Fifteen-fold State-level Variation in US Oxycodone Distribution from 2000-2021

Jay P. Solgama1*, Mellar P. Davis, MD1, Jove Graham, PhD2, Kenneth L. McCall, PharmD3,4, Brian J. Piper, PhD, MS1,5

1Geisinger Commonwealth School of Medicine, Scranton, PA, USA
2Center For Health Research, Danville, PA, USA
3Binghamton University, Binghamton, NY, USA
4University of New England, Portland, ME, USA
5Center for Pharmacy Innovation and Outcomes, Forty Fort, PA, USA

*jsolgama@som.geisinger.edu

Declarations: BJP was (2019-21) part of an osteoarthritis research team supported by Pfizer and Eli Lilly and is currently supported by HRSA (D34HP31025) and the Pennsylvania Academic Clinical Research Center. JG was (2019-21) supported by Pfizer and Eli Lilly.

Abstract: 293 words
Text: 2,711 words
Figures: 3 Tables: 0 Supplemental Figures: 2 Supplemental Tables: 0 Supplemental Materials: 1
Abstract

**Background:** More than 80,000 Americans died of an opioid overdose in 2021 as the United States (US) continues to struggle with an opioid crisis. Prescription opioids play a substantial role by introducing patients to opioids and providing a supply of drugs that can be redirected to those seeking to misuse them. This project aimed to characterize the distribution of oxycodone, one of the most prescribed and misused prescription opioids in the US, by state and over time. **Methods:** The Drug Enforcement Administration annual summary reports from the Automation of Reports and Consolidated Orders System (ARCOS) provided the weight of oxycodone distributed in grams per state by business type (pharmacies, hospitals, and practitioners). Weight of oxycodone was converted to Morphine Milligram Equivalents (MME) per capita using a conversion factor of 1.5 and normalized for annual population from the Census Bureau. **Results:** There was a sharp 280.13% increase in total MME/person of oxycodone from 2000-2010, followed by a slower 54.34% decrease from 2010-2021. Three states displayed consistent and substantial elevations in combined MME/person compared to other states: Florida (2007-11), Delaware (2003-20), and Tennessee (2012-21). MME/person from only pharmacies, which constituted >94% of the total, showed similar results. Hospitals in Alaska (2000-01, 2008, 2010-21), Colorado (2008-21), and DC (2000-11) distributed substantially more MME/person over many years compared to other states. Florida stood out in practitioner-distributed oxycodone, with an elevation of almost 15-fold the average state from 2000-2010. **Conclusion:** Oxycodone distribution across the US showed marked differences between states and business types over time. There was a swift rise in oxycodone until a peak in 2010, and a subsequent decline until 2021. Further investigation of opioid guidelines and regulations in states with high or low oxycodone distribution may provide insight for future actions to mitigate opioid misuse.
INTRODUCTION

The United States (US) is amid an opioid crisis that has been worsening since the start of the century. The most recent data shows that 80,725 individuals died from an opioid overdose in 2021. Countless more struggle with the physical, mental, and social consequences of opioid use disorder. Prescription opioids play an appreciable role in the epidemic, putting pain management patients at risk for developing an addiction and providing a potential source for opioid misusers. Since the 1990s, many people were introduced to opioids through prescription drugs, and some moved on to cheaper alternatives such as heroin. It is important to utilize available data to identify changes in distribution of prescription opioids to inform future policy aimed at minimizing harm. Regulations and guidelines often apply at the state level, and heterogeneity in culture, politics, and socioeconomics play a role in the disproportionate impact of the crisis in different regions. In this report, we aimed to characterize the distribution of oxycodone, a prevalent opioid that has contributed to the crisis, across US states.

Oxycodone is a semi-synthetic opioid derived from thebaine which was first developed in 1916 at the University of Frankfurt in Germany. It was introduced in the US but became widely used when the FDA approved the OxyContin controlled-release formulation in 1995. Oxycodone acts as an analgesic through agonist activity at mu, kappa, and delta opioid receptors. Binding to these G-protein-coupled receptors inhibits adenylyl-cyclase, decreasing presynaptic neurotransmitter release in nociceptive pathways, and hyperpolarizes postsynaptic neurons, decreasing excitability. It is administered orally for moderate to severe pain management, with typical immediate-release doses ranging from 5-15 mg every 4 to 6 hours as needed, though doses vary depending on need and presence of opioid tolerance. This Schedule II drug includes boxed warnings for addiction and misuse, potentially leading to overdose death, and has the
potential to cause neonatal opioid withdrawal syndrome when used during pregnancy. Adverse effects include respiratory depression, the main concern of overdose, nausea, constipation, and pruritis. The medication is commonly combined with other analgesics such as ibuprofen, acetaminophen, or aspirin.

Oxycodone was the most commonly consumed opioid globally from 2009-19, with the US being the largest consumer each year. The generic product and other formulations (e.g., OxyContin, Percocet, Percodan, Roxicodone) were misused by 1.1% of the US population in 2020, behind only hydrocodone. Although 67% of people report misusing opioids do so for pain management, there is concern that it could lead to addiction and escalation to illicit drugs. Oxycodone is of particular concern due to its high abuse liability. Its danger is demonstrated by high rates of overdose death, as it was involved in 33,154 deaths between 2011-16 and is the third highest on the list behind heroin and fentanyl. Oxycodone misuse was further exacerbated by misleading marketing from pharmaceutical companies, with claims of low addiction potential. The US Department of Justice resolved investigations with Purdue Pharma, the producer of OxyContin, and the Sackler family near the end of 2020. Several other pharmaceutical companies and retail pharmacies face legislative action regarding opioid marketing. It is valuable to examine the patterns in oxycodone distribution in the context of actions being taken to hold corporations responsible.

Few studies have investigated trends in oxycodone distribution throughout the US. One investigation utilized the Drug Enforcement Administration’s Automation of Reports and Consolidated Orders System (ARCOS) database to broadly characterize the extent of use for several different prescribed opioids. They found a concerning 69.7% increase in amount of oxycodone distribution over the study period of 2000-2010, though there were limitations in
determining the reasons for this change$^{15}$. A more recent report performed a detailed analysis for both oxycodone and hydrocodone in U.S. commuting zones using Washington Post ARCOS data found that population size influenced scaling behavior of pills, and discovered regions of high sales in the Appalachians, Ozarks and the west coast$^{16}$.

Here, we explore oxycodone distribution by state using the US Drug Enforcement Agency (DEA) Automated Reports and Consolidated Orders System (ARCOS) over a larger time frame than any previous studies, which include reports on prescription opioids in the US territories, Texas, and throughout Delaware, Maryland, and Virginia$^{17-19}$. Past works frequently rely on the IQVIA database, which is limited by gaps in oxycodone, including data from Veteran’s Affairs, Indian Health Services facilities, hospitals, and independent pharmacies$^{20}$. Using states as the geographical unit allows results to be interpreted in the context of laws and regulations which apply at that level. We include analysis of distribution by three business types: pharmacies, hospitals$^{21}$, and practitioners, to provide more detailed information.
METHODS

Procedures: Data was collected from the ARCOS Report 5. The database is provided by the DEA and reports on distribution of Schedule II and III controlled substances\(^2\). Oxycodone distribution was given in grams grouped by business type (hospitals, pharmacies, practitioners, mid-level practitioners, narcotic treatment programs, teaching institutions) per state for 2000-2021 alongside number of buyers. Oxycodone from teaching institutions was addressed elsewhere\(^3\). Pharmacies, hospitals, and practitioners were chosen for individual analysis in addition to the total of all business types.

Data analysis: Microsoft Excel, GraphPad Prism, and RStudio were used to analyze and visualize the data. Grams of oxycodone were converted to morphine milligram equivalents (MME) using a standard oral conversion factor of 1.5\(^4\). The total MME per state was divided by the corresponding year’s population, as reported by the U.S. Census Bureau’s American Community Survey, to calculate MME per person. MME per buyer was calculated by dividing MME and the provided number of businesses that made purchases.

MME per person was plotted across time for each state to identify the peak year of oxycodone distribution. The five states with the highest average distribution and the five states with the lowest average distribution were plotted for pharmacies, hospitals, and the total of all business types. Data for practitioners was much more varied, and ten states were chosen to be plotted based on the magnitude of distribution and notable patterns.

States whose values that fell outside the range of ±1.96*standard deviations from the mean were flagged to be of potential interest, and a Pearson correlation coefficient, r, was calculated for MME per person and MME per buyer for each business type.
RESULTS

Total Oxycodone Distribution

The United States distributed 1,404.01 metric tons in MME of oxycodone from 2000 to 2021. Total MME per person increased rapidly and by +280.14% from 2000 to the peak in 2010. There was a more protracted decrease of -54.37% from 2010 to 2021. Notable differences arose when distribution was grouped by business type. Pharmacies constituted the largest proportion of oxycodone distribution (>94%) and drove the pattern of total distribution. Pharmacies showed a +292.80% increase from 2000-10 and a -53.59% decrease from the peak to 2021. Hospitals were far less variable in their distribution between years, with an increase of +80.18% to a later peak in 2012 and a subsequent slow decline of -51.35% by 2021. Practitioners showed a pronounced increase in their oxycodone distribution by +15,567.38% leading up to 2010 but declined by -87.38% the following year. There was a -99.31% reduction from the peak by 2021. MME per person was positively and strongly correlated with MME per buyer for each grouping, with an r value of +0.9507 for all businesses, +0.9383 for pharmacies, +0.6974 for hospitals, and +0.8471 for practitioners.
Figure 1: Total oxycodone distribution and by business activity in the US from 2000 to 2021 as reported by the Drug Enforcement Administration’s Automated Reports and Consolidated Orders System.
Oxycodone Distribution by State

MME per person distributed by states showed large variations between each other, in total, and for each business type. The difference between population corrected distribution was 8-fold in 2000 (Alaska = 177.7, Illinois = 23.4), peaked at 15-fold in 2010 (Florida = 993.5, Texas = 66.7), and decreased to 6-fold in 2021 (Tennessee = 250.8, Illinois = 45.2). Florida (2007-11), Delaware (2003-20), and Tennessee (2012-21) showed consistent and substantial elevations in combined MME/person compared to other states (i.e., greater than 1.96 standard deviations higher than the mean). Texas (2012-21) and Illinois (2006, 2013-21) were on the other end of the spectrum, with considerably lower oxycodone distribution.

MME per person from only pharmacies constituted the preponderance (>94%) of the total and displayed a similar pattern as the combined distribution. Florida (2007-11), Delaware (2003-20), and Tennessee (2012-21) had substantially higher values, while Texas (2012-21) and Illinois (2006, 2013-21) had substantially lower values, over many years. Most states showed some growth leading up to the years around the national peak in 2010 followed by a decline until 2021.

States tended to peak in the few years following 2010 when examining oxycodone distributed by hospitals. There were still large differences in magnitude between states. Hospitals in Alaska (2000-01, 2008, 2010-21), Colorado (2008-2021), and DC (2000-11) purchased the largest quantities of oxycodone. Only Illinois distributed amounts of oxycodone that were lower than 1.96 standard deviations from the mean, from 2000-02.

The data for practitioners showed notable variations between states in the magnitude of oxycodone distribution as well as patterns of change. Florida stood out with nearly 15-fold the MME/person for the average state from 2006-10. Florida was also 26,152-fold elevated relative to West Virginia in 2010. Delaware showed a sharp spike in 2011 that dropped back within
±1.96 standard deviations of the mean by 2013. Hawaii had notably high values in more recent years from 2014-15 and 2017-21. There were no states that distributed amounts of oxycodone that were 1.96 standard deviations lower than the mean.
Figure 2: Morphine mg equivalent (MME) per person of oxycodone by business type 2000-2021 as reported by the United States Drug Enforcement Administration’s Automated Reports and Consolidated Orders System for A) All Business Types, (B) Pharmacies, (C) Hospitals, and (D) Practitioners. Areas outside $\pm 1.96$ standard deviations of the average state are in gray.
Figure 3: Heat map of the morphine mg equivalent (MME) per person in the peak year (2010) as reported by the Drug Enforcement Administration’s Automated Reports and Consolidated Orders System (A). Bar graphs showing the percent increase from 2000 to 2010 (B) and percent decrease from 2010-21 (C). States outside *±1.96 or #±1.0 standard deviations of the mean.
DISCUSSION

This study utilized the comprehensive ARCOS database to characterize distribution of oxycodone by pharmacies, hospitals, practitioners, and in total from 2000-21. We saw a large increase in total oxycodone distribution from 2000 until 2010, during which time MME per person grew by four-fold. This was followed by a decrease by more than half over the next eleven years. There were stark differences in the patterns of change between states. Some, like Florida\textsuperscript{19} or Delaware\textsuperscript{18}, increased substantially leading up to 2010 and dropped off just as quickly. Others like Texas\textsuperscript{17} or Illinois maintained consistently low distribution, and many states fell somewhere in between. Differences between states peaked at nearly fifteen-fold in the peak year (2010), and never dropped below five-fold. It is important to put the peak oxycodone MME in Delaware (918 MME/person) in context. The MME for ten opioids including oxycodone in 2016 in North Dakota was almost half (485) of this\textsuperscript{24}. These pronounced and persistent state-level disparities may offer opportunities for continued vigilance in opioid stewardship.

Pharmacies distributed nearly 95\% of the oxycodone over the timeframe of the data, following a pattern close to the total distribution. Again, many states displayed large increases leading up to the peak year, preceding a slow decline. Comparison of the magnitude of distribution revealed about seven-fold, fifteen-fold, and six-fold differences in 2000, 2010, and 2021 respectively. Practitioner distribution also showed pronounced variation between states. Differences started at 928-fold in 2000, peaked at an astounding 26,152-fold in 2010, and settled at 3,192-fold in 2021. Overall, there was a rapid increase and decrease around the peak, but many states showed multiple peaks while others (e.g., West Virginia, Rhode Island, Montana) distributed relatively low amounts of oxycodone for all years. Oxycodone distributed by hospitals\textsuperscript{21} showed a far less drastic peak in 2012, later than the other groups, and slowly

The distribution of oxycodone peaking in 2010 is possibly due to a reformulation of OxyContin to a more abuse-deterrent form which was harder to crush, for nasal insufflation, and dissolve, for intravenous injection⁴. There is support for this change decreasing the abuse potential of the drug²⁵,²⁶, likely leading to decreased demand for misusers. Also in 2010, there was significant action taken against “pill mill” physicians, who inappropriately prescribed controlled medications, particularly in Florida. In the following years, attempts to decrease these harmful practices extended to many other states. However, it is also important to recognize that prior ACROS analyses noted that the peak was only slightly later (2011) for ten Schedule II opioids²⁴ indicating that provider and patient attitudes towards prescription opioids have undergone substantial changes over the past decade²⁷.

The US stands out considerably from other countries in the world regarding oxycodone consumption. In 2020, the US accounted for 68.2% of global oxycodone consumption, dwarfing the other major consumers, Germany (5.2%), Canada (3.2%), France (3.1%), China (2.8%), Australia (2.4%), and the United Kingdom (2%)²⁸. Regulations in the US also differ greatly from other countries, where national regulations are more common and guidelines have a larger impact on clinical practice²⁹. Although the US develops guidelines at a national level, individual states are responsible for their implementation. A 2019 report from the Organization for Economic Cooperation and Development (OECD) took an in-depth look at the opioid crisis and policies to address it in its 38 member countries³⁰. They found that several evidence-based policies were effective in improving outcomes in some countries or US states, such as patient education programs, training/education initiatives for providers, interventions against stigma,
naloxone programs, and syringe programs. Opioid prescribing guidelines in the US have been shown to be effective in mitigating opioid prescriptions\textsuperscript{31}. Although there is much research to be done to validate and develop methods to reduce harm from opioid misuse, there are already actions that can be taken to save lives\textsuperscript{32}.

There are some strengths and limitations to this novel report due to the nature of the data. The ARCOS data is accessible by the public, and provides pharmacoepidemiological information that includes Veteran’s Affairs, Indian Health Services facilities, hospitals, and independent pharmacies that are unavailable in the IQVIA database\textsuperscript{20}. However, the database includes all transactions and may be a slight overestimate due to shipments between the same distributors\textsuperscript{33}. A modest amount of oxycodone reported by ARCOS in the pharmacy, practitioners, and teaching institutions\textsuperscript{23} business activity is used by veterinarians. The database provides licit distribution of oxycodone, and any diversion of the drug to unintended recipients is not publicly available. Similarly, it cannot be determined if patients utilized the quantity of drug that they were subsequently prescribed. The American Community Survey data is a likely underestimate of actual population due to limitations in counting undocumented individuals\textsuperscript{34}. Although oxycodone was among the most prescribed and misused opioids from 2006-21, further research with greater spatial resolution within a single state (e.g., Florida) or on other opioids may provide valuable information.

Future work can build upon these findings by interpreting it through the lens of guidelines and regulations that control the prescribing and distribution of oxycodone as well as hesitation among patients to be prescribed opioids for chronic pain. The results of this report can provide beneficial information for development and revision of public health policies. Guidance from governmental agencies is necessary to address problems that are as pervasive and
widespread as the opioid epidemic. This oversight is constantly evolving. The CDC’s 2022 update of its Clinical Practice Guideline for Prescribing Opioids is ongoing. It is also important to view this data in relation to the escalating problem that needs to be more fully addressed, opioid overdose deaths\(^1\). The process of decreasing availability of prescription opioids holds the risk of increasing demand for illicit sources, potentially increasing deaths. Investigating the socioeconomic and geopolitical context of states during changes in oxycodone distribution and overdoses may shed some light on how to approach the opioid epidemic in the coming years as the US continues to correct for prior excesses\(^{10,35}\). We are cautiously optimistic that other countries will continue to be more judicious with oxycodone than the US.
ACKNOWLEDGEMENTS

Audrey L. Valentine for her contribution to data collection. The Geisinger Summer Research Immersion Program is recognized for their support.
REFERENCES


SUPPLEMENTAL FIGURES

Supplemental Figure 1: Correlations between the morphine mg equivalent (MME) per person and the MME per buyer for (A) all businesses, (B) pharmacies, (C) hospitals, and (D) practitioners.
Supplemental Figure 2: Bar graph of the morphine milligram equivalent (MME) per person in the peak year 2010 with rank and MME/person in milligrams for each state. States outside *±1.96 or #±1.0 standard deviations from the average state.
SUPPLEMENTAL MATERIALS

- A python script to extract data from ARCOS Report 5 PDFs (provided at: https://www.deadiversion.usdoj.gov/arcos/retail_drug_summary/index.html) and process the data can be found at https://github.com/solgamaj/VARCOS