Neuropathology-based APOE genetic risk score better quantifies Alzheimer's risk

Authors: Yuetiva Deming a,b,c,* , Eva Vasiljevic b,d, Autumn Morrow b, Jiacheng Miao c, Carol Van Hulle a,c, Erin Jonaitis c,f, Yue Ma a,c, Vanessa Whitenack a, Gwendlyn Kollmorgen g, Norbert Wild g, Ivonne Suridjan h, Leslie M. Shaw i, Sanjay Asthana a,c,j, Cynthia M. Carlsson a,c,j, Sterling C. Johnson a,c,j, Henrik Zetterberg k,l,m,n,o, Kaj Blennow k,l, Barbara B. Bendlin a,c, Qiongshi Lu d,e, Corinne D. Engelman b,c,d,* , the Alzheimer’s Disease Neuroimaging Initiative†

Affiliations:

a Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America,

b Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America,

c Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, WI, United States of America,

d Center for Demography of Health and Aging, University of Wisconsin-Madison, WI, United States of America,

e Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America,

f Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, United States of America,

g Roche Diagnostics GmbH, Penzberg, Germany,

h Roche Diagnostics International Ltd, Rotkreuz, Switzerland,

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America,

William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center, Madison, WI, United States of America,

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden,

Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,

UK Dementia Research Institute at UCL, London, UK,

Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK,

Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

*Correspondence:

Yuetiva Deming, PhD
Department of Medicine,
University of Wisconsin - Madison
600 Highland Avenue, J5/1M Clinical Science Center
Madison, WI 53792
Phone: (608) 262-9442
Abstract

INTRODUCTION: APOE ε4-carrier status or ε4 allele count are included in analyses to account for the APOE genetic effect on Alzheimer’s disease (AD); however, this does not account for protective effects of APOE ε2 or heterogeneous effect of ε2, ε3, ε4 haplotypes.

METHODS: We leveraged results from an autopsy-confirmed AD study to generate a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid (CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry for Alzheimer’s Prevention, Wisconsin Alzheimer’s Disease Research Center, and Alzheimer’s Disease Neuroimaging Initiative (ADNI).

RESULTS: The APOE-npscore explained more variance and provided a better model fit for all three CSF measures than APOE ε4-carrier status and ε4 allele count. These findings were replicated in ADNI and observed in subsets of cognitively unimpaired participants.

DISCUSSION: The APOE-npscore reflects the genetic effect on neuropathology and provides an improved method to account for APOE in AD-related analyses.
1. Introduction

The apolipoprotein E gene (APOE) is the predominant genetic risk factor for late-onset Alzheimer’s disease (AD), with three alleles contributing to disease risk: ε2 (reduced risk), ε3 (reference), and ε4 (increased risk). APOE genotype is associated with many AD endophenotypes, such as biomarkers reflecting the underlying neuropathology of amyloid plaques and neurofibrillary tangles, such as cerebrospinal fluid (CSF) [1] and positron emission tomography (PET) measures of amyloid and tau [2]. The importance of accounting for the strong...
genetic effect of *APOE* on AD risk has been recognized in many analyses of AD-related outcomes and researchers often use *APOE* ε4-carrier status (APOE4-status: ε4+/ε4-) [2,3] or, less frequently, the number of *APOE* ε4 alleles (ε4-count: 0, 1, 2) [4]. Using these methods to model *APOE* genetic risk has limitations: 1. APOE4-status and the ε4-count do not account for the effects of reduced risk conferred by *APOE* ε2; 2. an assumption of the allele count approach is that genetic risk of *APOE* ε4 is strictly additive; and 3. as a dichotomous variable APOE4-status has limitations in statistical modeling such as loss of statistical power or problems with model convergence [5]. To overcome these limitations, we previously used a weighted score for *APOE* genotype based on risk for AD diagnosis [1,6]. Another group used a similar method to model the *APOE* genetic effect in polygenic risk scores, weighting the number of *APOE* ε2 alleles and the number of *APOE* ε4 alleles by the effect sizes reported in the Kunkle *et al.*, 2019 genome-wide association study [7] for single nucleotide polymorphisms rs7412 (encoding ε2) and rs429358 (encoding ε4) [8]. One limitation of these *APOE* risk scores is that they are based on clinical diagnosis of AD dementia which can include preclinical AD appearing as controls and dementia cases due to non-AD causes [9–11]. Here we propose an improved method to account for *APOE* genetic risk for AD in statistical analyses using a weighted score based on AD neuropathology, providing a pseudo-continuous variable that does not collapse important genotype categories. By comparing AD cases and controls that were confirmed at autopsy, Reiman *et al.* showed that the odds ratio (OR) has been overestimated for *APOE* ε2/ε2 individuals and underestimated for *APOE* ε4/ε4 individuals in clinical risk studies [12]. Similar results have been obtained using CSF endophenotypes as surrogate measures of AD pathology [13]. We propose that using this *APOE* neuropathology-based score (*APOE*-npscore) will help researchers more accurately account for the genetic effect of *APOE* on the underlying
neuropathology of AD. This can increase statistical power, avoid modeling issues that result from low-frequency genotypes with low counts, and allows for a more nuanced variable that may help distinguish AD from diseases with similar clinical appearance.

CSF biomarkers for amyloid-beta1-42 (Aβ42) and amyloid-beta1-42/1-40 (Aβ42/40) ratio and phosphorylated tau 181 (ptau181) are among the gold standard biomarkers for AD. CSF Aβ42 and the Aβ42/40 ratio decrease early in AD and are negatively correlated with amyloid PET [14] and amyloid plaques presence, a hallmark neuropathology of AD [15]. CSF Aβ42/40 ratio has been reported to predict PET amyloid-positivity more accurately than CSF Aβ42 alone, regardless of clinical diagnosis [16,17]. Another key pathological hallmark of AD, neurofibrillary tangles composed of hyperphosphorylated tau, is positively correlated with CSF ptau181 concentration [18]. The ratio of CSF ptau181/Aβ42 is predictive of cognitive decline and conversion to AD dementia [19–21]. These CSF biomarkers change before cognitive symptoms appear [19,22] and can help distinguish AD from other diseases that are clinically similar [23–25]. The correlation with AD neuropathology and measurable changes early in disease made these CSF biomarkers ideal for testing our hypothesis that the APOE-npscore is an improvement over other methods in accounting for the APOE genetic risk for AD in statistical analyses.

2. Methods

2.1. Participants

The Institutional Review Boards of all participating institutions approved the study, and research was carried out in accordance with approved protocols. Written informed consent was obtained from participants or their family members. Data were obtained from longitudinal studies of
preclinical and clinical AD from the Wisconsin Registry for Alzheimer’s Prevention (WRAP) [26] and the Wisconsin Alzheimer’s Disease Research Center (WADRC). WRAP is a longitudinal observational cohort study, established in 2001, of middle-aged participants that is enriched with people who have a parental history of probable-AD dementia. The WADRC was established in 2009 and is one of the National Institute on Aging (NIA)-designated ADRCs across the United States. Participants enrolled in these studies provided CSF within one year of cognitive testing. Diagnoses were determined by consensus conference of dementia specialists based on NIA-Alzheimer’s Association (NIA-AA) criteria without reference to biomarker status [27,28]. The combined data in these analyses include participants with mild cognitive impairment (MCI), dementia due to suspected AD (dementia-AD), or cognitively unimpaired (CU) individuals.

Data used for replication analyses were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [29]. The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early AD. For up-to-date information, see www.adni-info.org.

2.2. Genotyping and scoring

DNA extracted from whole blood samples from WADRC and WRAP participants was genotyped for APOE ε2 and APOE ε4 using competitive allele-specific PCR-based KASP genotyping for rs7412 and rs429358, respectively [6]. Data downloaded from the ADNI database were obtained from DNA extracted from blood, as described previously [30].
To generate the APOE-npscore we used a natural log (ln) transformation of the OR values reported in a study of APOE genetic risk in autopsy-confirmed AD cases (n = 4018) and controls (n = 989), none of whom were participants in our analyses [12]. OR values were obtained from the Reiman et al., 2020, supplementary table which had OR calculated for each APOE genotype, using ε3ε3 as the reference, after adjusting for age and sex: ε2ε2 OR = 0.16, ε2ε3 OR = 0.40, ε3ε3 OR = 1, ε2ε4 OR = 2.47, ε3ε4 OR = 5.71, and ε4ε4 OR = 26.93 [12]. By using the ln(OR), the APOE-npscore is negative for haplotypes associated with reduced risk for AD compared to ε3ε3, resulting in the APOE-npscore: ε2ε2 = -1.833, ε2ε3 = -0.916, ε3ε3 = 0, ε2ε4 = 0.904, ε3ε4 = 1.742, and ε4ε4 = 3.293.

2.3. CSF collection and assays

CSF samples from WADRC and WRAP were acquired as described previously [31]. Briefly, samples were collected by lumbar puncture (LP) in the morning after an 8- to 12-hour fast, centrifuged to remove red blood cells or other debris, then 0.5 mL CSF was aliquoted into 1.5-mL polypropylene tubes and stored at -80°C within 30 minutes of collection. WRAP and WADRC CSF samples were assayed at the Clinical Neurochemistry Laboratory, University of Gothenburg under strict quality control procedures. Aβ42, ptau181, and Aβ40 levels in CSF were measured using the Elecsys® β-Amyloid(1-42) CSF, Elecsys Phospho-Tau (181P) CSF, and Elecsys β-Amyloid(1-40) electrochemiluminescence immunoassays, respectively, on the cobas e 601 analyzer (all Roche Diagnostics International Ltd).

ADNI CSF samples, obtained as described in the ADNI procedures manual (http://www.adni-info.org), were also measured using Elecsys CSF immunoassays on a cobas e 601 analyzer at the University of Pennsylvania [32]. ADNI CSF data (versions 2021-01-04 and 2019-07-29) were
downloaded in early 2022 from the ADNI database (https://ida.loni.usc.edu) with corresponding participant demographics such as age, sex, diagnosis, and APOE genotypes. Data were verified to be the most currently available as of September 7, 2022.

The Elecsys CSF immunoassays have measuring ranges of 200–1700 pg/mL for Aβ42, 0.006–40.3 ng/mL for Aβ40 (specific for lot used), and 8–120 pg/mL for ptau181 [31,32]. Performance of the assays above these technical limits has not been formally established. Therefore, we only analyzed values within the technical limits. CSF Aβ42/40 and ptau181/Aβ42 ratios were derived from the CSF Aβ42, Aβ40, and ptau181 values.

2.4. Statistical analyses

There were 1045 individuals available for analyses in WADRC (n = 380), WRAP (n = 238), and ADNI (n = 427). Initial analyses used WADRC and WRAP combined data, then replication analyses were performed using ADNI data. Statistical analyses were performed in R (version 4.2.0) [33]. Sample characteristics were compared between studies using analysis of variance for continuous measures and chi-square for categorical measures.

Associations between CSF biomarker (Aβ42/40 ratio, ptau181, or ptau181/Aβ42 ratio) and APOE variable (APOE-npscore, APOE4-status, or ε4-count) were each tested using linear mixed-effects regression in the lmerTest R package (version 3.1-3) [34] with random intercepts for each participant to account for multiple LP visits. Self-reported sex, clinical diagnosis (CU, MCI-AD, dementia-AD), and linear and quadratic terms for mean centered age at LP were entered as fixed covariates. CSF ptau181 values and the ptau181/Aβ42 ratio were ln-transformed and standardized within study. Residual diagnostics, used to verify covariate selection and check model assumptions, were performed using the DHARMa R package (version 0.4.5) [35]. To
determine goodness-of-fit and quantify differences in model fit between APOE-npscore, APOE4-status (0, 1), and ε4-count (0, 1, 2), we compared the Akaike information criterion (AIC), Bayesian Information Criterion (BIC), and the proportion of variance explained by models differing only by the APOE variable as predictor. Pseudo-R² statistics were calculated using the MuMIn R package (version 1.47.1) [36] and the marginal R² were compared to determine the difference in variance attributable to the fixed effects portion of each model. Relative improvement between models was calculated using the ratio of marginal R² values.

Other R packages used included kableExtra (version 1.3.4) [37], tableone (version 0.13.2) [38], and sjPlot (version 2.8.11) [39].

3. Results

3.1. Participant characteristics by study

The characteristics of participants in WADRC, WRAP, and ADNI are shown by study in Table 1. Comparisons between WADRC and WRAP are provided in Supplementary Table S1 and characteristics by ADNI protocol (ADNI1, ADNI2, ADNIGO, and ADNI3) are shown in Supplementary Table S2. Participant characteristics are based on the most recent LP visit; information about multiple LP visits and biomarker values are provided based on longitudinal data (1566 CSF samples). Supplementary Table S3 shows characteristics by study (WADRC, WRAP, and ADNI) for a subset of CU participant samples used in sensitivity analyses.

All studies were predominantly non-Hispanic white (NHW) and mostly female. There were significant differences in clinical diagnosis across studies. WRAP was comprised of CU individuals with a few MCI-AD, both WADRC and ADNI had similar numbers of dementia-AD,
and ADNI had the largest proportion of MCI-AD. Mean APOE-npscores were lower in WRAP (0.54 ± 1.02) than WADRC (0.79 ± 1.20) and ADNI (0.75 ± 1.18). Less than 14% of WADRC, almost 27% of WRAP, and less than 17% of ADNI participants had 2 or more LPs with a mean difference ~2.5 years between visits. Mean age at LP across longitudinal samples was similar in WADRC and WRAP (~63 years) but older in ADNI (73 years). ADNI participants had significantly higher levels of both CSF Aβ42 (913 ± 372 pg/mL) and ptau181 (24.6 ± 12.9 pg/mL) than WADRC (Aβ42: 826 ± 364 pg/mL; ptau181: 20.3 ± 11.4 pg/mL) and WRAP (Aβ42: 861 ± 354 pg/mL; ptau181: 18.6 ± 6.62 pg/mL). Scatterplots of age at LP against CSF Aβ42, Aβ42/40 ratio, and ptau181 values by study are shown in Figure 1.

3.2. Using ε4-count provided a better model fit than APOE4-status and explained more variance in CSF AD endophenotypes

Some researchers use ε4-count instead of the binary APOE4-status, so we tested if ε4-count provides a better model fit than APOE4-status. In our preliminary analyses of WADRC and WRAP, APOE4-status and ε4-count were associated with CSF Aβ42/40 ratio (β = -0.012, p = 3.98×10^{-21} and β = -0.010, p = 1.04×10^{-23}, respectively), ptau181 (β = 0.258, p = 6.49×10^{-4} and β = 0.238, p = 9.20×10^{-5}, respectively), and ptau181/Aβ42 ratio (β = 0.524, p = 2.52×10^{-14} and β = 0.460, p = 7.42×10^{-17}, respectively); however, models using ε4-count explained more variance than APOE4-status with 3.2% relative increase in CSF Aβ42/40 ratio (marginal R² = 0.355 vs 0.344), 2.5% relative increase in ptau181 (marginal R² = 0.208 vs 0.203), and 3.4% increase in ptau181/Aβ42 ratio (marginal R² = 0.370 vs 0.358). Model fit comparisons are shown in Table 2 and detailed regression results in Supplementary Tables S4-S6.
As shown in Table 2, our findings were replicated in ADNI. Models with ε4-count explained more variance than APOE4-status with 14% relative increase explained in CSF Aβ42/40 ratio (marginal R² = 0.359 vs 0.315), 4% increase in ptau181 (marginal R² = 0.208 vs 0.200), and 14.5% increase in ptau181/Aβ42 ratio (marginal R² = 0.394 vs 0.344). Detailed results are shown in Supplementary Tables S7-S9.

3.3. APOE-npscore provided a better model fit than ε4-count and explained more variance in CSF AD endophenotypes

After determining that ε4-count provided a better model fit than APOE4-status, we tested if the APOE-npscore improved the model fit even more than ε4-count. In the WADRC and WRAP, APOE-npscore was associated with CSF Aβ42/40 ratio (β = -0.006, p = 6.63×10⁻²⁵), ptau181 (β = 0.140, p = 2.35×10⁻⁵), and ptau181/Aβ42 ratio (β = 0.264, p = 1.09×10⁻¹⁸). Models using APOE-npscore explained more variance than ε4-count with a relative increase of 1.4% variance explained in CSF Aβ42/40 ratio (marginal R² = 0.360 vs 0.355), 1% increase in ptau181 (marginal R² = 0.210 vs 0.208), and 2.2% increase explained in ptau181/Aβ42 ratio (marginal R² = 0.378 vs 0.370). As shown in Table 2, both AIC and BIC model selection criteria consistently supported models using the APOE-npscore over models using the ε4-count and models using the APOE4-status. Detailed results are shown in Supplementary Tables S4-S6.

Our findings were replicated in the ADNI. APOE-npscore explained more variance than ε4-count with a relative increase of 4.5% explained in CSF Aβ42/40 ratio (marginal R² = 0.375 vs 0.359), 4.8% increase in ptau181 (marginal R² = 0.218 vs 0.208), and 3.8% increase in ptau181/Aβ42 ratio (marginal R² = 0.409 vs 0.394). Detailed results are shown in Supplementary Tables S7-S9.
3.4. APOE-npscore provided a better model fit in subset of cognitively unimpaired participants

Previous studies have reported preclinical effects of APOE4-status and ε4-count on CSF AD biomarkers [40,41]. To test if the APOE-npscore could provide a better model fit than APOE4-status and ε4-count when analyzing CSF AD endophenotypes before cognitive symptoms appear, we reran the analyses in a subset of longitudinal samples from participants who were CU at LP (described in Supplementary Table S3). There were significant associations between CSF Aβ42/40 ratio and the APOE-npscore ($\beta = -0.005, p = 1.06 \times 10^{-18}$), APOE4-status ($\beta = -0.011, p = 1.47 \times 10^{-16}$), and ε4-count ($\beta = -0.010, p = 4.63 \times 10^{-18}$); between ptau181 and APOE-npscore ($\beta = 0.110, p = 1.52 \times 10^{-3}$), APOE4-status ($\beta = 0.217, p = 4.68 \times 10^{-3}$), and ε4-count ($\beta = 0.191, p = 3.32 \times 10^{-3}$); and between ptau181/Aβ42 ratio and APOE-npscore ($\beta = 0.241, p = 1.17 \times 10^{-13}$), APOE4-status ($\beta = 0.491, p = 1.04 \times 10^{-11}$), and ε4-count ($\beta = 0.437, p = 7.85 \times 10^{-13}$). There was also more variance explained by the APOE-npscore than the APOE4-status with a relative increase of 3.7% in CSF Aβ42/40 ratio (marginal $R^2 = 0.222$ vs 0.214), 1.4% in CSF ptau181 (marginal $R^2 = 0.150$ vs 0.148), and 4.9% in CSF ptau181/Aβ42 ratio (marginal $R^2 = 0.216$ vs 0.206). APOE-npscore also explained more variance than ε4-count with a relative increase of 1% in CSF Aβ42/40 ratio (marginal $R^2 = 0.222$ vs 0.220) and 1.4% in ptau181/Aβ42 ratio (marginal $R^2 = 0.216$ vs 0.213), but no difference in ptau181 (marginal $R^2 = 0.150$ vs 0.150). Both AIC and BIC model selection criteria consistently supported models using the APOE-npscore (Aβ42/40 ratio: AIC = -5175, BIC = -5137; ptau181: AIC = 1304, BIC = 1342; ptau181/Aβ42 ratio: AIC = 1512, BIC = 1550) over models using the ε4-count (Aβ42/40 ratio: AIC = -5172, BIC = -5134; ptau181: AIC = 1305, BIC = 1343; ptau181/Aβ42 ratio: AIC = 1516, BIC = 1553) and models using the APOE4-status (Aβ42/40 ratio: AIC = -5165, BIC = -5127; ptau181: AIC = 1306, BIC
= 1344; ptau181/Aβ42 ratio: AIC = 1521, BIC = 1558). Detailed results are shown in Supplementary Tables S10-S12.

These findings were replicated in a subset of samples from participants who were CU in ADNI (described in Supplementary Table S3). CSF Aβ42/40 ratio was associated with the APOE-npscore (β = -0.009, p = 8.13×10^{-12}), APOE4-status (β = -0.018, p = 5.94×10^{-9}), and ε4-count (β = -0.016, p = 6.78×10^{-11}). CSF ptau181 was associated with APOE-npscore (β = 0.181, p = 3.74×10^{-4}), APOE4-status (β = 0.324, p = 4.04×10^{-3}), and ε4-count (β = 0.298, p = 1.54×10^{-3}). The CSF ptau181/Aβ42 ratio was associated with APOE-npscore (β = 0.335, p = 8.55×10^{-11}), APOE4-status (β = 0.602, p = 3.26×10^{-7}), and ε4-count (β = 0.583, p = 8.93×10^{-10}). There was more variance explained by the APOE-npscore than the APOE4-status with a relative increase of 20.5% in CSF Aβ42/40 ratio (marginal R^2 = 0.264 vs 0.219), 9% in CSF ptau181 (marginal R^2 = 0.182 vs 0.167), and 22.5% in CSF ptau181/Aβ42 ratio (marginal R^2 = 0.299 vs 0.244). APOE-npscore also explained more variance than ε4-count with a relative increase of 6.5% in CSF Aβ42/40 ratio (marginal R^2 = 0.264 vs 0.248), 5.8% in ptau181 (marginal R^2 = 0.182 vs 0.172), and 6% in ptau181/Aβ42 ratio (marginal R^2 = 0.299 vs 0.282). Both AIC and BIC model selection criteria consistently supported models using the APOE-npscore (Aβ42/40 ratio: AIC = -1422, BIC = -1387; ptau181: AIC = 657, BIC = 696; ptau181/Aβ42 ratio: AIC = 508, BIC = 543) over models using the ε4-count (Aβ42/40 ratio: AIC = -1418, BIC = -1382; ptau181: AIC = 660, BIC = 699; ptau181/Aβ42 ratio: AIC = 513, BIC = 548) and models using the APOE4-status (Aβ42/40 ratio: AIC = -1409, BIC = -1373; ptau181: AIC = 662, BIC = 701; ptau181/Aβ42 ratio: AIC = 525, BIC = 560). Detailed results are shown in Supplementary Tables S13-S15.
4. Discussion

We report here a method for translating $APOE$ haplotype ($\varepsilon2\varepsilon2$, $\varepsilon2\varepsilon3$, $\varepsilon2\varepsilon4$, $\varepsilon3\varepsilon3$, $\varepsilon3\varepsilon4$, and $\varepsilon4\varepsilon4$) into a pseudo-continuous measure reflecting $APOE$ genetic risk for autopsy-confirmed AD. We demonstrated the $APOE$-npscore provides a better model fit than dichotomous APOE4-status, and even $\varepsilon4$-count, in statistical models of CSF endophenotypes for AD neuropathology ($A\beta42/40$ ratio, ptau181, and ptau181/Aβ42 ratio). Although some of the statistical improvements we reported in this study were small, there are several benefits of using $APOE$-npscore in AD-related research. Not only does it more accurately represent corresponding risk for each haplotype, the $APOE$-npscore more closely reflects the genetic effect of $APOE$ on AD neuropathology. It allows researchers to account for effects of $\varepsilon2$ and $\varepsilon4$ in one variable. As an improvement to $APOE$ clinical risk scores, by using the results of a large autopsy-confirmed AD case-control study, [12] we minimize bias from misclassified dementia cases and preclinical controls.

CSF biomarkers change years before cognitive symptoms appear and are not only correlated with AD neuropathology but also with $APOE$ [1,22,42]. As expected, all the methods we tested for encoding $APOE$ genotype were significantly associated with CSF $A\beta42/40$ ratio, ptau181, and ptau181/Aβ42 ratio. In all three AD endophenotypes, $APOE$-npscore appeared to provide a better model fit than APOE4-status and $\varepsilon4$-count and there was more variance explained by the $APOE$-npscore models, consistently observed in WADRC, WRAP, and ADNI as well as subsets of CU individuals.

There are important limitations in this study to consider for future research. The Reiman et al. study that provided OR used to derive the $APOE$-npscore consisted of NHW individuals [12] and the cohorts included in our analyses comprised >94% NHW participants. With reported
disparities in biomarker outcomes and in \textit{APOE} genetic risk, there is evidence our findings may not translate directly to other populations [43-54]. Self-identified non-Hispanic Black (NHB) individuals are at a greater risk of AD dementia than NHW; however, even though \textit{APOE} ε4 is more common in African genetic ancestry (rs429358 MAF: 0.26 in AFR vs. 0.14 in EUR), studies suggest \textit{APOE} ε4 has a weaker effect, or no effect, on AD dementia in NHB individuals [45–49]. Linkage disequilibrium structure of the \textit{APOE} gene region varies across genetic ancestries [50] and studies show there are genetic haplotypes predominantly present in African genetic ancestry that may explain some of the differences in \textit{APOE} genetic effect on AD risk [3,51]. Disparities in the \textit{APOE} ε4 genetic effect on AD risk have been observed in other populations. Although studies of Chinese patients show that \textit{APOE} ε4 increases risk for AD similar to NHW [52,53], a study of neuroimaging and cognitive testing from 811 American Indians in the Strong Heart Study found no evidence of increased risk from \textit{APOE} ε4 [54].

Racial disparities in these examples and other AD biomarker studies demonstrate that although race is not a biological construct, the biological outcomes of interest are confounded by racial disparities in study recruitment and research [55,56]. Further research with diverse cohorts will be necessary to test and adapt the \textit{APOE}-npscore to be useful for a much broader group of people, many of whom are at an even greater risk for AD dementia than NHW individuals.

\section*{Acknowledgements}

We would like to thank the WRAP and WADRC research participants and their families for their generosity; none of this research would be possible without them. We also would like to thank the staff of the WRAP and WADRC for all of their hard work. We appreciate the ADNI
investigators and the contribution of the late John Q. Trojanowski, as co-leader of the ADNI Biomarker Core at the University of Pennsylvania, for providing data for replication. CSF assay kits were provided by Roche Diagnostics GmbH, Penzberg, Germany.

COBAS, COBAS E, and ELECSYS are trademarks of Roche. The Elecsys β-Amyloid(1−42) CSF and Phospho-Tau (181P) CSF immunoassays are approved for clinical use in CE-mark accepting countries. The robust prototype β-Amyloid(1−40) CSF immunoassay is for investigational use only and not commercially available.

Funding: This research is supported by National Institutes of health (NIH) grants R01AG27161 (WRAP: Biomarkers of Preclinical AD), R01AG054047 (Genomic and Metabolomic Data Integration in a Longitudinal Cohort at Risk for AD), P50AG033514 and P30AG062715 (Wisconsin ADRC Grant), R01 AG021155 (Longitudinal Course of Imaging Biomarkers in People At Risk for AD); UL1TR000427 (Clinical and Translational Science Award (CTSA) program through the NIH National Center for Advancing Translational Sciences (NCATS), S10 OD025245-01 (Biomedical Research Support Shared Instrumentation grant from NIH), R01AG037639 (LEAD). Author YD was supported by the Biology of Aging and Age-Related Diseases training grant T32 AG000213-28 from the National Institute on Aging. Author EV was supported by the Center for Demography of Health and Aging NIA Training Grant (Population, Life Course and Aging) (T32 AG00129). Author HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's
Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003). Author KB is supported by the Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721, and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01), and the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495). These funding sources had no role in the design and conduct of the study or collection, management, and analysis of the data. All authors critically reviewed and edited the article.

ADNI data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, AraCion Biotech, BioClinica Inc, Biogen, Bristol-Myers Squibb Company, CereSpir Inc, Cogstate, Eisai Inc, Elan Pharmaceuticals Inc, Eli Lilly
and Company, EuroImmun, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc, Fujirebio, GE Healthcare, IXICO Ltd, Janssen Alzheimer Immunotherapy Research & Development LLC, Johnson & Johnson Pharmaceutical Research & Development LLC, Lumosity, Lundbeck, Merck & Co Inc, Meso Scale Diagnostics LLC, NeuroRx Research, Neurotrack Technologies, Novartis Pharmaceuticals Corporation, Pfizer Inc, Piramal Imaging, Servier, Takeda Pharmaceutical Company, and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Data availability:

All ADNI data are available through the LONI Imaging & Data Archive. Interested scientists may apply for access on the ADNI website (http://adni.loni.usc.edu/data-samples/access-data/). Interested scientists may apply to access data from the WADRC and WRAP through the website (https://www.adrc.wisc.edu/apply-resources).

Disclosures

Author IS is a full-time employee and shareholder of Roche Diagnostics International Ltd, Rotkreuz, Switzerland. Authors GK and NW are full-time employees of Roche Diagnostics GmbH, Penzberg, Germany. Author SCJ serves as a consultant to Roche Diagnostics and Prothena and receives research support from Cerveau Technologies for unrelated work. Author HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector,
ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Novo Nordisk, Passage Bio, Pinteon Therapeutics, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). KB has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, BioArctic, Biogen, JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Ono Pharma, Pharmatrophix, Prothena, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program, outside the work presented in this paper. Other authors have no competing interests to declare.

References

Table 1. Cohort demographics at most recent lumbar puncture and longitudinal biomarkers.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>WADRC</th>
<th>WRAP</th>
<th>ADNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (individual participants)</td>
<td>1045</td>
<td>380</td>
<td>238</td>
<td>427</td>
</tr>
<tr>
<td>Summary Diagnosis, n (%)***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dementia-AD</td>
<td>95 (9.1)</td>
<td>48 (12.6)</td>
<td>0 (0.0)</td>
<td>47 (11.0)</td>
</tr>
<tr>
<td>MCI-AD</td>
<td>168 (16.1)</td>
<td>42 (11.1)</td>
<td>3 (1.3)</td>
<td>123 (28.8)</td>
</tr>
<tr>
<td>CU</td>
<td>782 (74.8)</td>
<td>290 (76.3)</td>
<td>235 (98.7)</td>
<td>257 (60.2)</td>
</tr>
<tr>
<td>Female, n (%)*</td>
<td>622 (59.5)</td>
<td>231 (60.8)</td>
<td>156 (65.5)</td>
<td>235 (55.0)</td>
</tr>
<tr>
<td>Self-reported race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHB</td>
<td>34 (3.3)</td>
<td>14 (3.7)</td>
<td>4 (1.7)</td>
<td>16 (3.7)</td>
</tr>
<tr>
<td>Other</td>
<td>20 (1.9)</td>
<td>3 (0.8)</td>
<td>5 (2.1)</td>
<td>12 (2.8)</td>
</tr>
<tr>
<td>NHW</td>
<td>991 (94.8)</td>
<td>363 (95.5)</td>
<td>229 (96.2)</td>
<td>399 (93.4)</td>
</tr>
<tr>
<td>APOE genotype, n (%)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε2ε2</td>
<td>1 (0.1)</td>
<td>1 (0.3)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>ε2ε3</td>
<td>91 (8.7)</td>
<td>35 (9.2)</td>
<td>24 (10.1)</td>
<td>32 (7.5)</td>
</tr>
<tr>
<td>ε3ε3</td>
<td>535 (51.2)</td>
<td>177 (46.6)</td>
<td>131 (55.0)</td>
<td>227 (53.2)</td>
</tr>
<tr>
<td>ε2ε4</td>
<td>27 (2.6)</td>
<td>15 (3.9)</td>
<td>5 (2.1)</td>
<td>7 (1.6)</td>
</tr>
<tr>
<td>ε3ε4</td>
<td>308 (29.5)</td>
<td>116 (30.5)</td>
<td>71 (29.8)</td>
<td>121 (28.3)</td>
</tr>
<tr>
<td>ε4ε4</td>
<td>83 (7.9)</td>
<td>36 (9.5)</td>
<td>7 (2.9)</td>
<td>40 (9.4)</td>
</tr>
<tr>
<td>APOE-npscore, mean (SD)*</td>
<td>0.72 (1.16)</td>
<td>0.79 (1.20)</td>
<td>0.54 (1.02)</td>
<td>0.75 (1.18)</td>
</tr>
<tr>
<td>Longitudinal biomarkers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n samples</td>
<td>1566</td>
<td>498</td>
<td>515</td>
<td>553</td>
</tr>
<tr>
<td>LP visit, n (%)***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1045 (67.0)</td>
<td>380 (76.3)</td>
<td>238 (46.2)</td>
<td>427 (77.2)</td>
</tr>
<tr>
<td>2</td>
<td>295 (18.8)</td>
<td>65 (13.1)</td>
<td>137 (26.6)</td>
<td>93 (16.8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Age at LP (years), mean (SD)***</td>
<td>66.94 (9.15)</td>
<td>63.26 (9.31)</td>
<td>63.97 (6.93)</td>
<td>73.01 (7.55)</td>
</tr>
<tr>
<td>Years between visits, mean (SD)***</td>
<td>2.55 (1.51)</td>
<td>2.57 (2.22)</td>
<td>2.42 (1.12)</td>
<td>2.84 (1.41)</td>
</tr>
<tr>
<td>Aβ42 (pg/mL), mean (SD)**</td>
<td>865 (364)</td>
<td>826 (364)</td>
<td>861 (354)</td>
<td>913 (372)</td>
</tr>
<tr>
<td>Aβ42/40 ratio, mean (SD)***</td>
<td>0.06 (0.02)</td>
<td>0.06 (0.02)</td>
<td>0.06 (0.02)</td>
<td>0.06 (0.02)</td>
</tr>
<tr>
<td>ptau181 (pg/mL), mean (SD)***</td>
<td>21.3 (11.1)</td>
<td>20.3 (11.4)</td>
<td>18.6 (6.62)</td>
<td>24.6 (12.9)</td>
</tr>
<tr>
<td>ptau181/Aβ42 ratio, mean (SD)***</td>
<td>0.03 (0.03)</td>
<td>0.03 (0.03)</td>
<td>0.03 (0.02)</td>
<td>0.04 (0.03)</td>
</tr>
</tbody>
</table>

*p < 0.05, **p < 0.01, ***p < 0.001

p-values from Pearson’s Chi-squared test; Wilcoxon rank sum test

Abbreviations: Aβ42, CSF amyloid-beta1-42; Aβ42/40, CSF amyloid-beta1-42/CSF amyloid-beta1-40 ratio; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; APOE-npscore, neuropathology-based APOE genetic risk score; CU, cognitively unimpaired; Dementia-AD, dementia suspected due to AD; LP, lumbar puncture; MCI-AD, mild cognitive impairment suspected due to AD; NHB, self-reported non-Hispanic Black; NHW, self-reported non-Hispanic white; ptau181, CSF phosphorylated tau 181; ptau/Aβ42 ratio, CSF phosphorylated tau 181/CSF amyloid-beta1-42 ratio; SD, standard deviation; WADRC, Wisconsin Alzheimer's Disease Research Center; WRAP, Wisconsin Registry for Alzheimer's Prevention.
Table 2. Linear-mixed effects model comparisons between APOE genetic variables.

<table>
<thead>
<tr>
<th></th>
<th>CSF Aβ42/40 ratio</th>
<th>CSF ptau181</th>
<th>CSF ptau181/Aβ42 ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>R² AIC BIC</td>
<td>n</td>
</tr>
<tr>
<td>WADRC/WRAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE4-status</td>
<td>948</td>
<td>0.344 -5728 -5684</td>
<td>971</td>
</tr>
<tr>
<td>ε4-count</td>
<td>948</td>
<td>0.355 -5740 -5696</td>
<td>971</td>
</tr>
<tr>
<td>APOE-npscore</td>
<td>948</td>
<td>0.360 -5746 -5702</td>
<td>971</td>
</tr>
<tr>
<td>ADNI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE4-status</td>
<td>423</td>
<td>0.315 -2285 -2248</td>
<td>548</td>
</tr>
<tr>
<td>ε4-count</td>
<td>423</td>
<td>0.359 -2309 -2272</td>
<td>548</td>
</tr>
<tr>
<td>APOE-npscore</td>
<td>423</td>
<td>0.375 -2318 -2282</td>
<td>548</td>
</tr>
</tbody>
</table>

Optimal model fit criteria (largest marginal R², smallest AIC, and smallest BIC) bolded.

Abbreviations: Aβ42/40, CSF amyloid-beta1-42/amyloid-beta1-40 ratio; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIC, Akaike Information Criterion; ε4-count, number of APOE ε4 alleles (0, 1, 2); CSF, cerebrospinal fluid; n, number of observations; ptau181, CSF phosphorylated tau 181; ptau/Aβ42 ratio, CSF phosphorylated tau 181/CSF amyloid-beta1-42 ratio; R², marginal R² (variation explained by fixed effects); WADRC, Wisconsin Alzheimer's Disease Research Center; WRAP, Wisconsin Registry for Alzheimer's Prevention.
Figure 1. CSF biomarker levels by age at time of lumbar puncture.

Scatterplots of the age at time of lumbar puncture (LP) against CSF Aβ42 (A), Aβ42/40 ratio (B), and ptau181 (C) with density plots for each biomarker on top and a density plot for age at LP for all three panels on the right-hand side of (C). Each point represents an individual CSF sample. Densities, loess curves, and points are all color-coded by study as shown in the legend; triangle-shaped points indicate CSF sample data from WADRC, square-shaped points indicate CSF sample data from WRAP, and circle-shaped points indicate CSF sample data from ADNI.