Eliminating mother-to-child transmission of HIV in Tanzania calls for efforts to address factors associated with a low confirmatory test

Baraka M. Morris¹*, Mukome Nyamhagata², Edith Tarimo¹, Bruno Sunguya¹

¹ Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es salaam, Tanzania
² Ministry of Health, P.O. Box 743, Dodoma, Tanzania

*Corresponding author

Email: bamalaki@yahoo.com (BMM)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Option B+ approach for prevention of mother-to-child transmission (PMTCT) has demonstrated the potential to eliminate pediatric HIV infections. Its success depends on early infant diagnosis (EID) of HIV among the exposed infants within the first 6 weeks, and a subsequent confirmatory HIV test at the 18th month. However, most mothers enrolled in the PMTCT-option B+ cascade of services in Tanzania do not turn-up for such confirmatory tests. We examined factors associated with the turning-up of mother-baby pairs on the PMTCT program for confirmatory HIV testing 18 months post-delivery in Tanzania.

Methods: This study utilized longitudinal data collected between 2015 and 2017 from 751 mother-baby pairs enrolled in the PMTCT- Option B+ approach in 79 health facilities from the 12 regions of Tanzania-mainland. Analysis was conducted using descriptive statistics to characterize the proportion of mother-baby pairs turning up for a confirmatory test and logistic regression analysis to examine factors associated with turning up for a confirmatory HIV testing at the 18th month.

Results: A total of 751 mother-baby records were observed only and 44.2% (95% CI: 40.7 – 47.8) of them received the HIV confirmatory test at 18 months. Mothers aged 25 years or above (adults’ mothers) were 1.44 more likely to turn up for confirmatory HIV-testing than young mothers; mothers with partners tested for HIV were 1.74 more likely to have confirmatory HIV-testing compared with partners not tested for HIV; newly HIV-positive mothers diagnosed on enrolment were 28% less likely to turn up their babies for confirmatory HIV-testing compared to known HIV-positive mothers; mothers with treatment supporters were 1.58 more likely to receive confirmatory HIV-testing compared...
to mothers without one, and mothers with babies whose DBS-PCR-1 was collected were 3.61 more likely to have confirmatory HIV-testing than those who didn’t collect DBS-PCR-1.

Conclusion: This study reveals that the turn-up for confirmatory HIV testing at 18 months among mother-baby pairs enrolled in the Option B+ approach is still low in Tanzania. This turn-up is associated with low maternal age, having a male partner who has not tested for HIV, lack of experience with HIV services, lack of treatment supporters, and failure to take the first DBS-PCR HIV test within the first two months post-delivery.

Introduction

The overall risk of HIV transmission from mother-to-child without any intervention ranges from 20% to 45% (Ref). Such unprecedented risk can be ameliorated with a successful implementation of preventing mother-to-child transmission (PMTCT) interventions that includes screening and treatment of both mothers and their newborn. [1-3] Remarkable efforts have been made in scaling up PMTCT services globally. Such efforts have resulted in marked improvement in PMTCT among countries with a heavy burden of HIV/AIDS.[4] Nevertheless, despite marked efforts and investment, the unprecedented burden of new infections still occurs among HIV-exposed newborns globally—Tanzania is no exception. The World Health Organization (WHO) recommended the adoption of universal antiretroviral treatment or Option B+, as the preferred PMTCT approach in LMICs with high HIV prevalence, high fertility, and extended breastfeeding.[2, 5] Under this plan, all women who test HIV positive are enrolled in lifelong ART soon after HIV diagnosis,
regardless of their CD4 count, or HIV clinical stage. The implementation of the Option B+
program requires women and their infants to access HIV care including a PMTCT cascade
of HIV prevention services for two years post-delivery.[6] The Option B+ cascade of
interventions requires the exposed children to undertake a confirmatory HIV test at 18
months of age to determine whether they are infected. If the child is infected, both the
mother and her child are transferred to Care Treatment Clinics (CTC).[5-7]

The adoption and implementation of Option B+ in Tanzania still face several challenges
similar to many other sub-Saharan countries. Studies reveal that a significant proportion of
women decline the PMTCT service outright, while another group silently defaults from
care.[8, 9] The proportion of infants who receive confirmatory HIV tests is also very low.
Only 34.6% of babies from HIV-infected mothers are brought for confirmatory HIV testing
at 18 months of age.[10] Low turn-up for confirmatory HIV testing denies the opportunity
for early diagnosis and treatment among children who might have been infected during
breastfeeding. Findings show that most of these undiagnosed children are likely to die
before their second birthday if they do not receive treatment.[2, 7, 11]

Evidence on the reasons and causes for low turn-up for confirmatory tests remains
inconclusive and varies in Tanzania like in other countries. Thus, this study investigated
factors associated with poor turn-up for confirmatory HIV testing at 18 months of age
among mother-baby pairs enrolled in the PMTCT Option B+ cascade in Tanzania.
Materials and Methods

Study Design and Population

This secondary analysis study used data from a cohort of mother-baby pairs who received PMTCT care in 79 health facilities in 12 selected regions of Tanzania between 2015-2017. Tanzania approved the National Guidelines for the implementation of Option B+ in 2013. According to this guideline, all pregnant mothers who tested HIV positive were counseled and enrolled in the Option B+ approach where they were monitored from their first antenatal clinic visit until their babies were two years old.[12, 13] Data was collected to monitor and evaluate the adherence to treatment among mother-baby pairs enrolled in the Option B+ approach of PMTCT.

Sample Size and sampling

Multistage random sampling was used to select 79 health facilities in the 12 regions of Tanzania mainland for the primary study. In these health facilities, a total of 4,738 HIV-positive mother-baby pairs were enrolled in the Option B+ program from 2015 to 2017. In the current study, only 751 HIV-positive mother-baby pairs were analyzed owing to the completeness of their medical records.

Variables and measures

The outcome variable was the infant’s confirmed HIV status at the 18th month of age. The outcome responses were categorical and measured using a nominal scale (dichotomous -
Yes/No), where “Yes” was for mother-baby pairs who turned for confirmatory HIV testing and “No” was for mother-baby pairs who did not turn for confirmatory HIV testing (Lost to Follow up). This did not include babies who died in the course of 18 months.

Independent variables included eight variables. These are: Maternal age groups defined based on the WHO age groups where mothers aged 24 years and less form the young group and those aged 25 years and above from the adult group (2) Gravidity defined as the number of times that a woman has been pregnant. Gravidity was classified into two categories, the first category for mothers in their first & second pregnancies (G1-G2) and the second category for mothers with more than two pregnancies (G3 – max). (3) Gestational age is the measure (usually in weeks) of the age of a pregnancy. Normally, the gestation age is grouped into three groups (trimesters). However, the WHO recommends women start antenatal care in their first trimester. In this study, the gestation age was grouped into two categories, the first category for mothers who were enrolled in their 1st trimesters and the second category for mothers who enrolled in the 2nd and 3rd trimesters. (4) Live with Partner (marital status) measured as a nominal categorical (dichotomous -Yes/No) variable where “Yes” was for married and cohabited mothers and “No” was for Single, divorced, and widowed mothers. (5) Partner tested measured as a categorical variable using a nominal scale (dichotomous -Yes/No), where “Yes” was for mothers with a partner who has tested for HIV and “No” for mothers with a partner who has not tested for HIV (6) Maternal HIV status at enrolment measured as a nominal categorical variable with two groups. The first group was for mothers whose HIV status was already known as HIV positive and the second group was for mothers who were newly diagnosed as HIV positive at enrollment in antenatal care (Known HIV +ve and New HIV +ve). (7) Presence of treatment supporters
was measured dichotomously using a nominal scale. “Yes” was for mothers with treatment supporter(s) and “No” was for mothers without treatment supporter(s). (8) Lastly, Collection of the first dry blood smear (DBS-PCR-1) within the first two months post-delivery. Option B+ PMTCT cascade requires HIV-exposed infants to have their first HIV test within 2 months of age for early HIV diagnosis. For each mother-baby pair it was recorded whether DBS-PCR-1 was collected or not and hence, was measured dichotomously (Yes/No) using a nominal scale.

Loss to Follow-up

Loss to follow-up was one of the child’s final status at the last visit. Likewise, this was one of the observations for not showing up for confirmatory HIV testing at the 18th month age of the baby. However, in this study, we did not analyze the child's last status, because child status is determined at the end of two years.

Data Analysis

The analysis focused on examining the upshots of Option B+ on the compliance to services among mother-baby pairs enrolled in the PMTCT program in Tanzania mainland. Factors associated with poor turn-up for confirmatory HIV testing at 18 months of infant age among these mother-baby pairs were analyzed as well. These factors were placed into four groups namely: maternal social-demographic characteristics (maternal age, gravidity, gestation age at enrolment, and live with a partner), experience with HIV services on enrolment (maternal HIV status), partner involvement on turn-up for confirmatory HIV testing (Partner tested), and presence of treatment supporters (treatment supporter). The
analysis examined whether these factors were associated with turn-up for confirmatory HIV testing.

Data were cleaned and analyzed using the STATA version 15th software package. Measures of central tendency (frequencies, means, medians, and standard deviations) described the socio-demographic characteristics of study participants (HIV-positive mother-baby pairs). A chi-square test of independence was used for the bivariate analysis of the relationships between outcomes and independent categorical variables. A p-value of 0.05 or less was used to determine the significance of the association between predictors and outcome variables. Then the multivariate analysis using multinomial logistic regression analysis was used to determine associations and ascertain the effect of confounders. The backward elimination method was used to determine the final model. First, the model contained all variables that showed significant association with the outcome variable during the bivariate analysis. The least significant variable (the one with the highest p-value) was removed from the model. The elimination continued until the stopping rule was reached. The stopping rule was when all remaining variables had a significant p-value (P=0.05).

Ethical Consideration

Ethical clearance for the PMTCT project was obtained from the National Institution of Medical Research (NIMR) and the permission to use mother-baby pairs PMTCT Option B+ cascade data was received from the Ministry of Health, Community Development, Gender, Elderly, and Children, through the PMTCT coordination unit. Informed consent was waived because this was purely secondary data and hence, we did not interact with the
Subjects. Confidentiality of participants in the data was highly maintained and special identification numbers were used to ensure anonymity.

Results

General characteristics

The mean age of mothers included in this analysis was 28.9 (SD = 5.8) years. The mean number of pregnancies (gravidity) was 3±2 and the mean gestation age at enrolment was 19.1±6.2 weeks. A total of 502 (78.9%) of 636 mothers who indicated their marital status were living with their partners (i.e. married or cohabited).

Baseline HIV Testing Characteristics of Mother-Baby Pairs

Of the 751 mother-baby records observed, 733 (97.6%, 95% CI: 96.2 – 98.5) had DBS collected by 2 months of age but only 332 (44.2%, 95% CI: 40.7 – 47.8) mother-baby pairs received the HIV confirmatory test at 18 months. More than half of 429 (57.1%, 95% CI: 53.5 – 60.6) mothers were newly HIV positive and diagnosed upon enrolment; less than a quarter of 157 (20.9%, 95% CI: 18.1 – 24) mothers had tested partners; and the majority 644 (85.5%, 95% CI: 83.1 – 88.1) of mothers had treatment supporters. (Table 1)

A chi-square test of independence was used to assess the relationship between independent variables and mother-baby pairs HIV confirmatory testing at the 18 months of age
(confirmed HIV testing). There was a significant relationship between the following variables and confirmed HIV testing: maternal age group $X^2(1, N = 751) = 6.57, p = 0.01$; gravidity $X^2(1, N = 751) = 6.96, p = 0.008$; maternal HIV status at enrollment $X^2(1, N = 751) = 4.73, p = 0.03$; partner being tested $X^2(1, N = 751) = 7.94, p = 0.005$; collection dried blood spot for HIV-1 PCR tested $X^2(1, N = 751) = 5.67, p = 0.02$; and presence of treatment supporter tested $X^2(1, N = 751) = 4.69, p = 0.03$. There was not a significant relationship between the following variables and confirmed HIV testing: gestation age group at enrolment $X^2(1, N = 751) = 3.60, p = 0.06$ and marital status (Live with a partner) $X^2(1, N = 636) = 0.06, p = 0.81$. Table 1 below summarizes the results of the descriptive analysis of the baseline HIV testing characteristics of mother-baby pairs enrolled in the PMTCT cascade in selected health facilities between 2015 and 2017.

Table 1: The Baseline HIV Testing Characteristics of the 751 Mother-Baby Pairs

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency (%)</th>
<th>95% Conf. Interv</th>
<th>Confirmed HIV - Testing</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Age Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young (10 – 24)</td>
<td>188 (25)</td>
<td>22.1 – 28.2</td>
<td>120 (63.8) 68 (36.2)</td>
<td>0.010</td>
</tr>
<tr>
<td>Adults (25 – max)</td>
<td>563 (75)</td>
<td>71.7 – 77.9</td>
<td>299 (53.2) 264 (46.9)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Gravidity Groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1 – G2</td>
<td>286 (38.1)</td>
<td>34.7 – 41.6</td>
<td>177 (61.9) 109 (38.1)</td>
<td>0.008</td>
</tr>
<tr>
<td>G3 - Max</td>
<td>465 (61.9)</td>
<td>58.4 – 65.3</td>
<td>242 (52.0) 223 (48.0)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Gestation Age Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>138 (18.4)</td>
<td>15.8 – 21.3</td>
<td>87 (63.0) 51 (37.0)</td>
<td>0.058</td>
</tr>
<tr>
<td>2nd & 3rd Trimester</td>
<td>613 (81.6)</td>
<td>78.7 – 84.2</td>
<td>332 (54.2) 281 (45.8)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Live with Partner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>134 (21.1)</td>
<td>18.1 – 24.4</td>
<td>76 (56.7) 58 (43.3)</td>
<td>0.814</td>
</tr>
<tr>
<td>Yes</td>
<td>502 (78.9)</td>
<td>75.6 – 81.9</td>
<td>279 (55.6) 223 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>636 (100)</td>
<td></td>
<td>355 (55.8) 281 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Maternal HIV status on Enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Know HIV +ve</td>
<td>322 (42.9)</td>
<td>39.4 – 46.5</td>
<td>165 (51.2) 157 (48.8)</td>
<td>0.030</td>
</tr>
<tr>
<td>New HIV +ve</td>
<td>429 (57.1)</td>
<td>53.5 – 60.6</td>
<td>254 (59.2) 175 (40.8)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Partner Tested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>594 (79.1)</td>
<td>76 – 81.8</td>
<td>347 (58.4) 247 (41.6)</td>
<td>0.005</td>
</tr>
<tr>
<td>Yes</td>
<td>157 (20.9)</td>
<td>18.1 – 24</td>
<td>72 (45.9) 85 (54.1)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
<tr>
<td>DBS1 Collected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18 (2.4)</td>
<td>1.5 – 3.8</td>
<td>15 (83.3) 3 (16.7)</td>
<td>0.017</td>
</tr>
<tr>
<td>Yes</td>
<td>733 (97.6)</td>
<td>96.2 – 98.5</td>
<td>404 (55.1) 329 (44.9)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Treatment Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>107 (14.3)</td>
<td>11.9 – 16.9</td>
<td>70 (65.4) 37 (34.6)</td>
<td>0.030</td>
</tr>
<tr>
<td>Yes</td>
<td>644 (85.7)</td>
<td>83.1 – 88.1</td>
<td>349 (54.2) 295 (45.8)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td>419 (55.8) 332 (44.2)</td>
<td></td>
</tr>
</tbody>
</table>
Factors associated with confirmatory HIV testing among exposed children at 18 months of age

All factors that were statistically significantly associated with the dependent variable were entered into the regression analysis. The binary logistic regression was conducted to provide unadjusted odds ratios. Then multivariate logistic regression was used to obtain an adjusted odds ratio (OR). During the backward elimination method to determine the final model, gravidity and gestation age were not statistically significant and were eliminated consecutively (Table 2).

The results of multiple regression analysis of the factors included in the final model were:

Maternal age group adults’ mothers were 1.44 more likely to receive confirmatory HIV-testing for their babies than young mothers (Maternal age group AOR=1.44 and p =0.04).

Mothers with partners who tested for HIV were 1.74 more times likely to have confirmatory HIV testing than those with partners not tested for HIV (Partner tested AOR=1.74 and p=0.003). New HIV-positive mothers diagnosed on enrolment were 0.72 less likely to turn up their babies for confirmatory HIV-testing than known HIV-positive mothers (Maternal HIV status at enrolment AOR=0.72 and p=0.033); mothers with treatment supporters were 1.58 times more likely to receive confirmatory HIV-testing than mothers without treatment supporters (Treatment supporter AOR=1.58 and p=0.041), and

<table>
<thead>
<tr>
<th>Confirmed HIV Testing</th>
<th>No</th>
<th>419 (55.8)</th>
<th>52.2 – 59.3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>332 (44.2)</td>
<td>40.7 – 47.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751 (100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
finally, mothers with babies whose DBS1 was collected were 3.61 more likely to have confirmatory HIV-testing (DBS1 collection AOR=3.61 and p=0.048).

Table 2: Logistic regression analysis of factors associated with turn up for confirmatory among HIV-positive mother-baby pairs who were enrolled in PMTCT cascade in selected health facilities between 2015 and 2017.

<table>
<thead>
<tr>
<th>Factor</th>
<th>OR</th>
<th>P-Value</th>
<th>95% CI</th>
<th>AOR</th>
<th>P-Value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Age Group</td>
<td>1.56</td>
<td>0.011</td>
<td>1.11 – 2.19</td>
<td>1.44</td>
<td>0.040</td>
<td>1.02 – 2.04</td>
</tr>
<tr>
<td>Partner tested</td>
<td>1.66</td>
<td>0.005</td>
<td>1.16 – 2.36</td>
<td>1.74</td>
<td>0.003</td>
<td>1.21 – 2.50</td>
</tr>
<tr>
<td>Maternal HIV Status</td>
<td>0.72</td>
<td>0.030</td>
<td>0.54 – 0.97</td>
<td>0.72</td>
<td>0.033</td>
<td>0.53 – 0.97</td>
</tr>
<tr>
<td>Treatment Supporter</td>
<td>1.60</td>
<td>0.031</td>
<td>1.04 – 2.45</td>
<td>1.58</td>
<td>0.041</td>
<td>1.02 – 2.46</td>
</tr>
<tr>
<td>DBS1 Collected</td>
<td>4.07</td>
<td>0.027</td>
<td>1.17 – 14.18</td>
<td>3.61</td>
<td>0.048</td>
<td>1.01 – 12.84</td>
</tr>
</tbody>
</table>

Discussion

This study provides a picture of the implementation of Option B+ in Tanzania mainly focusing on early infant diagnosis (EID) of HIV among exposed infants. Confirmatory HIV testing is a very important part of EID to ensure that all affected infants are identified and enrolled in treatment. In this study 44.2% of mothers enrolled in Option B+ turned in their babies for confirmatory testing. The study revealed that: Maternal age - adult mothers were more likely to take their babies for confirmatory HIV testing than young mothers, mothers with a tested partner were more likely to take their babies for confirmatory HIV testing than mothers with partners who have not been tested, newly diagnosed mothers were less
likely to take their babies for confirmatory HIV testing than mothers who knew of their HIV status prior to the enrolment (Known HIV positive), mothers with treatment supporters were more likely to take their babies for confirmatory HIV testing than mothers without treatment supporters, and mothers who brought their babies for DBS-PCR-1 collection were more likely to take for confirmatory HIV test at the 18-month post-delivery than those mothers who did not bring their babies for DBS-PCR-1 collection.

Lost follow-up is one of the major problems that affect the uptake of confirmatory HIV testing.[14] The implementation of option B+ in Tanzania has remarkably increased the uptake of confirmatory HIV testing at 18 months of age. However, most mothers are still lost to follow-up after the first two months post-delivery. This study showed that 44% of mothers brought their babies for confirmatory HIV testing at the 18th month, which is higher than findings of past studies in Tanzania found only 34.6% of mothers brought their babies to the test.[10, 15] Despite the fact that DBS-CPR 1 collection has been associated with the increase in the uptake of confirmatory HIV testing; still more than 50% of mothers who came for DBS-PCR 1 lost to follow up. The finding is consistent with findings of past studies in Northern Tanzania, which revealed a high loss to follow-up after the first two months post-delivery as one of the setbacks in the implementation of Option B+.[15, 16] Does this have to do with insufficient knowledge about the Option B+ cascade of services until after 18 months? Probably they thought that the DBS-PCR 1 test results were confirmatory and there was no need for another test. Mothers of babies with HIV-negative DBS-PCR 1 results need intensified counseling and close follow-up just like those who test Positive. This will ensure that mother-baby pairs remain in treatment and babies remain HIV-free until they graduate at 18 months.
Being an adult mother and experienced with PMTCT has been found to increase compliance to Option B+. Adult mothers (aged 25 years and above) were more likely to turn up for confirmatory HIV tests at their babies 18 months of age HIV than young mothers (aged less than 25). The majority of the women in Tanzania have their first delivery in their youth age.[17] Hence, by the time they reach adulthood age (25 years), they have experienced reproductive health services and might have been exposed to PMTCT services thus knowing the importance of adherence to services. Likewise, mothers who were newly HIV diagnosed (less experienced with PMTCT) were less likely to turn up for confirmatory HIV test at the 18-month post-delivery than mothers who knew their HIV status before enrolment to antenatal care (experienced with PMTCT). Studies done in sub-Saharan Africa have indicated poor adherence to Option B+ among young and newly HIV-diagnosed mothers.3,4. Poor adherence among mothers enrolled in Option B+ has been found to be associated with a lack of experience with PMTCT services, short time to process and accept results, denial of the test results, fear of committing to a life-long treatment regimen, feeling of shame, and stigma.[16, 18]

One of the unique findings in this study is that having a partner who has been tested for HIV is very important for compliance with Option B+ regardless of marital status. While marital status had no association with mothers turning in their babies for confirmatory HIV testing; mothers who had their partners tested for HIV are more likely to turn up for confirmatory HIV tests at their babies 18 months of age. This is contrary to recent studies in sub-Saharan Africa, which revealed that married mothers were more likely to adhere to option B+ than unmarried mothers. [19, 20]Awareness of the partner’s HIV status has been
associated with compliance with Option B+ services. Studies in Malawi, Ethiopia, and Kenya revealed that mothers who know the HIV status of their partners are more likely to remain in Option B+ care than those who did not know[21]. The finding from this study goes the extra mile as it indicates mothers who know that their partners have tested for HIV regardless of knowledge of their HIV status have an impact on the compliance to Option B+ care. Unfortunately, in this study, less than a quarter of mothers involved in the analysis had their partners tested. The calls for more effort to educate male partners on the importance of HIV testing.

The presence of treatment supporters improves mothers’ compliance to Option B+ cascade of services. The majority of mothers involved in this study had a treatment supporter. These findings support studies showing that treatment supporters increase compliance with Option B+,[16, 21-24] A treatment supporter can be a couple, a sibling, a relative, or a friend who a mother has selected to assist. The use of treatment supporters has been a successful technique used in patients with chronic conditions that require long-term course treatment. For instance, treatment supporters have been useful for many years in Tanzania to ensure patients’ adherence to the tuberculosis treatment regime.[25, 26] The study conducted Kilimanjaro region on the predictors of postpartum HIV care engagement among women in the PMTCT program, suggested strengthening the social support network system by engaging treatment supporters in HIV care. [13, 16, 18, 27, 28] Therefore, findings from this study cement the importance of engaging treatment supporters not only in engaging mothers to care but also to ensure that their babies receive the
Limitation

This study-employed data from the ministry of health management information system (HMIS) and the PMTCT cascade survey data collected from 80 health facilities. The following limitations were highlighted in this study: Data quality: only 751 of 4738 data collected were complete. This might have affected or influenced some of the results. There is a need to train health workers on the importance of proper documentation, constant supervision, and employ more health workers to cover the shortage. Likewise, these findings are from the analysis of secondary data that were primarily collected from the randomly selected health facilities for routine monitoring activities of PMTCT services. Therefore, it is difficult to know exactly how well the data collection process was done.

Conclusion

This study has found that the turn-up for confirmatory HIV testing at 18 months among mother-baby pairs enrolled in the Option B+ approach is still low in Tanzania. More than half of mothers lost to follow-up after the first two months post-delivery. This low turn-up for the confirmatory HIV testing among mother-baby pairs enrolled in the Option B+ approach is associated with low maternal age (young mothers), the low uptake of HIV testing among male partners (having a male partner who has not tested for HIV), being a newly diagnosed HIV mother (lack of experience to HIV services), lack of treatment supporters, and failure to take the first DBS-PCR HIV test within the first two months post-delivery. These factors have to be addressed in the Option B+ implementation guidelines in order to increase the retention of mother-baby pairs into the Option+ B cascade of services.
Recommendations for future directions

The study recommends the following: Post-HIV testing counseling sessions among young mothers (mothers under 25 years of age) and newly HIV-diagnosed mothers be intensified; male partner involvement in reproductive services, couple counseling, and the importance of HIV result disclosure should be enhanced; and further studies be done to identify the best modalities of identifying, integrating and utilizing treatment supporters who will assist HIV infected mother to comply Option B+ cascade,

Reference:

2. UNAIDS. 2015 progress report on the global plan towards the elimination of new HIV infections among children and keeping their mothers alive. 2015.

12. UNAIDS. 2015 PROGRESS REPORT ON THE GLOBAL PLAN towards the elimination of new HIV infections among children and keeping their mothers alive. 2015.
13. Atanga P. Retention-in-Care, Adherence and Treatment outcomes in a cohort of HIV-positive pregnant and breastfeeding women enrolled in a pilot project implementing “Option B+” in Cameroon. Medical Centre of the University of Munich (LMU); 2016.

