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Abstract	
It remains unknown whether de-identifying wearable biometric monitoring data is sufficient to protect the 
privacy of individuals in the dataset. This systematic review seeks to shed light on this. We searched Web of 
Science, IEEE Xplore Digital Library, PubMed, Scopus, and the ACM Digital Library on December 6, 2021 
(PROSPERO CRD42022312922). We also performed manual searches in journals of interest until April 12, 
2022. Though our search strategy had no language restrictions, all retrieved studies were in English. We 
included studies demonstrating re-identification, identification, or authentication using data from wearables. 
Our search returned 17,625 studies, and 72 studies met our inclusion criteria. Our findings demonstrate that 
substantial re-identification risk exists in data from sensors generally not thought to generate identifiable 
information, such as the electrocardiogram and electromyogram. In many cases, only a small amount of data (1-
300 seconds of recording) is sufficient for re-identification. 
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Introduction 
Is there a privacy concern when sharing de-identified data from wearable biometric monitoring technologies? 
This question has never been more pressing. The wearable device market (USD 116·3 billion in 2021) is 
projected to reach USD 265·4 billion by 2026.1 Some wearables have proven medical applications, for example, 
detecting arrhythmias2 or infections.3 Generally, data from wearables is persistent4 and has the potential to be 
shared widely to improve the accuracy and generalizability of algorithms. To support such advancements, the 
National Institutes of Health (NIH) has adopted policies encouraging extensive data sharing practices starting in 
2023.5 Additionally, many institutions are adopting the Findable Accessible Interoperable and Reusable (FAIR) 
Guiding Principles for scientific data management and stewardship.6 While data sharing provides tremendous 
benefits, it also opens up many critical questions surrounding privacy risks to patients and study participants 
that remain unanswered. For example, could machine learning algorithms be applied to public datasets or data 
shared through third-party data sharing agreements to enable re-identification? Is there an opportunity for data 
misuse by governments, corporations, or individuals? If so, how significant is this risk, and is there a way to 
mitigate it? 
 
Here, we define re-identification as the act of determining an individual’s identity from deliberately de-
identified/anonymized data. Re-identification often involves re-linking a de-identified/anonymized dataset with 
a dataset with identifiers to establish users present in both. Merely matching data does not constitute re-
identification. Instead, there is a need for identifiers for re-identification to take place. In real-world scenarios, 
identifiers are not always available; however, unscrupulous entities who want to know more about individuals 
whose data they already possess may have them (Figure 1). In addition, data breaches7 can also lead certain 
individuals/entities to possess a complete list or subset of identifiers. For this review, we assume motivated 
individuals gain access to identifiers and build machine learning algorithms to re-link/match biometric signals. 
 

 
 

Figure 1. An example scenario with an HIV+ employee who does not wish to share their HIV status with their Employer, but this 
information is divulged unintentionally through data sharing with the Stroke Prevention Study. 
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As a result of re-identification, the release of seemingly innocuous data can have unforeseen consequences. One 
notable example is the re-identification of the Massachusetts Governor from publicly shared and seemingly de-
identified state employee health insurance data8,9, which led to the passage of the Health Insurance Portability 
and Accountability Act (HIPAA) in 199610. This example also demonstrates that regulation changes often lag 
behind real-world re-identification events and their consequences. With biomedical data, the consequences of 
re-identification may be dire (e.g., Figure 1). Advances in machine learning have made it possible to infer 
sensitive information about individuals, such as their medical diagnoses11, mental health12, personality traits13, 
and emotions14, thus making it possible to learn information that an individual has not directly shared. Re-
identification, therefore, can reveal not only the initially collected data but also such inferences about an 
individual. 
 
Fundamentally, data from any sensing modality that can create a unique digital identifier (i.e., a “fingerprint”) 
can potentially be used for biometric identification/authentication (e.g., iris scans and face scans). Any such 
data may be used to re-identify an individual.15 
 
This paper explores open questions surrounding re-identification through an extensive systematic review of 
available literature. For example, what types of wearable data, how much of that data, and what resolution of 
such data can enable re-identification are all critical questions that remain unanswered. Our goal is to provide an 
overview of re-identification risks from wearables often not considered as generating identifiable information.  

Methods 
This review follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)16 
guidelines. It is registered on PROSPERO (CRD42022312922). 
 
Information Sources 
We searched peer-reviewed literature indexed in Web of Science, IEEE Xplore Digital Library, PubMed, 
Scopus, and the ACM Digital library on December 6, 2021, with no date limits. We also searched previously 
identified journals of interest. In April 2022, we identified a recently published review article17 exploring some 
of the topics discussed here; however, our review employed a broader search strategy, found additional sensing 
modalities, and delved deeper into re-identification. Additionally, our review focuses on the biomedical 
research community, which is newly charged with public data requirements5. We used Covidence software18 to 
conduct this review. 
 
Search Strategy 
This review focused on re-identification using biometric signals from wearables as opposed to other forms of 
re-identification, such as camera-based re-identification. We exclude GPS-based technologies or biometrics 
widely used for identification (e.g., iris scans and fingerprints), as these present clear privacy risks.19 Although 
we primarily focus on studies conducted using wearables, to highlight what could be possible, we also report 
findings from currently uncommon wearables such as the seismocardiogram and the phonocardiogram, even if 
the measurement modality was not a wearable form factor. The keywords we used for our searches were (re-id* 
OR reid* OR identi*) and (biometric* OR biosensor*) together with a bag of words identifying sensors such as 
“acceleromet*”, “gyroscope”, “ECG”, “PPG”, and “phonocardiogra*” (appendix p 2-5). Given search 
functionality restrictions in IEEE Xplore, we decomposed the IEEE Xplore database search into multiple 
separate searches that met the required guidelines. Our search strategy did not restrict the language in which 
articles were published; however, all retrieved studies were in English.  
 
Eligibility Criteria 
All included studies were peer-reviewed journal and conference papers published before April 12, 2022. 
Eligible studies had to demonstrate re-identification, identification, or authentication using biometric signals 
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collected in humans using wearables except in circumstances of rare sensors such as the phonocardiogram, 
which could include biometric monitoring technologies with non-wearable form factors. Additionally, we only 
included studies with unimodal sensors since we did not come across any studies where unimodal sensors failed 
to perform re-identification when used independently yet succeeded when combined with other sensors. 
 
We excluded studies that: used animals, used theoretical models, used video/cameras, employed impractical 
form factors (such as multiple inertial measurement unit (IMU) sensors attached to five locations 20), did not 
describe sensor placement, had unclear sensor specifications, or did not report standard performance metrics. 
We also excluded 28 studies with similar findings to other studies by the same authors. 
 
Screening and Selection 
We exported all studies to Covidence18, which automatically identified and removed 6,218 duplicates. Two 
independent reviewers performed title and abstract screening and full-text review, while a third reviewer acted 
as the adjudicator for resolving inter-rater disagreements. LC ensured quality assurance of the process, and all 
reviewers resolved any resulting anomalies after adjudication. 
 
Data Extraction and Synthesis 
Two reviewers independently extracted data and performed study quality and publication bias assessments for 
each study while an adjudicator resolved all conflicts. If any included study referenced other studies meeting 
our eligibility criteria in any tables in that study’s paper, we also extracted information from those referenced 
studies. We extracted 18 study characteristics from the included studies (appendix p 5-6) and sensing-modality-
specific characteristics: the number of channels/leads (ECG, EEG, and EMG) and the evoked potential stimulus 
(EEG). 
 
To minimize error, LC reviewed the extracted data for potential discrepancies, and all team members resolved 
any identified issues. Finally, all graphs were generated in R(v4.0.2) using ggplot2. 
 
Role of the funding source 
Funders had no role in study design, data collection, analysis, interpretation, or report writing.  

Results 
Our search retrieved 17,625 studies (6,218 duplicates), resulting in 11,407 studies to be screened (Figure 2). 
After title and abstract screening, 1,012 studies advanced to the full-text review. Of these, 65 met the eligibility 
criteria. We then performed a nested search for additional relevant studies in all of the tables in the 65 studies 
and uncovered an additional 12 studies. We also removed five studies from the original 65 since they were 
review articles that referenced other studies we had included. Finally, we extracted data from included studies 
and subsequently analyzed them (appendix p 6-12). 
 
For study quality assessment, standard clinical study assessment tools21 were not applicable because none of the 
included studies were clinical. Instead, we designed a custom assessment tool with four overall quality 
categories: high, medium, low, and very low (appendix p 13). Of the retrieved studies, sixty-seven (93%) were 
classified as high quality, five (7%) were medium quality, and none were low quality. We detected no 
publication bias22 in any of the included studies (appendix p 13).  
 
Of the included studies, 20 unique sensing modalities were mentioned (Figure 3), the top three of which were 
electroencephalogram (EEG: N=17), inertial measurement unit (IMU: N=15), and electrocardiogram (ECG: 
N=8). Despite the abundance of PPG-enabled smartwatches23, our search revealed less investigation on PPG 
(N=4) as compared to ECG (N=8), and our broader search revealed the same pattern, with 297 papers on PPG 
and 775 on ECG in the initial search. Furthermore, in addition to studies using common sensing modalities, 
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there were a handful of studies using less common biosignals such as seismocardiogram and bioimpedance, 
pointing to the importance of privacy considerations even in emerging sensing technologies.  
 

 
Figure 2. PRISMA diagram illustrating the article selection process 

 
 
 
Not all 18 study characteristics were present in every paper (appendix p 1); however, every included study 
reported biometric identification performance (how well the system performed on the task of identifying 
individuals), which was this review’s key variable of interest. Because 57 (79%) of the papers used correct 
identification rate (CIR) as the biometric performance metric, we focus our findings on CIR; however, there are 
other widely-accepted biometric performance metrics, such as the equal error rate (EER), which was reported 
by 22 (31%) of the included studies. Notably, of the 25 studies that reported participants’ health status, all but 
one participant24 were reported to be healthy. The unhealthy participant had a heart condition which reportedly 
made their identification easier.24  
 
We analyzed the on-body positioning of all wearables used (Figure 4). The majority of the devices were 
positioned on the wrist (26), head (16), or chest (13), and some of the sensing modalities were tested on 
multiple on-body locations (e.g., ECG was measured using sensors behind the ear, on the upper arm, on the 
chest, or on the wrist). In addition, two studies explored how on-body wearable device placement affects re-
identification. Noh et al.25 found that the bioimpedance CIR was higher at the wrist (95·7%) than at the finger 
(77·6%), while Zhang et al.26 found the ECG CIR to be higher using measurements from a single arm (98·8%) 
as compared with using electrodes next to each ear (91·1%).  
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We explored the biometric identification performance of studies with the highest number of subjects for each 
sensing modality (appendix p 2). We also explored the minimum data needed for re-identification (Figure 5). 
Unfortunately, 51% of the studies did not report this characteristic; however, those that did, revealed that 
minimal data is required. For example, as little as 30 seconds of typing data (accelerometer and gyroscope) 
could achieve a CIR of 99·2% for a 34-person participant pool.27   
 

 
Figure 3. Frequency (white number inside bars) is the count of sensing modalities that are examined in the corpus of the 72 papers 
explored, while the percentage is the proportion of papers covering that sensing modality. Some papers explored multiple sensing 

modalities; hence the number of all sensing modalities (76) is more than the number of papers explored (72). Here, IMU involves the 
simultaneous use of an accelerometer and gyroscope, and does not include a magnetometer. 

 
Given that EEG, IMU, and ECG had the largest bodies of evidence on re-identification potential, we 
summarized findings from these three sensor modalities. Though re-identification using IMUs has been 
explored when individuals perform activities of daily living such as eating28, brushing one's teeth28, or 
typing27,29, over 50% of the studies that used IMUs focused on gait. Accordingly, we expound on gait below, 
and the appendix (p 10) provides tables of study characteristics of other included studies utilizing IMUs that 
focused on aspects of movement other than gait. 
 
EEG. Seventeen studies demonstrated an ability to identify an individual using EEG (average group size=20; 
median =16; range 4-60). Five papers (29%) reported the recording length used for re-identification, which was 
21 s on average, with a median of 12·8 s. Eleven of the studies (65%) reported the health status of participants 
(all were healthy and aged 18-40). Activities during signal acquisition included listening to one’s favorite 
music, resting with eyes open or closed, cognitive loading tasks, imagined speech, and visual stimuli. The 
highest recorded CIR was 99·42% using the Muse 4-electrode EEG headset while participants (N=20) listened 
to their favorite songs.30 The system that could enable re-identification with the least amount of data was the 
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Neurosky Mindwave 1-electrode EEG, which was used during resting with eyes open (N=46) and achieved a 
CIR of 95·48% with just two seconds of recorded data.26  
 

 
Figure 4. Sensor positions for included studies. This illustration excludes two studies that performed biometric identification using 

breathing sounds from a smartphone held in participants’ hands. 
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Figure 5.  CIR, number of participants (N) alongside minimum amount of time sufficient for re-identification. The white numbers in 

the middle of the CIR plot represent the CIR rounded to the nearest whole number. The numbers at the end of the number of 
participants plot represent the number of participants. Finally, the numbers at the end of the re-identification time plot represent the 

minimum amount of time sufficient for re-identification (in seconds). 
 
ECG. Eight studies demonstrated an ability to identify an individual using only an ECG signal (average group 
size=15; median =10; range 5-33). Three of the studies (38%) reported the health status of participants. All 
participants were healthy except for a cardiopathic male aged 60 in the Randazzo et al. study, which used a 
custom ECG watch (1 lead, 1 kHz) to monitor 6 participants over an unspecified period during which they 
captured 20-63 ECGs per participant.24 The overall CIR of the study was 99%, and the 60-year-old cardiopathic 
male was reported to be the easiest to identify (CIR=100%). A separate study using the VitalJacket® (1 lead, 
200 Hz) attained nearly 100% CIR for five firefighters using single heartbeats collected between 5 hours and 6 
months after the training data.31 Even with six months between training and testing data, the proposed system 
could still identify all five firefighters with 100% or near-100% CIR. Finally, the most extensive study (N=33)32 
used 1-lead OMSignal apparel over 6 weeks in free-living environments. With just 10 heartbeats, the study 
team’s algorithm could identify an individual with a CIR of 95·95%. 
 
Gait. We define gait as an individual’s way of walking. Thirteen studies demonstrated an ability to identify an 
individual using only gait signals (average group size=34; median =30; range 8-60). However, only one of the 
studies reported the health status of its participants, who were all healthy. Twelve studies combined the 
accelerometer and gyroscope, which we refer to as an IMU, or used each sensor independently. Additionally, 
one study used an in-ear microphone to measure gait from walking sounds propagated through the human 
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musculoskeletal system. One of the challenges in gait studies was the presence of multiple definitions of 
movement, e.g., fixed time durations, step cycles, and walk cycles, thus making it difficult to compare results 
across studies. However, in one study of note (N=30), just 10 seconds of data from an IMU (100 Hz 
accelerometer and gyroscope) from the MetaWear C Board wristband was sufficient to identify an individual 
with 100% CIR.33 

Discussion 
This study reviewed a vast literature base and summarized 72 included studies. All but four of the included 
studies that reported CIR (N=57) demonstrated high CIR values (86-100%), suggesting that re-identification 
risks from wearable device data are higher than previously appreciated. Moreover, the minimum data duration 
for re-identification ranged from 1-300 seconds, suggesting that very small amounts of data may be sufficient to 
pose a privacy risk in seemingly anonymized biosensor data. All but four studies had fewer than 100 subjects; 
thus, it remains to be seen whether these results would scale with larger populations. The few studies with larger 
participant pools (N=206 to 421; 4 studies) show results consistent with those with fewer subjects (N=3 to 73; 
68 studies), indicating that re-identification risks may remain a threat in larger group sizes. Further research is 
needed to determine to what extent large datasets pose similar risks for re-identification and what appropriate 
mitigation strategies are needed to protect privacy in large public biosensor databases. 
 
This review also highlights that, in many cases, re-identification requires very little data. For example, in a 
study with 46 participants, 2 seconds of EEG recording could identify an individual with a CIR of 95%, and in 
another with 51 participants who were brushing teeth while wearing an LG G watch, 50 seconds of 
accelerometer and gyroscope data could identify an individual with a CIR of 96% (Figure 5). This discovery is 
concerning since publicly available data is becoming increasingly abundant, especially given recent data sharing 
advocacy and policy by influential bodies such as the US FDA34 and NIH.5 We are also strong proponents of 
open science and open data to enable FAIR6 research principles and diverse representation. Thus, we find these 
results to be of concern and aim, with this review, to bring the community together to explore and discuss best 
practices to balance the potential risks and benefits of sharing versus not sharing data (Figure 6). Consequently, 
as a community, we must continue reevaluating data sharing policies in the context of privacy and FAIR science 
principles as new research becomes available on risks and benefits on both sides.  
 

 
Figure 6. Potential benefits and potential risks of wearable data sharing can tilt the cost-benefit balance either way. Privacy-aware 

data sharing platforms can help to balance the risks and benefits. 
 
In general, our findings align with similar research on state-of-the-art non-wearable devices. For example, 12-
lead ECG data from two open access databases combined with other electronic health records data from 40,000 
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patients revealed15 CIR rates in similar ranges to those reported from studies using wearable ECGs. The 
researchers looked at 37 heart conditions, including supraventricular tachycardia, ST depression, and pacing 
rhythm, and recorded an overall CIR of 94·56%. The CIR for individual conditions ranged from 90·32-98·55% 
in all but seven conditions. Patients with premature ventricular contractions had the lowest CIR—78·54%. 
 
In addition, 58% of the studies we analyzed utilized head-worn and wrist-worn wearables (Figure 4). This 
observation aligns with the global forecast for the wearable technology market1 for 2026, which projects head-
worn and wrist-worn wearables to experience the most growth compared to other wearables.  
 
Ultimately, there is a need to possess identifiers to re-identify someone, so merely matching individuals in de-
identified/anonymized datasets does not constitute true re-identification. Re-identification concerns have been 
historically dismissed because the probability that an attacker gains access to data containing identifiers is low. 
However, an increasing number of companies are entering third-party data sharing agreements35, some of which 
are ethically tenuous35,36 (e.g., driven by profits, personal benefit, or political gain over public good). The desire 
to know more about the patient or the customer and personalize goods and services by direct advertising is a 
likely culprit in re-identification attempts. For example, web-scraping could reveal an individual’s medical 
diagnoses and personality traits, which could be used to personalize advertising or reveal more information 
about the subjects to benefit the re-identifying entity (Figure 1).   
 
The findings here should not be used to justify blocking wearable biometric data sharing. On the contrary, this 
work exposes the need for more careful consideration of how data should be shared. It suggests that privacy-
preserving methods will be needed for open science to flourish. For example, there is an opportunity for 
regulatory bodies and funding agencies to expand support for privacy-conscious data sharing platforms that 
mitigate re-identification risk. Such platforms could be, for instance, semi-public, research-focused data sharing 
platforms that only appropriately trained and approved researchers can access through two-way authentication 
schemes using organizational email addresses (e.g., PhysioNet37 and AllOfUs38). It should be noted that systems 
like this could delay or even discourage some forms of citizen science. 
 
On a different note, none of the studies we reviewed addressed the question: in the absence of any identifying 
information about a group, is it possible to re-identify a person from that group using biosensor data alone? All 
included studies had a complete list of participants, which will not always be the case in many real-world 
scenarios. Therefore, there is a fundamental distinction between finding out which of the N study participants 
has the biometric signature of participant X versus obtaining X’s name and phone number without knowing 
who was in the study. In the case of genetic data, this is possible.39 Could future investigators merge wearable 
public data with public genetic data to re-identify participants? Further study is needed to determine how these 
concepts apply to data from wearables. 
 
Another limitation of this review is that most studies had short session intervals or collected all data in one 
session. The lack of long session intervals or the collection of all data in one session prevents drawing 
conclusions about template aging (expected increases in error over time due to intra-individual changes, for 
example, changes in voice or face with age).40,41 Because of template aging, it might not be possible to identify 
individuals using widely temporally spaced data. Knowing maximum temporal intervals for any sensing 
modality with the ability to biometrically identify individuals could be an essential tool for policymakers. Once 
this is known, certain kinds of biometric data could be released to the public after scientifically determined 
temporal intervals. With improving algorithms, these intervals may extend as well. 
 
The included studies had substantial missing data (appendix p 1). For example, only 35% of studies mentioned 
anything about participants’ health status. Of those, only one participant was unhealthy, so the results from this 
review might not be fully extensible to the broader population. On the other hand, if a disease is uncommon and 
easily identified with a biosensor, re-identifying an individual from the said sensor data would be more 
straightforward. Future research should explore how health status affects biometric identification. 



	 11	
 
We did not evaluate multimodal re-identification techniques in this review; however, we anticipate multimodal 
re-identification to become more relevant in the near future.  
 
Finally, a real risk for re-identification exists in wearable sensor data. While this risk can be minimized, it 
cannot be fully mitigated. Our findings reveal that basic practices of withholding identifiers from public 
repositories may not be sufficient to ensure privacy. More study is needed to guide the creation of policies and 
procedures that are sufficient to protect privacy, given the prevalence of wearable data collection and sharing. In 
conclusion, hope is not lost. The risk of not sharing data may be even greater than the risk of re-identification 
(e.g., algorithmic bias42,43 and failure to develop new algorithmic tools that could save lives), but new solutions 
are possible to reduce the risk of re-identification. For example, emphasis on research directions for methods 
development on privacy-protecting methods such as federated learning44, differential privacy45, and use of 
synthetic data46 could allow the community to continue to reap the many benefits of data sharing while 
protecting the privacy of data donors.  
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