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Supplementary Note  1 

Shape analysis pipeline  2 
Using the FMRIB Software Library (FSL)1 (https://fsl.fmrib.ox.ac.uk/) and Statistical 3 
Parametric Mapping (SPM) (http://www.fil.ion.ucl.ac.uk/spm/) packages, structural 4 
MRIs were linearly registered into a standard brain space (MNI152). Seven subcortical 5 
(the amygdala, hippocampus, nucleus accumbens, caudate nucleus, putamen, 6 
pallidum, and thalamus) and lateral ventricular structures were segmented2-4. Surface 7 
meshes were constructed based on the subcortical and ventricular segmentations with 8 
a topology-preserving level set method5 and the marching cube algorithm6, 9 
parameterized with refined triangular meshes using the topological optimization 10 
algorithm7 and holomorphic flow segmentation method8. Then the images were 11 
registered to a common rectangular grid template using the surface fluid registration 12 
algorithm9. Multiple morphometry features were extracted, including the multivariate 13 
tensor-based morphometry (mTBM), radial distance (RD)8,10, determinant of the 14 
Jacobian matrix, and minimum and maximum eigenvalues of the Jacobian matrix8. The 15 
overall average and top principal components (PCs) of 7 features for 8 subcortical and 16 
ventricular regions and 7 hippocampal subfields were extracted. This pipeline is 17 
publicly available at https://www.nitrc.org/frs/?group_id=1461. The detailed steps in 18 
our applications were summarized as follows: 19 
 20 
1. Individual MRI scans were linearly registered into the MNI152 standard space to 21 

remove the effects of individual brain size. Automated subcortical segmentations 22 
(the amygdala, hippocampus, nucleus accumbens, caudate nucleus, putamen, 23 
pallidum, and thalamus) from the registered MR images were conducted using the 24 
FIRST with default parameters in FSL3. Since the lateral ventricles had complex 25 
geometric structure (i.e., a “multiple-arm” shapes), a different segmentation 26 
strategy was applied. Specifically, the cerebrospinal fluid (CSF) was first segmented 27 
from the registered individual MR images using the SPM8 packages 28 
(http://www.fil.ion.ucl.ac.uk/spm/). A group-wise CSF template was then created 29 
by applying the geodesic shooting algorithm11, which learned the minimal 30 
deformation from all the individual’s CSF segmentations. The binary ventricular 31 
template was extracted by mapping a probability ventricular mask, i.e., the 32 
automatic lateral ventricle delineation (ALVIN) binary mask11, onto this template. 33 
The ventricular template boundaries were visually inspected. The deformation 34 
matrices from the estimation of CSF template were then used to wrap the 35 
ventricular template back to the individual space to generate the individual 36 
ventricular segmentations4. 37 

2. The bilateral subcortical and ventricular surfaces were modeled with a topology-38 
preserving level set method5. Based on the voxel-wise binary segmentation results, 39 
the marching cubes algorithm6 was applied to generate the triangular surface 40 
meshes. Progressive mesh12 and loop subdivision13 methods were applied to refine 41 
the generated meshes and down-sample each surface mesh to a consistent 42 
number of vertices for subcortical and ventricular structures. Before geometric 43 
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analysis of these ventricular surfaces, a two-step mesh smoothing method was 1 
applied to remove noise and topologically irregular structures14. 2 

3. A common geometrical surface structure was defined so that all surfaces can be 3 
consistently parameterized15. To generate a planar surface conformal 4 
parameterization for a closed subcortical surface, the topological optimization 5 
algorithm 7 was applied to convert each kind of subcortical surfaces to a tube-like 6 
surface with two open consistent boundaries across subjects. The holomorphic 1-7 
form method16 induced conformal grids which demonstrated the angle preserving 8 
property on the tube-like subcortical surfaces. Due to the naturally occurring 3-9 
horn shape, the whole ventricular surface was cut into three sub-structures by the 10 
holomorphic 1-forms segmentation method8.  11 

4. Each individual parameterized subcortical or sub-ventricular surface was 12 
registered to a common template surface. With conformal representations9, a 3D 13 
subcortical or sub-ventricular surface can be realized as a 2D image so that general 14 
image registration algorithms can be applied. A surface fluid registration algorithm 15 
was carried out and an inverse-consistent surface registration framework was 16 
added to increase robustness9,17,18. 17 

5. After surface parameterization and registration, we computed vertex-wise features 18 
with multivariate morphometry statistics, including vertex-wise morphometry 19 
features along the surface tangent direction (such as the mTBM) and normal 20 
direction (i.e., RD)8,19,20. We also calculated three more vertex-wise statistics in the 21 
standard space, derived from the Jacobian matrix measuring local area differences: 22 
the min/max eigenvalues of the Jacobian matrix and the determinant of Jacobian 23 
matrix8. 24 

6. We calculated the average of each shape feature map for each of the subcortical 25 
and ventricular regions. We picked out the outlier subjects for each feature map if 26 
the average shape feature was greater than five times the median absolute 27 
deviation (MAD) from the population. In addition, we generated snapshots for 28 
each surface of those outlier subjects, with landmarks drawn in blue line in the 29 
individual space to show the same location in the standard space. We manually 30 
checked if the landmarks indicated the same location for each subject to evaluate 31 
the surface registration. We removed those images with bad surface registration 32 
quality (Fig. S42).  33 

7. We extracted the top 5 PCs of each feature map for each of the subcortical and 34 
ventricular regions. Specifically, for each feature map, we reshaped the vertex-wise 35 
UKB phase 3 data (average n ≈ 16,000 subjects) into an n ×	p data matrix A, 36 
where p is the number of vertices. Top PC scores and PC basis functions for UKB 37 
phase 3 data were extracted through singular value decomposition of A. For more 38 
details on how to extract PCs from images, please refer to Zhao, et al. 21.  39 

8. The UKB phases 1 and 2 datasets (average n ≈ 20,000 subjects) were used to 40 
evaluate the robustness of PC scores in Step 7. For each feature map, the original 41 
PC scores and PC basis functions for UKB phases 1 and 2 datasets were extracted 42 
in the same procedure as Step 7. Meanwhile, the projected PC scores will be 43 
extracted by projecting the UKB phases 1 and 2 data onto the PC basis functions 44 
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obtained from the UKB phase 3 data in Step 7. The ICC between the original PC 1 
scores and the projected PC scores were calculated to evaluate the reproducibility 2 
of PC scores based on the two different PC bases.  3 

9. We segmented the hippocampus surface-based rectangular grid template into 12 4 
subfields (https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields) by 5 
applying the subfield segmentation algorithm in FreeSurfer v6.020 to the MNI152 6 
brain atlas. The average across each of the cornu ammonis 1 (CA1), CA3, fimbria, 7 
hippocampus-amygdala-transition-area (HATA), hippocampal tail, presubiculum, 8 
and subiculum subfields for each feature map was extracted. Other 5 subfields 9 
were excluded because their surfaces were out of view. 10 

  11 
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