appendix A. Patient information 418

See Table A. 419

Appendix B. Antibodies 420

The antibodies used in the experiments are listed in Tables B1 and B2. 421

422
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Table B1. Antibodies used in the IF experiments.

Antibody Brand (Catalog
No) Species Dilution Target

CD163 Cell Marque
(MRQ-26) Mouse 1:3000 M2 TAMs

HIF-2α Abcam (ab8265) Mouse 1:400 Hypoxia

CD105 Abcam
(Ab114052) Mouse 1:1500 Blood vessels

CD8 Agilent (M7 103) Mouse 1:200 Cytotoxic T cells

CA9 Novus Biological
(NB100-417) Rabbit 1:100 Tumour cells

Pan-Cadherin
Cell Signaling

Technology
(4068)

Rabbit 1:100 Tumour cells

β-catenin
Cell Signaling

Technology
(8480S)

Rabbit 1:100 EMT

OCT4a
Cell Signaling

Technology
(C30A3)

Rabbit 1:800 CSLCs

SNAIL
Cell Signaling

Technology
(3879)

Rabbit 1:500 EMT

Vimentin
Cell Signaling

Technology
(5741)

Rabbit 1:200 EMT

ZEB1
Cell Signaling

Technology
(70512)

Rabbit 1:500 EMT

PD-1
Cell Signaling

Technology
(86163)

Rabbit 1:500 Immune escape

PD-L1
Cell Signaling

Technology
(13684)

Rabbit 1:500 Immune escape

TIM-3 Abcam
(ab185703) Rabbit 1:500 T cell exhaustion

LAG-3 Novus Biological
(NBP1-97657) Mouse 1:400 T cell exhaustion

CD44
Cell Signaling

Technology
(37259)

Rabbit 1:500 CSLCs

ZEB1 Proteintech
(21544-1-AP) Rabbit 1:500 EMT
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Table B2. Antibodies used in the GeoMx® DSP experiment.

Antibody Panel Main expression site

4-1BB Drug target Cytotoxic T cells
ARG1 Tumour marker Tumour cells

b-2-microglobulin Immune cell profiling Tumour cells
B7-H3 Drug target Tumour cells
Bcl-2 Tumour marker Tumour cells

CD11c Immune cell profiling Monocytes/macrophages
CD127 Immune activation status Memory T cells
CD14 Immune cell typing Monocytes, myeloid cells
CD163 Immune cell typing M2 macrophages
CD20 Immune cell profiling B cells
CD25 Immune activation status T cells
CD3 Immune cell profiling T cells

CD34 Immune cell typing Hematopoietic cells
CD4 Immune cell profiling T-helper cells

CD40 Immune activation status B cells/APCs
CD45 Immune cell profiling Macrophages

CD45RO Immune cell typing Memory T cells
CD56 Immune cell profiling NK cells
CD68 Immune cell profiling Macrophages
CD8 Immune cell profiling T cells

CD80 Immune activation status Myeloid cells
CTLA4 Immune cell profiling T cells
EpCAM Tumour marker Tumour cells
FAP-α Immune cell typing fibroblasts

Fibronectin Immune cell profiling Fibroblasts
GADPH Positive control Housekeeper

GITR Drug target T cells
GZMB Immune cell profiling Cytotoxic T cells

Histone H3 Positive control Housekeeper
HLA-DR Immune cell profiling APCs

ICOS Immune activation status T cells
IDO1 Drug target Myeloid cells
Ki-67 Tumour marker Tumour cells

LAG-3 Drug target T cells
OX40L Drug target Myeloid cells, T cells
PanCK Tumour marker Tumour cells
PD-1 Immune cell profiling T cells

PD-L1 Immune cell profiling APCs, tumour cells
PD-L2 Immune cell profiling APCs, tumour cells

S6 Positive control Housekeeper
SMA Immune cell profiling Fibroblasts

STING Drug target Immune cells
TGFB1 Tumour marker Immune cells
TIM-3 Drug target T cells
VISTA Drug target Myeloid cells, macrophages
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