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Abstract 

 

Purpose: To create and evaluate the accuracy of an artificial intelligence platform capable of 

using only retinal fundus images to predict both an individual’s overall 10 year Cardiovascular 

Disease (CVD) risk and the relative contribution of the component risk factors that comprise 

this risk (CVD-AI). 

 

Methods: The UK Biobank and the US-based AREDS 1 datasets were obtained and used for 

this study. The UK Biobank data was used for training, validation and testing, while the 

AREDS 1 dataset was used as an external testing dataset. Overall, we used 110,272 fundus 

images from 55,118 patient visits. A series of models were trained to predict the risk of CVD 

against available  labels in the UK Biobank dataset. 

 

Results:  In both the UK Biobank testing dataset and the external validation dataset (AREDS 

1), the 10-year CV risk scores generated by CVD-AI were significantly higher for patients who 

had suffered an actual CVD event when compared to patients who did not experience a CVD 

event. In the UK Biobank dataset the median 10-year CVD risk for those individuals who 

experienced a CVD was higher than those who did not (4.9% [ICR 2.9-8%] v 2.3% [IQR 4.3- 

1.3%] P<0.01.]. Similar results were observed in the AREDS 1 dataset The median 10-year 

CVD risk for those individuals who experienced a CVD event was higher than those who did 

not (6.2% [ICR 3.2%-12.9%] v 2.2% [IQR 3.9- 1.3%] P<0.01 

 

Conclusion: Retinal photography is inexpensive and as fully automated, inexpensive camera 

systems are now widely available, minimal training is required to acquire them. As such, AI 

enabled retinal image-based CVD risk algorithms like CVD-AI will make cardiovascular 

health screening more affordable and accessible. CVD-AI’s unique ability to assess the relative 

contribution of the components that comprise an individual’s overall risk could inform 

personalized treatment decisions based on the specific needs of an individual, thereby 

increasing the likelihood of positive health outcomes.   

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.22281017doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.12.22281017
http://creativecommons.org/licenses/by-nc-nd/4.0/


Background 

 

Cardiovascular disease (CVD) is the commonest cause of hospitalization and premature death 

in the US [1]. The risk of an individual experiencing a CVD event includes both non-

modifiable;  age, sex, and ethnicity, and modifiable variables such as diabetes [2], hypertension 

[3], hyperlipidemia [4], and smoking [5]. Across a population the risk of experiencing a CVD 

event varies greatly and risk based equations have therefore been developed to identify those 

who are greatest risk of a CVD event risk so that treatments can be instigated appropriate to 

the individuals risk [6].  

 

The landmark Framingham Heart Study was the first to demonstrate that multivariable 

equations could identify an individual’s CVD risk with far greater accuracy than the existing 

metrics based solely on blood pressure and cholesterol [7]. Since the Framingham-based 

equations were first published other equations have been developed designed to serve different 

populations with refined accuracy [8-15]. Kavousi et al reviewed the differences in prevention 

risk scores between three different guidelines (American College of Cardiology/American 

Heart Association, the Adult Treatment Panel III, and the European Society of Cardiology 

guidelines) on a sample of 4854 participants from the Netherlands. They found that these three 

models provided poor calibration and only moderate to good discrimination between subjects 

and their findings highlight the importance of both continuing to improve risk predictions and 

setting appropriate population-wide thresholds [8].  

 

Although imperfect, the use of multivariable equations has not only improved the accuracy of 

calculating an individual’s CVD risk, they have also improved our understanding of the 

complex interplay of factors that underpin this risk. This statistical approach does however 

have limitations. A recent systematic review and meta-analysis found that the Framingham-

based risk models and pooled cohort equations for predicting 10-year risk of CVD not only had 

a tendency to overestimate the risk level, especially in higher-risk populations [16], they prove 

unreliable for people living with diabetes [17]. One fundamental weakness of all existing 

multivariant equations is that the predictors used are not a direct measure of CVD. Instead the 

equations are based on regression models which utilize parameters known to correlate with 

CVD, including age, sex, ethnicity, socioeconomic deprivation, smoking, diabetes duration, 

systolic blood pressure (SBD), total cholesterol-to-HDL ratio (TCHDL) and glycated 

hemoglobin A1c (HbA1c) [18]. This approach is limited by the fact that the strength of these 

correlations will differ between groups, and, as such, the predictive power of the equation will 

vary depending on the clinical profile of a local population and a given individual within it 

[19]. This probably explains why the generic CVD risk equations often do not perform as well 

as models developed for specific populations (10).  Additionally, the majority of CVD risk 

equations developed to date attempt to identify patients who are at risk of experiencing 

cardiovascular events based on data obtained within a specific period of time. Invariably not 

all data is available at all time points [20] and the issue of missing data means that the equations 

may not accurately reflect risk in those who do not engage with, or have access to healthcare 

services [21].  
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The retina is unique being the only part of the human vasculature that is visible by non-invasive 

means. In recent years there has been an exponential increase in the number of studies that have 

used Artificial intelligence (AI), and deep learning (DL) in particular, to extract data from 

retinal images [22]. Having recognized the power of DL to extract data from retinal images 

there is now intense interest in using the retinal image data generated by DL algorithms to 

augment the  traditional means of estimating CVD risk [23]. To date algorithms have been 

developed that generate a modifier to an individual chronological age to predict their biological 

Cardiovascular age [24], coronary artery calcium (CAC) scores [25], CT-based coronary artery 

disease [26], and those modifiable and non-modifiable CVD risk factors that contribute to CVD 

risk [27]. DL algorithms have also been developed recently that aim to predict CVD risk 

directly [28]. Others have taken a slightly different approach using  genome-wide association 

studies to investigate the genetic component of retinal vasculature measured as fractal 

dimension analyzing its relationship with CVD [29]. More recently, Cheung et al described a 

DL model for the assessment of cardiovascular disease risk via the measurement of retinal-

vessel caliber [25]. The model was trained on multiethnic multi-country datasets that comprised 

more than 70,000 retinal images and provided performance that was comparable to, or better 

than, expert graders in associations between measurements of retinal-vessel caliber and CVD 

risk factors (e.g., blood pressure, body-mass index, cholesterol and glycated-hemoglobin 

levels). 

 

We have developed a DL model (CVD-AI), that predicts an individual’s 10-year CVD risk 

directly based solely on their retinal photograph. Unlike traditional CVD risk equations and 

existing deep learning prediction models, CVD-AI calculates the interactions between 

modifiable factors when assessing the risk contribution of each to the total risk score. By doing 

so CVD-AI learns if changes to one modifiable factor correlate with changes in other 

modifiable factors. In this study, we used 110,272 fundus images from a database of 55,118 

patients to calculate a CVD risk score based on our platform CVD-AI. We then compared the 

results with the actual cardiovascular event rate to determine the efficacy of the prediction 

methods. 
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Methods 

 

Data preparation 

In total, 110,272 fundus images from a database of 55,118 patient visits were used in this study. 

The composition of the data can be accessed here 

https://public.tableau.com/app/profile/toku.eyes/viz/UK_Biobank/Story?publish=yes . & 

https://public.tableau.com/app/profile/toku.eyes/viz/AREDS/Story?publish=yes The dataset 

was acquired from the UK Biobank and AREDS 1, using approved data management and data 

transfer protocols. 

  

From the UK Biobank dataset, initially 175,788 macula centered images for both the left and 

right eyes were acquired. However, due to the prevalence of low-quality images, a deep 

learning image quality screening system was used to separate the images into high quality, 

medium quality, and low-quality images. The training dataset for the image quality screening 

system was in a similar manner to our prior THEIA system [30]. After the screening process 

there were 95,992 images from 51,956 patients (Figure 1). Due to patients visiting Biobank for 

repeated assessment visits, there were multiple sets of biometric information per patient. Here, 

only the earliest images and set of biometrics were used per patient.  

 

Dataset processing was also carried out on the AREDS 1 dataset. A similar image screening 

pre-processing strategy was employed for the AREDS 1 dataset, and the biometric information 

and fundus images from the first visit only. After screening for image quality, there were 

134,476 images from 3,162 patients left for test analysis (Figure 1).  

 

 
Figure 1: data preparation and refinement from UK Biobank and AREDS 1 datasets, to be included in this study 
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To generate a label for the presence or absence of CVD events, ICD10/ICD9 codes were 

utilized. For the UK Biobank dataset, CVD events were defined based on the “Diagnoses – 

ICD10” and “Underlying (primary) cause of death: ICD10” fields. For the AREDS dataset, 

CVD events were defined based on ICD 9 codes from the “ICD9COD1” variable under the 

“adverse” dataset and the “ICD10” and “ICD9COD1” variables under the mortality dataset. 

The criterion for the ICD10 representing CVD events was obtained upon request from the 

PREDICT study [31]. A detailed overview of the demographic distribution of the final 

processed UK Biobank and AREDS 1 datasets can be found in the supplementary materials 

[Supplementary Tables 1&2]. 

 

Model Development 

The UK Biobank dataset (95,992 good quality images from 51,956 patients) was split into 

70%:15%:15% for training, validation and testing respectively. For the external test set, 

AREDS 1 dataset (14,280 good quality images from 3,162 patients) was used. To extract 

features from the fundus images for the Convolutional neural networks (CNN)s base, we 

created an ensemble of CNNs to look at a number of datapoints in the fundus image. These 

CNNs follow modified versions of the Inception-Resent-V2 or ResNet50 structures. For each 

CNN, the dataset was then split for training, validation, and testing. The fundus images were 

first cropped and resized to 800x800 pixel size. The batch size was set to 8 to optimize the use 

of the GPU memory during training. Adam optimizer was adopted with a learning rate 1*10e-

3 to update parameters towards the minimization of the loss. Dropout was enabled with a rate 

p = 0.2, and the model was trained for at least 100 EPOCHs. All codes related to this work 

were implemented by Python 3.7. programming language.  

 

The extracted image features from the ensemble of CNNs were fed into the final risk prediction 

model along with the patient’s age, gender, ethnicity. The cross-entropy loss function was 

employed to guide the model parameters optimization. The training objective was to minimize 

the loss function to get the most accurate probability prediction of CVD events. Typically, 

cross-entropy loss is utilized in classification problems. Although the CVD event risk 

prediction is not a classification task, the label used in this study was either 1 or 0, indicating 

whether a CVD event happened or not, respectively. By doing so we adopted the cross-entropy 

loss. The overall loss can be formalized as 

𝐿 = −
1

𝑁
[∑𝑗=1

𝑁  [𝑦𝑗𝑙𝑜𝑔(𝑝𝑗) + (1 − 𝑦𝑗)𝑙𝑜𝑔(1 − 𝑝𝑗)]] 

where 𝑁 is the number of training samples, 𝑦𝑗 is the ground truth of sample j, and 𝑝𝑗 is the 

predicted probability of CVD for sample j. The model optimization is guided by minimizing 

the cross-entropy loss, which is a representation of the amount of divergence between the 

distributions of the labels and the predicted probabilities.  

 

Model explainability  

To gain a better insight into the behavior of the final multilayer perceptron predictor, the 

expected gradients algorithm [32] was implemented to estimate the absolute contribution of 

each of the inputs to the CVD risk multilayer perceptron risk predictor. The expected gradients 
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algorithm estimates an “attribution score” for each of the input fields such as age, gender, 

systolic blood pressure that are used by the multilayer perceptron risk predictor model to 

estimate the final CVD risk score. The “attribution score” for an input field, such as age, 

represents the amount of difference this particular field contributed to the value difference 

between the predicted CVD risk for this particular patient and that of the entire source dataset. 

The attribution score for the following key fields were calculated as these factors have been 

identified as the major contributing factors to an individual cardiovascular risk by the American 

College of Cardiology[33] : 

1. Age 

2. Gender 

3. BMI  

4. Smoking status (represented by model predicted smoking status) 

5. Glycemic control (represented by model predicted “effect” of HbA1C) 

6. Blood pressure (represented by model predicted “effect” of systolic and Diastolic blood 

pressure) 

7. Cholesterol/ HDL (represented by model predicted “effect” of TCHDL ratio) 

 

The attribution scores for all other input fields into the CVD risk prediction model were 

categorized and summated under the “others aggregated” category. 

 

Due to the uneven magnitudes between the attribution scores for different prediction cases, for 

example, the attribution scores for a patient with 20% CVD-AI predicted risk will of far greater 

magnitude when compared to a patient with 12% CVD-AI predicted risk, a scaling algorithm 

shown in the equation below was used to scale the attribution scores between 0 and 100%.  

𝑠𝑐𝑎𝑙𝑒𝑑𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑋𝑖 , 𝑋) =
𝑋𝑖 −min(𝑋)

max(𝑋) − min(𝑋)
∗ 100 

In this case, 𝑋 represents the set of attribution scores, and 𝑋𝑖 represents an element of the set 

of attribution scores. 

 

Having calculated the attribution scores generated by the modified expected gradients the 

plausibility of the outputs produced by CVD-AI, based simply on the retinal image, were 

evaluated in three ways in both the internal validation dataset (Biobank) and the external 

validation dataset (AREDS 1). 

 

Primary outcome: 

Comparison of population based mean and median scores CVD-AI allocated to those 

individuals who actually experienced a CVD event, compared to those who did not.  
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Secondary outcomes:  

1. By way of comparing the demographics and biometric data of those individuals that 

CVD-AI categorized as low, medium and high risk; defined by CV risk assessments 

scores of <5% 5-10% and over 10% respectively.[33-35] 

 

2. By way of a set of case studies to qualitatively compare the attribution scores generated 

by CVD-AI to the real-life status of individual patients. 

 

Statistical analysis 

The following statistical methods were applied to analyze the data. The specific method was 

dependent on the underlying distribution of the data being analyzed: 

1. One tailed Mann-Whitney U test for comparison of statistical differences between the 

means between two non-normally distributed and non-homoscedastic distributions. 

2. One tailed Welch’s t-test for comparison of means between two non-homoscedastic, 

but normally distributed distributions 

3. Brown-Forsythe test for homoscedasticity 

4. Shapiro Wilk and D'Agostino-Pearson tests for normality. 

5. Contingency table chi-squared tests for comparison of frequencies between groups 

6. Box and whisker plots 

7. Kruskal-Wallis H test for omnibus comparison of means across non-homoscedastic 

and non-normally distributed groups 

8. Pairwise two tailed Mann-Whitney U tests with p-value correction via the Bonferroni-

Holm method for post-hoc analysis following a Kruskal-Wallis H test 

 

Statistical significance was evaluated for the 95% confidence level. 
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Results 

Analysis of 10-year CVD risk scores allocated by CVD-AI to those who did and did not 

experience a CV event.  

In both the UK Biobank testing dataset and the external validation dataset (AREDS 1), the 10-

year CV risk scores generated by CVD-AI were significantly higher for patients who had 

suffered an actual CVD event when compared to patients who did not experience a CVD event. 

In the Internal validation UK Biobank dataset, the median 10-year CVD risk for those 

individuals who experienced a CVD was higher than those who did not (4.9% [ICR 2.9-8%] v 

2.3% [IQR 4.3- 1.3%] P<0.01 one tailed Mann-Whitney U test) Likewise, the mean 10-year 

CVD risk score for individuals who experienced a CVD event was significantly higher than 

those who did not (5.8% v 3.3% P<0.01 Welch’s t-test). (Figure 2) 

 
Figure 2: Estimated CVD risk by CVD-AI for people who did vs did not suffer from a CVD event, using the UK 
Biobank dataset. The center line denotes the median value (50th percentile), while the box contains the 25th to 
75th percentiles of dataset. The black whiskers mark the 5th and 95th percentiles, and values beyond these upper 
and lower bounds are considered outliers. The white circle denotes the mean of the estimated 10-year CVD risk 
for each category.  

  

 

Similar results were observed in the AREDS 1 external validation dataset [Figure 3]. The 

median 10-year CVD risk for those individuals who experienced a CVD event was higher than 

those who did not (6.2% [ICR 3.2%-12.9%] v 2.2% [IQR 3.9- 1.3%] P<0.01 one tailed Mann-

Whitney U test ) Likewise, the mean 10-year CVD risk score for individuals who experienced 

a CVD event was 9.0%, v 2.9% for those who did not. (P<0.01 Welch’s t-test). 
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Figure 3: Estimated CVD risk by CVD-AI for people who did vs did not suffer from a CVD event, using the AREDS 
1 dataset. The center line denotes the median value (50th percentile), while the box contains the 25th to 75th 
percentiles of dataset. The black whiskers mark the 5th and 95th percentiles, and values beyond these upper and 
lower bounds are considered outliers. The white circle denotes the mean of the estimated 10-year CVD risk for 
each category. 

 

To further evaluate the relevance of the risk scored calculated by the CVD-AI model, arbitrary 

cutoff point of 5% was chosen based on the box and whisker plots for both the AREDS 1 and 

the UK Biobank dataset [33-35]. The 5% threshold divided the patients between a low risk 

(<5%) and elevated risk (>5%) group. 2x2 Chi-squared tests were then carried out based on the 

two groups. For the UK Biobank testing dataset, the chi-squared tests (X2(7,790, 1) = 127.6, p 

< 0.01) showed that patients who were assigned elevated risk by the CVD-AI algorithm were 

significantly more likely to have actual CVD events, and patients who were assigned low risk 

were less likely to have a CVD event. Similar conclusions were reached on the AREDS 1 

dataset, with the 2x2 chi-squared test (X2(3,162, 1) = 89.1, p < 0.01) showing similar results. 

 

Metadata analysis 

The UK Biobank and AREDS 1 datasets were then recategorized into three groups based on 

the 10-year CV risk score allocated by CVD-AI. The following thresholds were used: low risk 

(< 5%), medium risk (5% - 10%) and high risk (> 10%). The numbers of individuals in each 

category (Low, Medium, High risk), is summarized in table 1. 

 
Table 1: Breakdown of the UK Biobank and AREDS 1 datasets according to the risk score issued by CVD-AI 
categorized by CVD event risk thresholds: Low, Medium, and High risk. 

 CVD-AI issued CVD 

risk scores <5 % (Low) 

CVD-AI issued CVD  risk 

scores 5% - 10% (Medium) 

CVD-AI issued CVD 

risk scores > 10% (High) 

UK Biobank 6,146 1,343 301 

AREDS 1 2,627 512 23 
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Using the UK Biobank test dataset, a metadata analysis was then conducted on factors such as 

age, HbA1c, systolic blood pressure (taken as the averaged blood pressure between 2 readings), 

diastolic blood pressure (taken as the averaged blood pressure between 2 readings), BMI, and 

the total cholesterol to HDL cholesterol (TCHDL) ratio, categorized by the 10-year CV risk 

score issued by CVD-AI to individuals within these 3 cohorts. Table 2: 

Table 2: Metadata analysis of the UK Biobank data, categorized by the 10-yr CV risk score allocated by CVD-AI: 
Low, Medium, and High risk. 

 Low risk (<5%) Medium risk (5-

10%) 

High risk (>10%) Statistical 

significance 

(Yes) 
Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Age (years) 55 8 63 5 67 3 L – H  

L – M 

M – H 

HbA1C 

(mmol/mol) 

35 6 37 7 38 8 L – H 

L – M 

Systolic blood 

pressure (mmHg) 

135 18 144 18 143 18 L – H 

L – M 

Diastolic blood 

pressure (mmHg) 

81 9.9 84 9.7 81 9.5 L – H 

L – M 

BMI 27. 4.9 28.0 4.4 28.0 4.1 L – H 

L – M 

TCHDL ratio (No 

units) 

4.0 1.0 4.1 1.0 4.0 1.2 L – H 

L – M 

 

 Low 

risk 

Medium 

Risk 

High 

risk 

Statistical significance 

(Yes) 

Proportion of men (%) 33 88 98 L – H  

L – M 

M – H 

Proportion of smokers (%) 41 50 59 L – H  

L – M 

M – H 

Proportion of people with diabetes 

(%) 

3 9 13 L – H  

L – M 

M – H 
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A similar analysis was conducted on the AREDS 1 dataset for the corresponding fields 

(where available), again categorized by the 10-year risk score allocated by CVD-AI. Table 3. 

 
Table 3: Metadata analysis of the AREDS 1 dataset, categorized by the 10-yr CV risk score allocated by CVD-AI: 
Low, Medium, and High risk. 

 Low risk (<5%) Medium risk (5-

10%) 

High risk (>10%) Statistical 

significance  

Mean Standard 

deviation 

Mean Standard 

deviation 

Mean Standard 

deviation 

Age (years) 69 5 70 5 74 5 L – H  

L – M 

M – H 

Systolic blood 

pressure (mmHg) 

135 17 138 17 144 25 L – M  

Diastolic blood 

pressure (mmHg) 

78 9 78 9 81 10  

BMI 27 5 27 5 30 6  

 

 Low risk Medium Risk High risk Statistical Significance  

Proportion of men (%) 40 56 74 L – H  

L – M 

M – H 

Proportion of smokers (%) 51 59 83 L – H  

L – M 

M – H 

Proportion of people with diabetes (%) 8 9 26 L – H  

L – M 

M – H 

 

 

Evaluation of model explainability 

To qualitatively evaluate CVD-AI’s performance and investigate the ‘relative contribution’ of 

both non-modifiable factors (age, ethnicity, sex) and modifiable factors (HbA1c, blood 

pressure, smoking and total cholesterol/HDL cholesterol ratio) on the total estimated 10-year 

risk score. Eight individual case studies from the high-risk groups were created (5 from the UK 

Biobank and 3 from AREDS 1). The results of the cases and the relative impact of the 

component risk factors that comprise this overall risk are summarized in Table 4.  
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Table 4: Summary of the demographic and biomarkers for 8 individuals in the Biobank and 

AREDS 1 datasets and the Absolute and Relative risk scores CVD-AI issued for them. 

  
Table 4: select scenarios from the UK Biobank and AREDS 1 datasets, detailing the patient biometrics, 
calculated CVD risk and the “relative” contribution of the different components to this risk 

 UK 

Biobank 1 

UK 

Biobank 2 

UK 

Biobank 3 

UK 

Biobank 4 

UK 

Biobank 5 

AREDS 

1 

AREDS 

2 

AREDS 

3 

Age 42 63 62 42 75 65 65 67 

Gender M M M M M F M F 

BMI  32 37 39 29 31 28 30 27 

Smoking status N Y Y N N Y Y Y 

Diabetes status   N N Y Y Y N Y N 

Systolic blood pressure (mmHg) 160 160 161 124 134 142 152 220 

Diastolic blood pressure (mm/Hg) 105 97 76 84 70 80 90 88 

HbA1C (mmol/mol) 37 46 62 55 44 - - - 

Total cholesterol to HDL cholesterol 

ratio  
7.1   4.8  3.0  5.2  2.7 - - - 

         

Total Absolute Risk 5% 10% 22% 24% 16% 8% 13% 17% 

Relative Risk Contribution - Age <10% 13% <10% 60% 55% 26% <10% 20% 

Relative Risk Contribution - Gender  20% 27% <10% 13% 33% 13% <10% <10% 

Relative Risk Contribution - 

Smoking  
<10% <10% <10% <10% <10% <10% <10% 32% 

Relative Risk Contribution –  

Systolic BP 
40 % 17% <10% <10% <10% 39% 37% <10% 

Relative Risk Contribution - 

Diabetes  
<10% 12% 61% 10% 10% <10% 15% <10% 

Relative Risk Contribution - 

Cholesterol 
20% 10% <10% <10% <10% <10% 40% 41% 
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Discussion  

Previously we have demonstrated that it is possible to train an artificial intelligence (AI) deep 

learning (DL) algorithm on retinal images to grade diabetic retinopathy and maculopathy for 

diagnostic, screening and risk assessment purposes [30, 36-45]. In this study we used 110,272 

fundus images from a database of 55,118 patients from the UK Biobank and AREDS 1 datasets 

to train and subsequently test a novel AI platform (CVD-AI) to calculate a 10-year CVD risk 

score for these individuals. The predicted risk produced by CVD-AI was compared to the actual 

cardiovascular event rate to determine the relative accuracy of the prediction so obtained. We 

found that CVD-AI could reliably identify patients at high risk of cardiovascular event, most 

of whom experienced at least one event according to the UK Biobank or AREDS 1 records.   

 

Our results are in line with other reports which have demonstrated that DL algorithms can use 

retinal images to predict modifiable CVD risk factors, including diabetes, hypertension, and 

cholesterol [25, 27, 29, 46-48] and non-modifiable risk factors such as chronological age and 

gender [24]. However, like the Framingham equations, the algorithms published to date are 

unable to examine the relative contribution of each of the individual factors that comprise risk 

as they utilize a statistical method which imposes linearity between the individual parameters 

used during analysis. Consequently, these models are trained against a single label like 

cardiovascular event or chronological age. As such they are incapable of identifying the most 

significant contributors to CVD risk in any given individual as the math underpinning the 

algorithm do not account for interactions between the variables that comprise the individuals 

overall risk.  

 

Traditionally, most existing algorithms simply measure success in terms of detection accuracy, 

where the CVD risk is calculated by conventional equations. For instance,  [27, 28, 49, 50] 

report the outcomes of their algorithms in terms of AUC, regarding successful models as those 

that have an AUC > 0.70.  Although this approach has its merits merely knowing that a model 

can predict CVD risk with an AUC > 0.70 is of limited value because simply achieving a high 

level of accuracy does not necessarily mean that the algorithm has learnt what was expected. 

This is particularly important in the case of biometric data much of which is normally 

distributed. In data which is normally distributed an algorithm which has simply learnt to assign 

outputs which are clustered tightly around the mean will, at the population level, be highly 

accurate. However, in the Real World when presented with individuals whose values fall 

outside the mean, it will fail to perform. This effect has been elegantly demonstrated by Zhang 

et al who reported that their algorithm achieved AUC curves of 0.929 for predicting an HbA1C 

from retinal photographs [51]. However, if the algorithm was actually able to read HbA1C, the 

accompanying scatter plot of actual v predicted HBA1C would be clustered along the diagonal. 

As it transpired the predicted values were clustered tightly around the mean HbA1C of the 

population; along the horizontal meridian. To be sure that an algorithm is performing then the 

outputs therefore need to be both biologically plausible and clinically meaningful.  

 

To assess the biological and Clinical plausibility of CVD-AI we first evaluated the 

demographic and biometric data of those individuals allocated to three broad risk categories; 

low risk (<5%), medium risk (5-10%) and high risk (>10%). These data demonstrated that in 
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both the UK Biobank and AREDS 1 datasets, the demographic and biometric data of the three 

groups categorized by the results allocated by CVD-AI were largely consistent with traditional 

cardiovascular risk factors; age gender, smoking, systolic blood pressure and the presence or 

otherwise of diabetes [8, 34] . However, in addition to the expected traditional metrics other 

intriguing trends were evident; namely that irrespective of whether the individual had diabetes, 

HbA1C was significantly and incrementally higher across the 3 groups.  

 

These same trends were observed in the individual case studies. Analysis of these examples 

again reveal that rising age and male gender were, in the absence of diabetes, the most powerful 

predictors of cardiovascular risk (Biobank cases 2 & 5, AREDS cases 2 & 3). In contrast, in an 

older female, systolic hypertension registered more highly than age and gender (AREDS cases 

1 & 3). In a younger male patient (Biobank case 1), CVD-AI indicated that the overall risk was 

low and that in the absence of other CV risk factors, systolic hypertension was the principal 

factor underpinning this risk. When the individual had diabetes, (Biobank cases 3 & 4, AREDS 

case 2) blood sugar was one of the principal factors underpinning the individuals CV risk score. 

However, HbA1C also registered as one of the principle factors underpinning the CV risk score 

in individuals who did not have diabetes (Biobank case 2 & 5), but whose blood sugar was in 

the prediabetic range [52].  The finding that HbA1C registers as an important risk factor in 

patients who don’t have diabetes, but whose blood sugar is in the pre diabetic “normal” range 

is intriguing. Mean HbA1C was also significantly higher in patients who CVD-AI allocated 

medium and high-risk scores compared to those allocated low-risk scores. It is well recognized 

that individuals with prediabetes are at increased risk of not only developing type 2 diabetes, 

but are also at an increased risk of experiencing a CV event [53, 54]. It is thus possible that 

CVD-AI is detecting a change within the retina that allows it to discern this subtle signal. As 

CVD-AI was not trained to predict the HbA1C, this information must instead be derived from 

as yet unknown changes in the retinal that results from raised; but “normal” glucose levels. It 

has recently been reported in prediabetic rat models that elevated,  but non diabetic, glucose 

levels are associated with activation of the TRVP-2 pathway and retinal arteriolar dilation [55]. 

Although further work in this area is required it is tempting to speculate that a similar process 

may be at work in the retina of humans with prediabetes.  

 

In recent years newer CVD prediction equations have been developed, based on data gathered 

from samples that represent the demographics of broader populations in terms of ethnicity, 

socioeconomic status, and other variables. These developments should lead to an improved 

predictive power of existing CV risk equations [56]. However, these new CVD risk equations, 

require the individual being reviewed by a health care profession and rely on data derived from 

laboratory testing. As such they may be difficult to implement in Health economies where 

individuals cannot easily access primary care, or these facilities are already over stretched [57]. 

We have demonstrated that using nothing more than a retinal image, CVD-AI, can evaluate an 

individual’s 10-year cardiovascular risk. Furthermore, and uniquely we believe that we have 

demonstrated that it possible to train a DL algorithm that is not only able to assess CVD risk at 

the individual level, but is also able to establish the relative contribution of each risk factor to 

the overall CVD risk score based on an individual’s personal circumstances.  If these results 

can be replicated DL algorithms like CVD-AI offer the potential to significantly improve 
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access to CVD risk prevention strategies. As retinal photographs are routinely captured in 

Optometric practices it means that they can be deployed without significant additional 

investment in primary care, a feature which makes these technologies particularly relevant to 

low-income settings. Finally, AI-based prediction tools that assess risk at the individual level 

would inform treatment decisions based on the specific needs of an individual, thereby 

increasing the likelihood of positive health outcomes.  

 

Conclusion 

 

It is well recognized that many cardiovascular events can be prevented by making treatment 

recommendations based on an individual’s CVD risk profile. However, presently methods used 

to quantify an individual’s risk have only a moderate predictive power and require input from 

a medical professional augmented with laboratory tests. In this paper, we demonstrate that our 

DL algorithm CVD-AI, using a retinal image as the sole input, is capable of assessing both the 

10-year risk of an individual experiencing a cardiovascular event and identify the relative 

components from which this risk score is derived. 
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Supplementary Tables 

 
Supplementary Table 1: the makeup of the UK BioBank dataset used here  

 Mean Std 

Age 56.8 8.26 

Systolic Blood Pressure (mmHg) 136.96 18.4 

Diastolic Blood Pressure (mmHg) 81.69 9.93 

Hba1c (mmol/mol) 35.88 6.29 

BMI 27.2 4.7 
 Male Female 

Gender 23,482 28,473 
 TRUE FALSE 

Smoking 22,366 29,589 

CVD event 264 7526 

 

 

 
Supplementary Table 2: the makeup of the AREDS 1 dataset used here  

 Mean Std 

Age 68.86 4.94 

Systolic Blood Pressure (mmHg) 136.05 17.48 

Diastolic Blood Pressure (mmHg) 77.99 9.08 

BMI 27.19 4.76 
 Male Female 

Gender 1367 1795 
 TRUE FALSE 

Smoking 1663 1499 

Diabetes 248 2914 

CVD event 71 3091 
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