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Abstract Tens of millions of abdominal images are performed with computed tomography (CT)18

in the U.S. each year but pancreatic cancers are sometimes not initially detected in these images.19

We here describe a suite of algorithms (named FELIX) that can recognize pancreatic lesions from20

CT images without human input. Using FELIX, >90% of patients with pancreatic ductal21

adenocarcinomas were detected at a specificity of >90% in patients without pancreatic disease.22

FELIX may be able to assist radiologists in identifying pancreatic cancers earlier, when surgery23

and other treatments offer more hope for long-term survival.24

25

Introduction26

Pancreatic ductal adenocarcinomas (PDAC) are among the deadliest of all malignancies. They typ-27

ically appear as solid hypo-enhancing mass lesions on CT scans. Over 40 million abdominal CT28

scans are performed in the US each year, providing an opportunity for the earlier detection of29

pancreatic cancer. Most such CT scans are taken for reasons unrelated to suspected pancreatic30

neoplasia. Retrospective reviews of CT scans demonstrate that early PDACs are missed in a sub-31

stantial number of scans performed before patients become symptomatic (Chu et al., 2017; Gonoi32

et al., 2017).33

Recent improvements in the power of Artificial Intelligence (AI) to identify objects in images34

suggest that AI might be able to assist radiologists in a variety of ways. Deep networks (LeCun35

et al., 2015) are the most natural form of AI for detecting and localizing cancerous tumors. They36

have already been applied to many types of radiographic images, including those of the pancreas37

(reviewed in Appendix 1). But the detection of pancreatic neoplasms is especially challenging, in38

part because the shape of the normal pancreas is more variable than the shape of many other39

organs and the pancreas can move unpredictably within the abdominal cavity during the imaging40

process, unlike other organs such as the brain.41
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Figure 1. a,b: Early signs of pancreatic cancer are subtle (see arrow) and it is easy to miss a resectable (i.e., treatable) cancer. c,d: the pancreas isannotated in yellow, the PDAC tumor in red, and the pancreatic duct in blue. e: the workflow of FELIX.

Wehere describe a suite of algorithms that have been specifically created for the purpose of de-42

tecting pancreatic cancers using deep networks. This project was commissioned by the Lustgarten43

Foundation for Pancreatic Cancer Research five years ago, and was named FELIX.44

Results45

Task I: Recognizing the normal pancreas and neighboring abdominal organs46

The first step in developing algorithms that could recognize a pancreatic cancer is to train algo-47

rithms that recognize the normal pancreas. For this purpose, we assembled a set of 836 abdominal48

CT images from healthy individuals at Johns Hopkins Hospital. For each patient, there was one ve-49

nous and one arterial set of images, for a total of 1,672 CT scans, each containing from 319 to 1,05150

CT slices. Each set of images was manually annotated by an expert, with outlines of the pancreas51

drawn in all three spatial dimensions, as described in the Materials & Methods. In addition to the52

pancreas, the annotation included that of 19 neighboring abdominal organ structures because we53

initially expected that these other organs might subsequently be useful for distinguishing lesions54

within the pancreas from those of neighboring organs. It required an average of 3 hours to manu-55

ally annotate the images of one healthy individual. This curated dataset of abdominal CT images56
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from healthy individuals is unprecedented in scale, exceeding the total of all previously published57

abdominal CT scans used for designing deep networks (Luo et al., 2021; Wasserthal et al., 2022;58

Antonelli et al., 2022; Chen et al., 2022).59

To recognize the pancreas and neighboring abdominal organs, we modified 3D U-Net, a basic60

symmetric deep network architecture consisting of encoder and decoder sub-networks. The final61

algorithm (FELIX 1.0) made for normal pancreas segmentation (i.e., the allocation of pixels within62

the image to the pancreas) or for the segmentation of other abdominal organs (e.g., allocating63

pixels to the liver or spleen) are detailed in theMaterials &Methods. FELIX 1.0 took the arterial and64

venous phases as input, aligned them with an auto-alignment algorithm (see Material & Methods),65

and then applied the deep network to obtain the segmentation. But it could also be run using66

each phase separately. Performance was assessed by training the algorithm on a training set (53167

patients) from Cohort 1, and independently validated on a test set of 305 individuals.68

Previous studies showed that the pancreas is difficult to segment compared to other organs69

such as the liver and that its precise boundaries are hard to determine even by an expert radiolo-70

gist (Zhou et al., 2017; Zhu et al., 2018; Yu et al., 2018; Wang et al., 2019; Fu et al., 2020; Isensee71

et al., 2021). The FELIX 1.0 algorithm was able to “find” and segment the pancreas in 100% of the72

305 individuals in the test set. However, this 100% figure is only meaningful if the size and shape73

of the predicted pancreas matches that of the “ground truth”, i.e., the pancreas size and shape74

determined by an expert radiologist. The reliability of segmentation algorithms is often evaluated75

by DSC (Dice Similarity Coefficients), which are indices of spatial overlap. DSC can range from 0,76

indicating no spatial overlap between the ground truth and the AI prediction, to 1, indicating com-77

plete overlap. The DSC obtained by FELIX 1.0 averaged 87% (IQR 85% to 91%) and the DSC for the78

venous or arterial phases alone averaged 86% (IQR 83% to 91%) on the test set. The DSCs were79

also high on most of the 19 neighboring abdominal organs, with a liver DSC of 97% and spleen of80

96%. Examples of the original CT images, the manually annotated images, and the FELIX-predicted81

images are shown in Figure 1.82

Task II: Recognizing a PDAC within the pancreas83

For this task, we assembled a set of CT images from 426 patients with PDAC from Johns Hopkins84

Hospital (Cohort 2, Table 1). We assessed only patients in whom the excised PDAC was confirmed85

through evaluation by an expert pathologist. As with the healthy individuals from Cohort 1, there86

was one venous and one arterial set of images from each patient in Cohort 2, for a total of 85287

CT scans, and each set of images was manually annotated by an expert team (Materials & Meth-88

ods). This curated dataset of abdominal images from patients with PDAC, like the set from healthy89

individuals, is unprecedented in scale (Antonelli et al., 2022).90

The AI algorithms developed for Task II were trained to predict which voxels in the images rep-91

resented healthy pancreatic tissue and which represented PDAC. This task required an additional92

suite of algorithms, in aggregate called FELIX 1.1. A U-Net architecture was used to incorporate a93

“bounding box” into FELIX 1.0 that surrounded the pancreas and aligned the venous and arterial94

phases. Using the two aligned scans as input, FELIX 1.1 then segmented all the voxels within the95

bounding box as either normal or abnormal voxels. These and other components of FELIX 1.1 are96

detailed in the Materials & Methods.97

FELIX 1.1 was trained on 1,592 patients from JHH, and then independent validated on images98

from 213 other patients. Examples of the original CT images, the manually annotated images, and99

the FELIX-predicted images are shown in Figure 2. Box plots of DSC and ASSD scores to judge per-100

formance in the independent validation set of 213 patients are shown in Figure 5a and Figure 10a,101

respectively. The predictions had a sensitivity for detecting pancreatic cancers of 97% at a speci-102

ficity of 99% (Figure 4a). The performance of the venous or arterial phases alone (sensitivity and103

specificity of 93% and 99%) was less than the performance of the dual-phase images. This high-104

lighted the importance of the auto-alignment and othermodules of the algorithms in FELIX 1.1 that105

were able to combine the arterial and venous phase images into a single, more informative set of106
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Figure 2. Visualization of CT scans inputs, ground-truths and our predictions.

Figure 3. Examples of CT scans from different hospitals (domains) illustrating the variability in the CT scans caused by different scanners andprotocols. In the FELIX project we trained the AI algorithms on the JHH data only and tested them on JHH data and on CT scans from otherdatasets, including multi-center, multi-phase, and multi-vendor cases.

images.107

The 97% sensitivity for detecting a PDAC within the pancreas does not fully illustrate the perfor-108

mance of FELIX. We defined a true positive not only as a PDAC that was predicted to exist within109

the pancreas, but was also localized correctly. This is quite different from what can be achieved110

with radiomics techniques, for example, which predict the existence of a lesion but not its loca-111

tion (Mukherjee et al., 2022). In Cohort 2, the average DSC obtained by FELIX 1.0 was 65% (IQR112

58% to 85%) and the DSC for the venous or arterial phases alone averaged 63% (IQR 49% to 82%),113

meaning that that at least half of the pixels predicted to be PDAC were actually PDAC.114

Task III: Recognizing PDAC in CT images from other institutions115

The patients in Cohorts 1-2 were universally imaged using radiologic protocols at the Johns Hop-116

kins Hospital on Siemens’ CT instruments. But there are well-documented cases where AI algo-117

rithms perform extremely well on datasets similar to those on which they were trained, but fail118

when tested on datasets from other institutions or under different conditions (Perone et al., 2019;119

Zhang et al., 2020b; Pooch et al., 2020). In the AI community, this is known as the domain trans-120

fer problem (Yuille and Liu, 2021). This problem is particularly challenging for the detection of121
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PDACs because there are so many variables that could impact performance (see examples in Fig-122

ure 3). These variables include the type and manufacturer of the CT scanner, the resolution of the123

scanner, the CT slice thickness, the nature and timing of the contrast dye injection, the times at124

which images were obtained following contrast dye injection, whether single phase (venous only)125

or 2-phase (arterial and venous) images are taken, whether oral contrast as well as intravenous126

contrast dyes are administered, whether patients have fasted before imaging and the duration of127

such fasting, and the angle of the scanner with respect to the patient’s coronal axis (sometimes128

this axis is tilted to highlight certain abdominal organs). It would be nearly impossible to get train-129

ing sets that capture the diversity of these variables as well as the heterogeneity inherent in PDAC130

characteristics such as size, shape, texture and location within the pancreas.131

To being to surmount this challenge, we artificially created a much larger training dataset by132

applying data augmentation techniques to the JHH training set. For example, we simulated three-133

dimensional rotations of the CT scans and adjustments of other scan properties such as CT slice134

thickness. The resultant large increase in data enabled us to train a much larger deep network135

simply by adding extra components to our original network rather than acquiring a much larger136

number of CT scans. The resulting algorithms were in aggregate called FELIX 1.2, elaborated in137

Material & Methods.138

We assessed four other cohorts to assess the performance of FELIX 1.2 in scans from other139

institutions. None of the patients in these cohorts were used for training purposes. The CT scans140

from Cohort 3 were obtained from 399 patients with PDAC, with images taken in the U.S. but not141

at Johns Hopkins Hospital (Table 1). The images were acquired with GE, Siemens, Phillips, and142

Toshiba scanners but the slice thicknesses varied widely. Moreover, for most of the scans, only143

venous phase images (rather than venous plus arterial phase images) were available, and other144

components of the imaging protocol were often different than those performed at Johns Hopkins.145

Despite these differences, the sensitivities for detecting PDAC were >97% (Figure 4c). In Cohort 3,146

the average DSC for the venous phase was 58% (IQR 41% to 80%), as shown inFigure 5c.147

The CT scans from Cohort 4 were obtained from 82 healthy individuals without pancreatic dis-148

ease, with images taken at the NIH. The images were acquired on Philips as well as Siemens scan-149

ners and the slice thicknesses (1.0 to 5.0mm) were considerably larger than those (0.5mm) from150

the healthy individuals in Cohort 1. Nevertheless, the DSC for the normal pancreas (83%, IQR 81%151

to 86%) were nearly as high as those obtained for the test set in Cohort 1 (87%, IQR 85% to 91%),152

as shown in Figure 5c.153

The CT scans from Cohorts 5-6 were obtained from 164 individuals without pancreatic disease154

and 78 with PDAC (Table 1). The vast majority of these were acquired with Siemens scanners. In 77155

scans, subjects were rotated along the vertical axis from 30 to 60 degrees (examples in Figure 3).156

Sensitivity and specificity were >90%, when either single-phase venous images or dual-phase im-157

ages, were available. The DSC for the normal pancreas (84%, IQR 83% to 89%) were nearly as high158

as those obtained for the test set in Cohorts 1-2 (Figure 5d).159

Task IV: Recognizing other pancreatic tumor types160

Though PDACs are the most dangerous form of pancreatic tumors, they comprise only a minority161

of those occurring in the pancreas. Other tumor types such as benign tumors with varying ma-162

lignant potential, e.g., intraductal papillary mucinous neoplasm (IPMN), are more than ten-fold as163

common than PDAC. Malignant neoplasms named Pancreatic Neuroendocrine Tumors (PanNETs)164

occur ∼five-fold less frequently than PDACs, but can often be cured. Detection of these lesions is165

an important component of any approach designed to evaluate abdominal CT scans.166

Detecting pancreatic cysts and PanNETs raises additional challenges for AI algorithms because167

these lesions exhibit a greater variety of texture patterns than PDACs. But we were able to train FE-168

LIX to recognize them with only a few modifications to those described above for detecting PDACs169

(modified algorithm suite named FELIX 1.3, Material & Methods). One of the most important of170

thesemodificationswasmultiscale processing, which proved critical for recognizing smaller lesions171
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Figure 4. A summary of our AI algorithm performing on CT scans from different hospitals. The AI trained onJHH data performed at level close to expert radiologists on JHH test set, but performance declined somewhaton data from other hospitals. The AI algorithms were trained on 1,592 × 2 CT scans from JHH.

(see Figure 9).172

The algorithmic development for FELIX 1.3 was done similarly to that for the other algorithms,173

with training and testing sets kept independent. When tested on healthy individuals in Cohort 1174

and patients with PDACs in Cohort 2, its sensitivity and specificity remained as high as it was with175

FELIX 1.1, as expected. We then assembled a set of CT images from 450 patients with PanNETs and176

458 patients with pancreatic cysts (Cohorts 7 and 8, respectively). The sensitivities for recognizing177

pancreatic cysts and PanNETs were 95% and 94%, respectively. The specificity of detecting three178

types of tumors was 95% (Figure 4b). As with PDAC, we defined a true positive as a lesion within179

the pancreas that was not only detected but correctly localized. The localization of these tumors180

was similar to that obtained with PDAC—a DSC of 57% (IQR 25% to 86%) for PanNETs and 66% (IQR181

52% to 88%) for pancreatic cysts (Figure 5b).182

The pancreatic cysts within Cohort 8 also provided an opportunity to assess the performance of183

the FELIX algorithms for detecting small lesions. PDACs are generally rather large when diagnosed,184

which is one of the major issues confronting their effective treatment. Because our study was185

retrospective in nature, the vast majority of the PDACs in Cohorts 2, 4, and 5 were larger than186

2cm, though we were able to detect and localize PDACs smaller than 2cm with 77% sensitivity187

at a specificity of 88%. Pancreatic cysts are often detected adventitiously in abdominal CT scans188

carried out for other purposes, and many of them were <2cm in diameter. The sensitivity of FELIX189

for detecting pancreatic cysts <2cm was 76% at a specificity of 88%, with cysts as small as 2mm in190

diameter detectable (Figure 9). A cyst of 2mm in diameter is represented by only 15,000 voxels out191

of the 131,072,000 voxels in a typical CT image.192
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Figure 5. Performance of the pancreas segmentation and tumor localization evaluated by Dice-Sorenson similarity coefficient (DSC). Observethat the DSC scores are typically high but with some small outlier cases indicated by the black dots.

Discussion193

The results summarized in Figures 4–5 show that pancreatic tumors, and in particular PDAC, can194

be detected and localized with FELIX algorithms at sensitivity and specificity >90%. When tested on195

Cohorts 1 and 2, from Johns Hopkins Hospital, the sensitivity and specificity were >95%. Algorithms196

were able to evaluate CT scans generated through a variety of protocols, with varying resolutions,197

slice thicknesses, radiographic protocols, and scanning instruments. The scale of these studies198

and the clinical performance of the FELIX algorithms substantially exceed those of previous studies.199

We anticipate that better performance can be achieved in future work by training on even larger200

datasets and by exploiting technical advances in AI algorithms.201

But the FELIX study has several limitations. We certainly have not “solved” the domain transfer202

problem for pancreatic tumors. Though FELIX performed fairly similarly regardless of the source of203

the CT scan and the radiographic procedures used it performed highest on scans from Johns Hop-204

kinsHospital. Moreover, there are a large number of variables that can affect this performance that205

have not yet been tested. These includes images taken with instruments other than those we have206

tested on (predominantly manufactured by Siemens) those taken after oral contrast agents are207

administered, and those taken when there are extraneous features, such as clips or stents, within208

the patient. These extraneous features are easy to recognize by humans, but not by computers,209

unless they are represented in the training set.210

A second limitation is in the detection of very small tumors. Optimally, an AI-based method211

would be able to detect PDACs as small as 5mm in diameter, as the earlier the detection the greater212

the chance for effective therapy. Moreover, small tumors aremore likely to bemissed by practicing213

radiologists. But the number of patients with PDACs that are detected when their tumors are <1cm214

in diameter is small, even in relatively large pancreatic cancer centers such as at Johns Hopkins215

or Heidelberg. It will require a large, multi-institutional collaborative study to acquire a sufficient216
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number of small PDACs to engender cohorts for adequate training and testing of very small PDACs.217

Third, though FELIX algorithms can detect pancreatic cysts and PanNETs in addition to PDACs,218

there are other pancreatic diseases, such as acute or chronic pancreatitis and metastatic lesions219

from other organs to the pancreas, that have not yet been evaluated.220

Finally, our studywas retrospective in nature, with diagnoses all previouslymade and confirmed221

through histopathological analysis. The eventual goal of FELIX is to be able to act as a “second222

reader”, providing the radiologist with a simple and instantaneously available tool to call attention223

to pancreatic lesions of interest. The next generation of FELIX will develop better AI algorithms,224

incorporate both radiologic and clinical features to predict the existence, size, boundaries, and type225

of lesion within the pancreas. This will enable the AI algorithms to be tested in a large, prospective226

study and to evaluate its clinical utility.227

Materials & Methods228

Table 1. The statistics of datasets for evaluation. Detailed demographic information can be found in theattached supporting file.
name component slice thickness venous arterial source
Cohort 1 300 healthy individuals 0.5mm ✓ ✓ collected at Johns Hopkins Hospital
Cohort 2 213 PDAC patients 0.5mm ✓ ✓ collected at Johns Hopkins Hospital
Cohort 3 399 PDAC patients [1.0, 5.0]mm ✓ collected at hospitals in Johns Hopkins
Cohort 4 82 healthy individuals [1.5, 2.5]mm ✓ taken from the NIH Pancreas-CT dataset
Cohort 5 164 healthy individuals [0.64, 2.0]mm ✓ ✓ collected at Heidelberg Medical School
Cohort 6 78 PDAC patients [0.64, 2.0]mm ✓ ✓ collected at Heidelberg Medical School
Cohort 7 450 PanNET patients 0.5mm ✓ ✓ collected at Johns Hopkins Hospital
Cohort 8 458 Cyst patients 0.5mm ✓ ✓ collected at Johns Hopkins Hospital

Study participants and sampling procedures229

Table 1 summarizes the datasets used in this study. The distribution of tumor size in each dataset is230

presented in Figure 6. The attached supporting file contains the detailed demographic information.231

Cohorts 1, 2, 7, and 8 consisted of 2,519 subject cases, containing cases of Normal, PDAC, Cyst,232

and PanNET, respectively. Each subject had two intravenous contrast CT scans in both venous233

and arterial phases, so there were 5,038 annotated scans in total. We randomly split the 5,038234

scans into 3,192 and 1,846 scans for training and testing. Each CT scan consists of 319∼1,051 slices235

of 512×512 pixels, and have a voxel spatial resolution of ([0.523∼0.977]× [0.523∼0.977]×0.5)mm3,236

acquired on Siemens MDCT scanners. We split the union of the four Cohorts into training and test237

sets. The training set contains a total of 3,192 CT scans (560×2 PDACs, 205×2 Cysts, 300×2 PanNETs238

and 531×2 Normals. For the 1,846 (i.e., 923×2) testing set, it contains 215×2 PDACs, 253×2 Cysts,239

150×2 PanNETs and 305×2 Normals. This was a retrospective study approved by Johns Hopkins240

Hospital institutional review board. Pancreatic protocol CTs were retrospectively identified from241

clinical, pathological and radiological databases compiled between 2003 and 2020. Total 1,982242

patients with pathologically proven 686 PDAC and 286 PNET were retrospectively collected from243

Radiology and Pathology databases. 799 renal donors without pancreatic tumors were considered244

to be normal controls for classification purposes. Most (99%) of these renal donor cases were245

collected prior to 2010 so as to ensure that they did not develop pancreatic disease following their246

scans.247

Cohort 3 consisted of 246 subjectswith 399 abnormal CT scans. Slice thickness ranges from1∼5mm.248

The scans were acquired on GE (39%), Siemens (38%), Phillips (12%), and Toshiba (11%) scanners.249

Cohort 4 consisted of 82 abdominal contrast enhanced venous phase CT scans. The scans had res-250

olutions of 512×512 pixels with varying pixel sizes and slice thicknesses between 1.5∼2.5mm, and251

were acquired on Philips and Siemens MDCT scanners. The National Institutes of Health Clinical252

Center performed 82 abdominal contrast enhanced 3D CT scans (∼70 seconds after intravenous253
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Figure 6. Tumor size distributions in Cohorts 1–2 (training set), Cohorts 1–2 (test set), Cohort 4, and Cohort 6.

contrast injection in portal-venous) from 53 male and 27 female subjects. Seventeen of the sub-254

jects are healthy kidney donors scanned prior to nephrectomy. The remaining 65 patients were255

selected by a radiologist from patients who neither had major abdominal pathologies nor pancre-256

atic cancer lesions.257

Cohorts 5, 6 consisted of 242 dual phase CT scans, among which 78 cases were abnormal (Table258

9). Most scans included the whole upper body of the patient in addition to the abdomen. In 77259

cases, subjects were rotated along the vertical axis, with a degree ranges from 30 to 60. In the260

pre-processing stage of FELIX 1.2, arterial scans were aligned to venous scans with isometric trans-261

formations, so that the rotations in the venous phase were kept. CT scans had resolutions of262

512×512 pixels with varying pixel sizes (0.57∼0.97mm), and slice thickness between 0.64∼2.0mm,263

acquired on Siemens MDCT scanners.264

Establishment of Ground-truth by manual annotation265

The whole three-dimensional volumes of pancreas and tumors were manually segmented by five266

trained annotators using commercial segmentation software. For the subjects with dual-phase CT267

images, pancreas and pancreatic tumors were separately annotated in both arterial and venous268

phases by one of the five annotators. The boundaries and tumor locations of each subject were269

then verified by one of three additional experienced radiologists, none of whom performed the270

annotations.271

Systemandhuman errors can affect the training and evaluation ofmachine learning algorithms.272

Therefore, data cleaning, corrections of errors after the initial data is obtained, was an important273

step. Possible human mistakes and intra-/inter- observer variations were first visually checked274

for by human experts. Errors or major inconsistencies by missing annotation of a slice or a part275

of organ with region of interest (ROI) were then doubly-checked by our in-house software. ROI276

information, in which the annotated target abdominal structures were recorded, were computed277

by the software and used for training and testing. Radiologist re-review, see Appendix 2, was used278

to correct for errors in the ground truth which can occur, for example, if a small tumor was not279

annotated or if its annotated location was slightly incorrect.280

Algorithm Development281

Our goal is to detect the pancreas and three types of tumors from unaligned venous and arterial282

CT scans. We address this goal using deep networks trained for semantic segmentation (Isensee283

et al., 2021). We used the U-Net architecture as the basic segmentation method. This consists of a284

shared Siamese encoder for encoding images to features and a decoder for projecting features to285
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Figure 7. An illustration of FELIX 1.0 and the proposed auto-alignment for dual-phase scans. During the search process, an auto-alignmentmodule is inserted after every encoder block to perform a dual-phase feature alignment, where the alignment operations can be chosen fromthe following: void (no alignment), summation, concatenation, cross-attention, and spatial transform. We note that this search space includesboth alignment location and operation.

predictions. The input of the network can be either dual-phase scans or single-phase (venous or286

arterial) scan, and the output is the segmentation prediction. For dual phase, to include informa-287

tion from both venous and arterial scans, we designed an auto-alignment module that can register288

and align the two phases. This auto-alignment module is inserted at the end of different encoder289

blocks. It contains a variety of alignment operation such as summation, concatenation, spatial290

transform, and cross attention (illustrated in Figure 7). We used neural architecture search over291

the set of alignment operations to optimize performance. Postprocessing was applied after the292

networks to decrease the number of false positives as a result of the prediction of lesions outside293

the pancreas by the algorithms.294

FELIX 1.0. FELIX 1.0 can process either dual-phase or single-phase scans. The alternative versions295

(FELIX 1.1-1.3) are the extensions of FELIX 1.0 for different tasks.296

Single-phase algorithm: We used 3D U-Net (Çiçek et al., 2016; Falk et al., 2019), which is a sym-297

metric architecture consisting of encoder and decoder sub-networks. The encoder sub-network298

took the input image and reduced the spatial resolution in successive layers while increasing the299

channels; the decoder sub-network increased the spatial resolution while reducing the channels.300

Four residual blocks were used between poolings in the encoder and bilinear interpolations in the301

decoder. In the end, a 1×1×1 convolution was used to map the channels to the desired number302

of classes, e.g., background, pancreas, PDAC, Cyst, PanNET, etc. Skip connections were used be-303

tween the encoder and decoder sub-networks to recover fine-grained details of the target objects,304

allowing U-Net to segment fine-grained structures such as small tumors.305

Dual-phase algorithm: Following previous studies (Zhou et al., 2019; Zhu et al., 2019), the dual-306

phase algorithm used arterial to help venous prediction. Unlike single-phase algorithm, the U-Net307

structure for dual phase consisted of a shared Siamese encoder to encode images to features and308
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a decoder to project features to predictions. The input of the dual-phase algorithm is a pair of309

venous and arterial scans, and the output is the segmentation prediction of the venous scan. To in-310

corporate information from both venous and arterial scans, we design an auto-alignment module311

that can determine the operation of dual-phase alignment. The possible alignment operation in-312

cludes void (no alignment), summation, concatenation, cross attention, and spatial transform. The313

auto-alignment module is inserted at the end of different encoder blocks. Instead of using a hand-314

designed architecture, we learn the architecture by Neural Architecture Search (NAS) (Elsken et al.,315

2019) (illustrated in Figure 7). Formally, the entire dataset is denoted as = {(𝐱𝑉𝑖 , 𝐱
𝐴
𝑖 , 𝐲

𝑉
𝑖 )|𝑖 = 1, 2, ..𝑛},316

where 𝑛 is the total number of subjects, 𝐱𝑉𝑖 ∈ ℝ𝐻𝑉
𝑖 ×𝑊 𝑉

𝑖 ×𝐷𝑉
𝑖 , 𝐱𝐴𝑖 ∈ ℝ𝐻𝐴

𝑖 ×𝑊 𝐴
𝑖 ×𝐷𝐴

𝑖 are venous and arterial317

CT scans of the 𝑖-th subject, and 𝐲𝑉𝑖 ∈ 𝕃𝐻𝑉
𝑖 ×𝑊 𝑉

𝑖 ×𝐷𝑉
𝑖 is the voxel-wise annotated label in the venous318

scan. Here, 𝕃 = {0, 1, 2, 3} represents our segmentation targets, i.e., background, healthy pancreas319

tissue, pancreatic duct (crucial for PDAC clinical diagnoses), and PDAC mass. Our goal is to find a320

mapping function  whose inputs and outputs are a pair of two-phase scans 𝐱𝑉 , 𝐱𝐴 and segmen-321

tation results 𝐩𝑉 , respectively, i.e., 𝐩𝑉 =  (𝐱𝑉 , 𝐱𝐴). We denote the encoded features of the arterial322

and venous scans at a certain level by 𝐳𝑉 and 𝐳𝐴. An alignment operation aims to align and fuse the323

dual-phase features. We denote by 𝐳𝑂 the output feature map after a certain alignment operation.324

The following operations are considered for alignment: (1) Void: The venous and arterial features325

do not align with each other: 𝐳𝑂 = 𝐳𝑉 . (2) Summation: The output features are the element-wise326

summation of venous and arterial features: 𝐳𝑂 = 𝐳𝑉 + 𝐳𝐴. (3) Concatenation: The output features327

are the concatenation of venous and arterial features along the channel dimension: 𝐳𝑂 = 𝐳𝑉 ⊕ 𝐳𝐴,328

where ⊕ denotes the concatenation operation of the two vectors. (4) Cross-attention: We consider329

two-phase collaboration in a non-local attention manner, which can globally encode each location330

in the venous features by receiving information from the entire arterial features. Conceptually,331

𝐳𝑂 = 𝐳𝑉 ⊕ (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐳𝑉 𝐳𝐴)𝐳𝐴) (5) Spatial transform: Spatial transform (Jaderberg et al., 2015) was332

widely adopted in the task of registration between two images. We consider it as an operation333

which can handle the large offsets between the venous and arterial scans. The spatial transform334

was applied to the arterial scan only. Specifically, we use a light-weighted U-Net to first estimate a335

deformation field 𝜙 of the arterial feature map 𝐳𝐴 to the venous feature map 𝐳𝑉 . Afterwards, we336

fuse the deformed arterial feature map to the venous feature map by concatenation. This process337

can be formulated as follows: 𝐳𝑂 = 𝐳𝑉 ⊕ (𝜙◦𝐳𝐴), where ⊕ and ◦ denote the concatenation of two338

tensors and the element-wise deformation operations on a tensor, respectively.339

FELIX 1.1. In addition to pancreas segmentation, FELIX 1.1 was capable of detecting and segment-340

ing PDACs from either single-phase or dual-phase scans. This involved two stages: pancreas de-341

tection and tumor segmentation. In the first stage, we used FELIX 1.0 to detect the rough location342

of the pancreas from the whole CT scan and place a bounding box that surrounds the pancreas.343

The first stage could 100% accurately localize the pancreas, with a DSC score of 87% and 86% for344

dual-phase and single-phase algorithms, respectively. The second stage took the cropped CT sub-345

volume as input (in the center of the bounding box of the pancreas) and used a U-Net to segment346

the pancreas into normal voxels and voxels that belong to PDACs. The DSC of PDAC localization347

obtained by FELIX 1.1 averaged 65% and the DSC for the venous or arterial phase along averaged348

63% on the test set (Figure 5a).349

FELIX 1.2. To enable the algorithms to generalize to data from other institutions, we created a350

much bigger training dataset by applying data augmentation techniques to the JHH data, including351

3D rotations of the CT scans and adjusting other scan properties such as slice thickness (normalized352

to 30mm). The increased variety of training data enabled us to train a much larger deep network,353

created by adding a few extra components to our original network, which was able to exploit the354

extra training data without overfitting. The single-phase algorithmwas used for external data such355

as Cohort 3 and Cohort 4 because only venous-phase scans were provided.356

FELIX 1.3. This algorithm aims at detecting and recognizing two other tumor types (pancreatic cysts357

and PanNETs) in addition to FELIX 1.1 that detects PDACs. Cysts and PanNETs exhibit varying tex-358
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Figure 8. Performance of pancreatic tumor detection stratified by tumor size. The smallest tumor wedetected was 2mm. Our false negatives are mostly smaller than 20mm, frequently smaller than 10mm. Weincrease sensitivity to small tumors by multi-scale training.

ture patterns and tumor sizes (Figure 6). To improve the detection and localization of very small359

tumors, we applied standardmulti-scale techniques that processed the CT scans at different levels360

of resolution and then combined the results. we train amulti-scale algorithm on JHH data and eval-361

uate it on Cohorts 7-8 with five scales (1.0, 1.25, 1.5, 1.75, 2.0), then we further merge those results362

from different scales. Without multi-scale training, our dual-phase algorithm can obtain 83.4% sen-363

sitivity of detecting small tumors. The multiscale training strategy greatly improves performance,364

achieving an overall sensitivity of 88.7% (+5.3) before radiologist re-review and 89.3% (+5.9) after365

radiologist re-review for small tumors, while the specificity remains competitive (88.2%) to base366

algorithms. The smallest lesion we detected was 2mm radius. Performance of pancreatic tumor367

detection stratified by tumor size is presented in Figure 8, and examples of small tumor detection368

are illustrated in Figure 9.369

Post-processing. The post-processing stage is to eliminate most false positives using a variety of370

cues, such as prediction size, distance from the pancreas, and several handcrafted features. These371

cues are usually not fully exploited by deep learning algorithms. First, for PDAC detection, we372

discard the predicted components with less than 500 voxels; for Cyst and PanNET detection, we373

discard the predicted components with less than 30 voxels. Second, we dismissed the predictions374

if the surface of the predicted tumor is not attached with the surface of the predicted pancreas.375

Third, handcrafted features were extracted from four different perspectives, i.e., uncertainty, qual-376

ity assessment, shape, and geometry. We used a two-way cross-validation on the validation set for377

hyper-parameters tuning to compute these imaging features. A sequential feature selection (Ferri378

et al., 1994) was then conducted on the hybrid feature pool. Specifically, starting froman empty set,379

we picked one feature at a time from the remaining feature pool that minimized a validation loss.380

Consequently, we adopted VAE, sphericity, and surface volume ratio for PDAC detection, uncer-381

tainty, VAE, and sphericity for Cyst and PanNET detection. A predicted component was considered382

as positive only if all these imaging features agree it is positive.383

(1) Uncertainty: We hypothesize that segmentation with bad quality is more likely to be a false384

positive. Inspire by Jungo et al. (2018), we used an entropy-based uncertainty to assess the qual-385

ity of segmentation and distinguish between false positives and true positives. We calculate the386

uncertainty in a way by accumulating the entropy on the voxel that is predicted as lesion in 𝐩𝑉 .387

Specifically, we have388

𝑓entropy = − 1
|Ω|

∑

𝑖∈Ω

∑

𝑐∈N
P(𝐩𝑉

𝑖 = 𝑐) logP(𝐩𝑉
𝑖 = 𝑐), (1)

where Ω = {𝑖| argmax𝑐∈NP(𝐩𝑉
𝑖 = 𝑐) = lesion}.389
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Ground Truth DN PredictionCT

Pancreas
Tumor

Figure 9. Our multiscale algorithm can detect Cysts that were not annotated by radiologists. Thesepredictions were verified to be correct through radiologist re-review. Top: Cyst of 2mm radius. Bottom: Cystof 4mm radius.

(2) VAE: A variational autoencoder (VAE) is learned to reconstruct the ground truth and then the390

reconstruction error is used to evaluate the segmentation quality. The quality assessment feature391

is usually targeted at anomaly detection (Liu et al., 2019). In false positive reduction, we treat the392

properties within tumor region as target distribution so that the false positives, which do not corre-393

spond to tumor region become anomalies. Shape and texture can represent orthogonal properties394

of pancreatic lesions so that they provide complementary cues when combined together. Specifi-395

cally,396

𝑓vae = 𝐷𝑆𝐶(𝐩𝑉 ,VAE(𝐩𝑉 )), (2)
where DSC(⋅) is the function to calculate dice coefficient, formulated in Equation 6.397

(3) Surface volume ratio: We adopted the ratio between surface and volume of a predicted compo-398

nent to reject false positives by analyzing shape features. A lower ratio indicates a more compact399

(sphere-like) shape.400

𝑓surface volume ratio = 𝐴
𝑉
. (3)

Surface area (𝐴) is obtained by taking the number of all voxels that belong to the edges of a pre-401

dicted component. Mesh volume (𝑉 ) is the total number of voxels in a predicted component.402

(4) Sphericity: Sphericity is the ratio of the surface area of a sphere to the surface area of the parti-403

cle (Van Griethuysen et al., 2017). Sphericity measures the roundness of the shape of the tumor404

region relative to a sphere. It has a value in the range of [0, 1], where a value of 1 indicates a perfect405

sphere.406

𝑓sphericity =
3
√

36𝜋𝑉 2

𝐴
(4)

Algorithm Evaluation407

For classification of PDAC and non-PDAC cases, we report sensitivity (also known as true-positive408

rate) and specificity (as known as true-negative rate), defined as:409

Sensitivity = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, Specificity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

, (5)
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Figure 10. Quantitative performance of pancreas segmentation and tumor localization, evaluated by average symmetric surface distance (ASSD).

where TP, TN, FP, FN denote the number of true positives, true negatives, false positives, false410

negatives, respectively. Pie plots of sensitivity and specificity were presented in Figure 4.411

We report two metrics, DSC (Dice similarity coefficient) and ASSD (average symmetric surface412

distance), to measure the segmentation performance. Box plots of these two measures were pre-413

sented in Figure 5 and Figure 10, respectively. The DSC score is commonly used as an evaluation414

metric and takes a value of 0 when both masks do not overlap at all and 1 for perfect overlap.415

DSC = 2 × 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 ) + (𝑇𝑃 + 𝐹𝑁)

. (6)
ASSDmeasures the average distance between the surface of the tumor/organ segmentation result416

to the nearest boundary voxels of the ground truth in 3D. It has a value in the range of [0,∞]. They417

are used tomeasure the area similarity and the boundary or shape similarity, respectively. A better418

segmentation algorithm produces a larger value of DSC while a smaller value of ASSD.419
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Appendix 1544

Background545

Public pancreas CT datasets. There are several publicly available datasets for pancreas de-
tection/segmentation and tumor detection, such as the Medical Segmentation Decathlon
(MSD) dataset (Antonelli et al., 2022), the TCIA-PDA dataset (Consortium et al., 2018), and
the National Institutes of Health Pancreas CT (NIH-Pancreas) dataset (Roth et al., 2016a)
The MSD pancreas dataset consists of 420 abdomen CTs of subjects with pancreatic lesions
(e.g., intraductal mucinous neoplasms, pancreatic neuroendocrine tumors, or pancreatic
ductal adenocarcinoma) from theMemorial Sloan Kettering Cancer Center. The dataset has
been split into two groups: a training subset (𝑛 = 281) and a testing subset (𝑛 = 139). Only the
training subset has voxel-wise pancreas and tumor annotation. All the studies are contrast-
enhanced scans acquired in the venous phase. The TCIA-PDA dataset consists of 6 MRIs
and 60 CTs of subjects from the National Cancer Institute’s Clinical Proteomic Tumor Analy-
sis ConsortiumPancreatic Ductal Adenocarcinoma (CPTAC-PDA) cohort. Age, gender, tumor
size, histologic type, and grade are available for all the subjects, but voxel-wise tumor or pan-
creas annotation is not available. 57 out of 60 CTs are in venous phase. The NIH-Pancreas
dataset consists of 82 venous phase CTs performed at theNIH Clinical Center on 80 subjects.
All CTs have a morphologically normal pancreas. The dataset provides voxel-wise annota-
tion of pancreas segmentation for all subjects performed by manual slice-by-slice tracings
of the pancreas. In addition, numerous abdominal CT datasets are publicly available with
manual annotation of organ segmentation including the pancreas, but whether these CTs
contain pancreatic tumors is unknown. For example, the Synapse dataset (from the MICCAI
Multi-Atlas Labeling Beyond the Cranial Vault challenge) (Landman et al., 2015) consists of
30 venous phase CT scans with manual annotation for segmentation of 13 abdominal or-
gans; Abdominal-1K (Ma et al., 2021) provides more than 1000 CT scans from 12 medical
centers with liver, kidney, pancreas, and spleen annotated; WORD (Luo et al., 2021) has 150
CT scans with 16 organs annotated; and most recently, TotalSegmentor (Wasserthal et al.,
2022) releases 1204 CT scans with 104 anatomical structures annotated. Our curated JHH
dataset is unprecedented in scale, consisting of over 2,500 dual-phase contrast-enhanced
CT scans with full labels of 20 organs as well as exhaustive labels of cysts, ducts, and tumors
in the pancreas.
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AI for pancreas and pancreatic tumor detection. With the recent advances of deep learning,
automated pancreas segmentation has achieved tremendous improvements (Roth et al.,
2015, 2016b; Zhou et al., 2017; Yu et al., 2018; Zhu et al., 2018; Xia et al., 2018; Man et al.,
2019), which is an essential prerequisite for pancreatic tumor detection (Xia et al., 2020;
Zhang et al., 2020a; Zhao et al., 2021; Zhu et al., 2021; Chen et al., 2021). Meanwhile, re-
searchers are pacing towards automated detection of pancreatic adenocarcinoma (PDAC),
the most common type of pancreatic tumor (85%) (Ryan et al., 2014) and with the lowest
5-year survival rate among cancers (Rahib et al., 2014). Most existing works used venous-
phase CT scans for detecting and segmenting pancreatic tumors (Zhu et al., 2019; Chen
et al., 2022). Zhou et al. (2019) developed a hyper-pairing network for PDAC segmenta-
tion from multi-phase CT scans to integrate information from both arterial and venous
scans. Zhang et al. (2020a) proposed a framework to improve PDAC segmentation with
multi-institutional andmulti-phase, partially labeled data. They both used traditional image
registration approaches (Vercauteren et al., 2009; Heinrich et al., 2013) for pre-alignment
and then applied a deep network that took the phases as input. Unlike their methods, we
particularly investigate how to register multiple phases in feature space with more complex
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fusion techniques, either in a manually designed or automated way. There are complimen-
tary AI techniques that used texture features (in particular Radiomics features) of the pan-
creas, and then trained a random forest algorithms classifier algorithm (Chu et al., 2019;
Mukherjee et al., 2022). These were able to classify if a pancreas contained a tumor, but
were not suitable for localizing the tumor.
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Appendix 2596

CT Ground Truth DN Prediction

597

Appendix 2—figure 1. After radiologist re-review, we verified that the prediction framed in red was atrue positive of PDAC but it was missed by annotator.598

599600

CT Ground Truth DN Prediction

601

Appendix 2—figure 2. After radiologist re-review, we verified that the prediction framed in red was atrue positive of PanNET but it was missed by annotator.602

603604

CT Ground Truth DN Prediction

605

Appendix 2—figure 3. Visualizations of PDAC (top) and Cyst (bottom) false negatives. Our predictions(framed in red boxes) are close enough to the ground truth and therefore could be counted as truepositives after radiologist re-review.
606

607

608609

Radiologist Re-review610

Overview. After application of the algorithms to the cohorts in this study, radiologists re-
reviewed all cases in which there was a discrepancy between the original radiologic anno-
tation of the data and the prediction of the algorithm. In no case was the prediction of the
algorithm changed on the basis of this re-review. However, of the 203 cases re-reviewed,
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the original radiologic annotation was found to be erroneous, and this annotation was ac-
cordingly changed in the datasets (Tables 1–2).

611

612

613

614

615

616

Radiologist re-review PDAC Cyst PanNET Total
TP (close to GT, AI better than GT) 4 3 0 7
Exclude (surgery, fluid, not-due-to-stent) 0 1 0 1
Incorrect annotation (need to be fixed) 0 0 1 1
Lymph nodes 0 0 1 1
Classified as duct 0 6 0 6

617

Appendix 2—table 1. Taxonomy of false negatives on the test set of Cohorts 1 and 2 using ourdual-phase algorithm.618

619620

Radiologist re-review PDAC Cyst PanNET Normal Total
TP (correlate to abnormalities) 15 1 2 0 18
TP (close enough, AI predicts better) 3 0 1 0 4
TP (no label, cyst, serous, IPMN) 10 34 10 3 57
Exclude (surgery, fluid, serous, not-due-to-stent) 3 1 3 0 7
Duodenums 0 1 0 0 1
Veins/Vessels/Arteries 3 14 4 5 26
Pancreatic duct 8 8 7 2 25
CBD 3 4 4 3 14
SMV 0 4 2 1 7
Focal fat 0 5 2 9 16
Subtle texture change 0 2 5 0 7
Splenic artery 0 0 2 3 5

621

Appendix 2—table 2. Taxonomy of false positives on the test set of Cohorts 1 and 2 using ourdual-phase algorithm.622

623624

Radiologist re-review of the false positives and false negatives showed that the false pos-
itives and false negatives of the algorithm were almost always understandable. The false
positives mainly corresponded to small regions in the scan that an experienced radiolo-
gist would consider suspicious and worth inspecting more closely. By contrast, the false
negatives were typically lesions that were also hard for experienced radiologists to detect.
Radiologist re-review also enabled us to correct for errors in the ground truth which can
occur because: (i) there is a small tumor in the scan which was not annotated, (ii) the tumor
was annotated but its location was slightly incorrect (considering the difficulty of annotat-
ing the tumors the AI results can be more accurate than the ground truth), and (iii) an area
was annotated as tumor, but on re-review no lesion was present. We report results both
before and after the radiologist re-review. Some of the false negatives occurred when the
AI algorithms predicted tumors very close to the annotations and hence direct radiologists
to the rough location (and might, considering the difficulty of annotating tumors, be more
accurate than the annotations).
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639

Appendix 2—figure 4. Tumor detection performance before and after radiologist re-review.640641

Recognizing a PDAC within the pancreas. FELIX 1.1 has sensitivity and specificity of 93.0%
and 99.0%. We were able to localize the PDACs fairly accurately, obtaining DSC scores of
65.3%. After radiologist re-review, sensitivity and specificity improved to 96.6% and 99.0%
(Figure 4a). Using the venous phase only, FELIX 1.0 gave a sensitivity of 92.5% and a speci-
ficity of 93.0% before radiologist re-review and 92.4% and 93.0% after radiologist re-review.
We conclude that the AI algorithms trained and tested on the Hopkins dataset attain high
sensitivity and specificity, similar to those of radiologists. The algorithms also accurately
localize PDACs enabling radiologists to visually inspect specific locations in the scans.

642
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647

648

649

Recognizing other pancreatic tumor types. We trained our AI algorithms to detect all these
types of tumors while allowing only a few modifications to our algorithms. The overall per-
formance remained high with sensitivity and specificity of 92.4% and 90.5% before radi-
ologist re-review and 93.9% and 95.4% after radiologist re-review (Figure 4b). They only
decrease to sensitivity and specificity of 94.4% and 93.0% before radiologist re-review and
94.8% and 94.3% after radiologist re-review if only the venous phase was used. The seg-
mentation/localization of these tumors remained accurate (DSC scores of 87.0% for the
pancreas, 62.42% for PDACs, 62.04% for cyst, and 55.16% for PanNETs). The algorithms
were even able to detect some cysts as small as 2mm radius/diameter, which is close to
the absolute performance limit of radiologists. Radiologist re-review was particularly use-
ful as the algorithms often detected small cysts that had not been originally annotated by
radiologists.
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Wealso studied howperformance variedwith the size of the tumors. The distributions of
sizes of tumors and how size predicted performance are given in Figure 8. We alsomodified
the algorithm slightly as described in Materials & Methods, using multiscale processing, in
order to improve performance on tumors with sizes of less than 2cm diameter. This yielded
a sensitivity and specificity of 88.7% and 84.9% before radiologist re-review, and 89.33% and
88.20% after. The DSC score for small tumor segmentation was 52.86%. We conclude that
the algorithms could also detect and localize these three types of tumors with very high
sensitivity and specificity and performed well even on very small tumors.
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663

664

665

666

667

668

669

Recognizing PDAC in CT images from other institutions. FELIX 1.2 was trained on Cohort 1
and 2, with modifications described in Materials & Methods, and tested on Cohort 4. As be-
fore, we record a correct detection only if we also correctly localize the PDAC. This produced
a sensitivity of 95.0% before radiologist re-review and 97.0% after radiologist re-review (Fig-

22 of 23

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.24.22280071doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.24.22280071


ure 4c). We achieve DSC scores of 82.8% for the pancreas and 58.4% for PDACs. It was
impossible to measure the specificity since all the CTs in Cohort 4 contained PDACs. To
do an alternative check of specificity we used Cohort 3 of 82 scans as a surrogate for nor-
mal cases. This gave specificity results of 92.7% both before and after radiologist re-review,
which is lower than observed with Cohorts 1 and 2 but still acceptable.
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678

Furthermore, we applied FELIX 1.2 to the Heidelberg dataset using the same training as
for Cohort 4. This dataset was also annotated with the pancreas and PDACs. This dataset
contained new challenges because, for example, the positioning of the patients in some of
the scans differed from those in the Hopkins dataset by 30 degrees or more (this is a pro-
tocol used at Heidelberg to make it easier to detect tumors). For venous only, we obtained
a sensitivity of 91.3% and specificity of 94.8%; for arterial only, we obtained a sensitivity of
95.7% and specificity of 91.4%. For dual-phase, we get 90.9% sensitivity and 91.6% speci-
ficity (Figure 4d). We achieved DSC scores of 82.2% for the pancreas and 54.3% for PDAC
segmentation. These results were without checking for localization.
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