Development and Clinical Validation of Swaasa AI Platform for screening and prioritization of Pulmonary TB

Dr. Gayatri Devi Yellapu¹, Gowrisree Rudraraju*², Narayana Rao Sripada², Baswaraj Mamidgi², Charan Jalukuru², Priyanka Firmal², Venkat Yechuri², Dr. Sowmya Varanasi¹, Dr. Venkata Sudhakar Peddireddi¹, Dr. Devi Madhavi Bhimarasetty¹, Dr. Sidharth Kanisetti¹, Dr. Niranjan Joshi³, Dr Prasant Mahapatra⁴, Dr. kiran Pamarthi¹

¹ Andhra Medical College, Visakhapatnam, India
² Salcit Technologies, Jayabheri Silicon Towers, Hyderabad India
³ C-CAMP, Department of Biotechnology, Government of India
⁴ Department of Computer Science, University of California, Davis

*Corresponding author: gowri@salcit.in

Keywords: Pulmonary Tuberculosis (PTB), Cough signature, Convolutional Neural Network (CNN), Tabular model, Machine learning

Abstract

Acoustic signal analysis has been employed in various medical devices. However, studies involving cough sound analysis to screen the potential Pulmonary Tuberculosis (PTB) suspects are very few. The main objective of this cross-sectional validation study was to develop and validate the Swaasa AI platform to screen and prioritize at risk patients for PTB based on the signature cough sound as well as symptomatic information provided by the subjects. The voluntary cough sound data was collected at Andhra Medical College-India. An Algorithm based on multimodal Convolutional Neural Network (CNN) architecture and tabular features was built and validated on a total of 567 subjects, comprising 278 positive and 289 negative PTB cases. The output from these two models was combined to detect the likely presence (positive cases) of PTB. In the clinical validation phase, the AI-model was found to be 86.82% accurate in detecting the likely presence of PTB with 90.36% sensitivity and 84.67% specificity. The pilot testing of Swaasa was conducted at a peripheral health care centre, RHC Simhachalam-India on 65 presumptive PTB cases. Out of which, 15 subjects truly turned out to be PTB positive with a Positive Predictive Value of 75%. The validation
results obtained from Swaasa AI Platform are quite encouraging. This platform has the potential to fulfil the unmet need of a cost-effective PTB screening method. It works remotely, presents instantaneous results, and does not require a highly trained operator. Therefore, it could be implemented in various inaccessible, resource-poor parts of the world.

Introduction

Tuberculosis (TB) is the world’s second leading airborne infectious disease after COVID-19. Unlike COVID the causative agent of TB is a bacterium, *Mycobacterium tuberculosis* (MTB). However, both the infections mainly affect the respiratory system. Although the bacteria have the capability to cause infection in various body parts. Pulmonary Tuberculosis (PTB) is the active form of infection, which displays symptoms such as fever, night sweat, weight loss and cough\(^1,2\). In 2020, the World Health Organization globally reported nearly 10 million active TB cases and 1.5 million TB related mortalities. Although, TB is curable and preventable, the number of active cases is still high in various low income, developing countries including India. An active PTB patient can infect nearly ten to fifteen people every year\(^3\). Currently there are several methods for diagnosing presumptive as well as active PTB cases, such as sputum staining, chest X-ray (CXR) and sputum cartridge based nucleic acid amplification test (CB-NAAT) or sputum GeneXpert test. However, all these methods are very expensive, require proper lab setting and trained technicians. Therefore, quick, and inexpensive mass screening methods\(^4\) are required for reducing the transmission of infection by providing timely diagnosis followed by appropriate treatment regime\(^5,6\).

Cough is a common symptom of respiratory disease and is caused by an explosive expulsion of air to clear the airways\(^7\). It is a significant feature of pulmonary tuberculosis and results in the release of airborne particles into the environment\(^8,9\). It has also been postulated that the glottis behaves differently under different pathological conditions, which makes it possible to distinguish coughs originating from different underlying condition such as asthma, bronchitis, and pertussis (whooping cough)\(^10\). Since coughing is a dominant symptom of PTB, there are reports which suggests that coughing sound of an individual with pulmonary TB has some unique characteristics features that distinguishes the diseased condition from the normal scenario\(^11-13\). Still, a lot of research is needed to fully explore and decode the information contained in the cough sound to use it as an indicator of the underlying disease.
The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend and myriad of future possibilities in the medical domain. There is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based algorithms exploiting cough signatures. Cough analysis approaches are primarily subjective and are affected by the limitations of human perception. Audiometric analysis of cough (digital signal) provides essential information about characteristics of cough sounds in different respiratory pathological conditions. Several studies have been conducted in the past to collect and analyse cough sound data for PTB pre-screening and triaging using mobile devices. However, there are some missing links in terms of selecting the subjects, collecting the cough data and lack of proper technical/clinical validations to scale up these tools for mass screening of PTB subjects.

Our study provides a holistic approach by developing, validating, and testing the “Swaasa AI platform” to screen and prioritize the potential PTB cases. As opposed to majority of the previous reports that utilized the crowdsourced cough sound database for training their model, we have conducted the data collection from 567 unique subjects for our model derivation as well as validation phase in a proper clinical setting. Hence, our data is free of noise and have cough recordings collected from various unique subjects to build a robust model. Unlike others, we have trained two parallel models i.e., Convolutional Neural Network (CNN) model with Mel-frequency cepstrum (MFCC) spectrograms and tabular model with primary and secondary features and merged the final layer to build a combined logic. In the validation phase, the AI-model was found to be 86.82% accurate in detecting the likely presence of PTB with 90.36% sensitivity and 84.67% specificity. Therefore, it satisfies the specificity (70%) and sensitivity (90%) criteria set by the World Health Organisation (WHO) for a community-based mass TB screening test. The results obtained by Swaasa are very promising with a scope to make it scalable for quick, cost-effective, and non-invasive screening of PTB cases. A large-scale study will further help us to improvise the accuracy of the platform for making it more reliable for screening genetically diverse subjects under different environmental conditions.

Materials and Methods

Sample size estimation and Data Collection
According to the sample size calculation, a total of 568 (50% PTB cases and 50% normal controls) subject number was appropriate for validating if the device could detect PTB respiratory conditions with a 90% sensitivity on considering a 5% error for a 95% confidence interval (CI) and a prevalence of 1.5%. The highest prevalence of PBT in India is 0.747% (747 per lakh). However, considering the prevalence to notification ratio gap of about 2.85 as per the National TB prevalence survey, we assumed a prevalence of 1.5% for our calculations. Upon taking into account all the conditions, we started our study with a total of 567 participants, out of which 50.9% were normal controls. Normal control subjects comprise equal number of healthy individuals as well as subjects who were displaying various respiratory disease symptoms and came out positive for conditions such as asthma, Chronic Obstructive Pulmonary Disease (COPD), Interstitial lung disease (ILD), pneumonia but were negative for PTB via CB-NAAT.

The cough data has been collected at Andhra Medical College (AMC), Visakhapatnam, India as part of the clinical study “Swaasa Artificial Intelligence Platform for detecting the likely presence of Pulmonary Tuberculosis”. The study was registered with Clinical Trials Registry-India (CTRI/2021/09/036609) on 17th September 2021. The methods were performed in accordance with relevant guidelines and regulations and approved by AMC- Institutional Ethics Committee (IEC). Written informed consent was taken from all the enrolled subjects. After getting the informed consent, the patient's demographic details and vitals were collected. The patients were also interviewed as per the Part I of the St. George's Respiratory Questionnaire (SGRQ) 28, which primarily covers the symptoms they've had experienced within the past few months or year. This was followed by cough sound collection by trained health care personnel. Each subject recorded multiple coughs (3-4 times), taking a breath in between every 15 seconds record interval.

Following the cough sample collection, patients were subjected for CB-NAAT and chest X-Ray (CXR P/A) view for diagnosis of PTB. The data distribution across different gender and age groups is presented in Figure 1. The inclusion criteria were that a patient must be of (a) age ≥ 18 years and should display (b) symptoms suggestive of PTB (presumptive PTB). Whereas patients with (a) age < 18 years and who were (b) on ventilators support were completely excluded from the current study. COVID precautionary and infection control measures were followed strictly.

Study design and Patient recruitment
The study was undertaken in three phases. Phase 1 and phase 2 are cross sectional studies. From every subject multiple data points (cough recordings) were collected in the derivation (phase 1) phase to develop a robust model. Whereas only one data point (one cough recording) was collected in the validation and pilot test phases.

Phase 1: The objective of **Derivation** phase was to quantify the technical as well as analytical performance of the device by establishing a unique cough signature for PTB.

Sample size: For derivation, total 195 subjects were recruited. All the subjects were tested positive for PTB either by sputum CB-NAAT, sputum AFB staining or radiological means.

Also, 152 non-PTB subject data was collected and used to train the model to make it distinguish the PTB condition from normal healthy subjects as well as other respiratory disease scenarios.

Phase 2: Next, the **Clinical validation** was carried out to quantify the performance of the device against clinical diagnosis based on reference standard tests.

Sample size: For validation, 220 presumptive PTB cases were recruited and subjected to the screening test using Swaasa AI Platform. This was then followed by the standard reference testing for diagnosis of PTB. The Physicians were completely kept blind about the results obtained from Swaasa platform. We compared the results obtained from the Swaasa AI Platform to the standard diagnostic testing.

Phase 3: **Pilot testing** was done to quantify the effectiveness of the device when deployed as a screening tool prior to diagnosis.

Sample size: In pilot deployment, we enrolled 65 presumptive PTB cases from a peripheral health care centre, RHC Simhachalam.

Event Extraction

Event extraction was carried out from the collected audio cough records using the moving windowed signal standard deviation technique. Cough recordings collected during the derivation phase from 195 PTB positive cases were then subjected to a cough/non-cough classifier, which segregates the events into actual coughs and non-coughs such as silence, speech, fan sounds, vehicle sounds like horn, and noise. A total of 3102 cough events were extracted at this step.

Feature Extraction
The features were extracted from the time as well as frequency domain of each cough event. The important time domain features that were taken into consideration are Zero crossing rate (ZCR) and Energy. The frequency domain features which were utilized for data analysis are MFCC, Spectral centroid, Spectral bandwidth, and Spectral roll off which were described in detail in our previous study.

The features were extracted for each frame within the cough signal. Each frame was typically about 20 ms in duration. The cough event duration can vary from anywhere between 200 ms to 700 ms.

Prediction Model

The coughs were converted to MFCC spectrograms for developing the multimodal architecture based on CNN and tabular features. The spectrogram images were fed as inputs to CNN classifier for classification. Simultaneously, a tabular model was trained using features extracted from the frequency and time domain. Feature selection techniques were used to remove redundant features and to identify the features which have relatively high importance. The output from CNN and tabular models were combined to detect the likely presence of PTB (yes/no/inconclusive). When the model is uncertain about the likely detection of PTB as yes/no, it provides the output as inconclusive as displayed in the block diagram in Figure 2, wherein PTB likely indicates TB positive and PTB unlikely indicates TB negative condition.

The total features extracted were 209, that includes age, gender, 120 Mel Frequency Cepstral coefficients (40 MFCC, 40 first derivatives of MFCC, 40 second order derivatives of MFCC), 9 spectral features (spectral centroid, spectral roll-off, spectral bandwidth, dominant frequency, spectral skewness, spectral kurtosis, spectral crest, spectral spread and spectral entropy), 33 chroma features (11 chroma, 11 first derivatives of chroma, 11 second derivatives of chroma), 18 contrast features (6 contrast, 6 first derivatives of contrast, 6 second derivatives of contrast), 15 tonnentz features (5 tonnentz, 5 first derivatives of tonnentz, 5 second derivatives of tonnentz), 3 Zero-crossing rate (ZCR, first derivatives of ZCR, second derivatives of ZCR), 3 Energy (Energy, first derivatives of energy, second derivatives of energy), 3 skewness (skewness, first derivatives of skewness, second derivatives of skewness), 3 kurtosis (kurtosis, first derivatives of kurtosis, second derivatives of kurtosis). On these features, we did correlation analysis and recursive feature elimination...
(RFE) to rank the feature according to their importance. As part of the feature selection, we removed irrelevant features and reduced the number of features to 170 for the tabular model.

Spectrograms were given as input to CNN which was pre-trained (we used transfer learning (Resnet 34) with imagenet for training). Parallelly, a tabular model was trained using primary and secondary features. From each of these two models, the last fully connected layers were removed and merged with a new fully connected layer (merged layer) which were again passed through the linear layers (activation layers) which further led to the final output layer (Figure 3). We have named this merging approach of the last layers of the two models as a combined logic.

Data analysis

For phase 1 and phase 2, Swaasa’s performance was compared with diagnosis based on Sputum CB-NAAT test or radiological diagnosis. A consolidated test summary sheet was generated, which contained the results obtained from the classical gold standard diagnosis methods along with the Swaasa output. Both the results were then compared by a statistician. The results obtained from the Swaasa AI platform were not accessible to the Physicians at any stage. For phase 3 the effectiveness of Swaasa was measured using the ratio of patients truly diagnosed as PTB positive via standard lab based diagnostic techniques to all those who were predicted to be PTB positive via AI-based Swaasa platform.

LIME Representation

In Local interpretable model-agnostic explanations (LIME) representation 30, the green part shows where the model reacted positively for a particular class and red parts highlights where it reacted negatively. It explains the prediction by presenting textual or visual artefacts that provide qualitative understanding of the relationship between the instance's components (e.g., words in text, patches in an image) and the model's prediction.

Statistical analysis

The comprehensive evaluation of the model performance on the test set includes accuracy sensitivity, specificity, positive prediction value (PPV), negative predictive values (NPV) and ROC. To measure the variability around these parameters, we used 95% confidence intervals using the Clopper–Pearson method 31. To better understand the performance of the model in screening PTB subjects, we also calculated confusion metrics on the entire test set.
Results:

Patient population in Model derivation phase

Cough sound data was collected from 195 subjects PTB positive subjects and 152 PTB negative subjects in the derivation phase. Among 195 subjects, 65% were male and 35% were female, with age ranging from 18 years to 64 & above. Subjects were confirmed with TB by standard diagnosis methods. In this phase multiple data points were collected from the subjects. Each data point was called a record. A total of 597 cough records were collected from 195 patients. The data was annotated with disease condition as PTB i.e., PTB likely as “yes”. For PTB unlikely, data representing other respiratory disease conditions was added from the pre-existing labelled datasets (collected as a part of earlier studies) in appropriate propositions.

The features listed in Table 1 depicts the mean value of the features extracted from individual frames, where we have considered normal as well as respiratory diseases data other than PTB from our previous validation study conducted at Apollo Hospitals, Hyderabad.

LIME data comparison

We observed that conditions like COPD and ILD carried very low spectral frequencies as compared to Asthma, which has a medium spectral frequency. On the other hand, we detected a very high spectral content for diseases where mucus accumulation in the airways and fluid accumulation in parenchyma region was present such as, PTB. Features like high spectral content brought uniqueness in the PTB cough, which differentiates it from the other respiratory diseases.

Thorough feature analysis of the cough sounds highlighted that the cough sounds could distinguish diseases. Variation in the cough duration and frequency distribution alters with the pathological conditions of the respiratory system.

We have enlisted a few examples of cough signatures, cough spectrograms and related LIME maps for different respiratory diseases, including PTB in Table 2. It is evident from the LIME maps that frequency distribution of the coughs is unique for each disease. To be specific, both Asthma & ILD have negative reactions in high frequency regions. TB has a positive reaction in the high frequency region and in the low frequency region. Normal cough signature is widely spread. However, it is not like other diseased conditions, where it has a strong patch around a given region. Similarly in the first column of the table, the variation of the
amplitudes of the cough from bout to bout is different in coughs related to different diseases. As amplitudes vary, energy also varies from bout to bout.

From the feature analysis we conclude that PTB related cough has a unique signature, and it is captured by the features extracted from the cough, which can be identified by a machine learning model.

Performance of Combined logic Model

Initially, the training data was internally divided into training and validation as required to build as well as optimize the model performance based on K-fold cross validation technique. We achieved an overall 0.84 AUC (Area under the ROC Curve) using k-fold cross validation (K=10). The best representative ROC curve with an AUC of 0.98 among the 10-folds is provided in Figure 4. In machine learning model, attributes were fixed for learning. Hence, the dataset was divided into subsets and the model was trained with each subset to validate the model.

Further, the data collected in the derivation phase have been divided into 80% train and 20% test, when the test data was run through the classifier. We obtained four outcomes as enlisted in Table 3 i.e., 102 True positives (TP), 20 False Negatives (FN); 22 False Positives (FP) and 128 True Negatives (TN), that corresponds to 85% accuracy, 84% sensitivity and 85% specificity.

A total of 220 subjects participated in the validation phase, out of which 83 subjects were found to be PTB positive and 137 subjects PTB negative by standard diagnostic methods. Only one cough record was collected from each subject in this phase. Confusion matrix for validation phase of Swaasa model is illustrated in Table 4, where the row represents the actual label, and the column represents predicted label. For the Validation phase we achieved an accuracy of 86.82% with 90.36% sensitivity and 84.67% specificity (Table 5).

Model Output in the Pilot phase

Pilot testing was done on a total of 65 subjects. Among 65 subjects, Swaasa was able to identify 20 subjects as having a likely presence of TB. Out of these 20 subjects, 15 truly turned out to be TB positive with a Positive predictive value (PPV) of 75%.

When compared to the existing classical methods, screening of PTB patients by Swaasa saved a significant amount of time. Additionally, Swaasa does not require any trained
professionals, the testing can be done by a community healthcare worker. The worker did not require any specific hardware or any other consumables. A smartphone with an internet connection is enough to conduct the test.

Discussion

Several studies have been conducted in the past to deploy the information contained in the cough sound to detect and predict different disease outcomes such as Asthma, Pneumonia, COPD, bronchitis, and lung cancer, 22-25. Nowadays, due to the increasing COVID-19 cases, there has been a tremendous boost in the use of ML/DL frameworks to determine the presence of SARS-CoV-2 infection via cough sample analysis. This is because cough is one of the most prominent symptoms for the diseases, that primarily affect the respiratory system. Numerous studies have shown that cough analysis can accurately predict COVID-19 26,27. However, there are only a handful of clinical trials that emphasise the association of cough to the underlying Pulmonary TB condition 11-13,19. Most of the previously developed tools were utilizing the logistic regression methods to build the model. However, in the current study, we developed the Swaasa AI platform by combining the final output layers of the two separate models i.e., tabular model (training input: primary and secondary features) and CNN model (training input: MFCC spectrograms) because it gave us far better prediction outcome as compared to the either logical repression or CNN model used alone by other groups 12,13,19. We conducted the pilot screening on a comparatively large cohort, whereas previous studies were performed on a smaller scale. A pilot study conducted in Peru focused on analysing cough sounds for providing a foundation to support a larger-scale studies of coughing rates over time for TB patients undergoing treatment 19. A similar cough sound analysis study was undertaken in South Africa for automatically classifying coughing sounds, which could be a viable low-cost and low-complexity screening method for PTB 12.

The approach of the current study is different with respect to the previously published data in terms of the amount of data collected to build and train the model. As compared to the maximum AUC of 0.94 achieved in a similar study upon utilizing only 23 features and with less dataset, we have utilized 170 features while training the model and achieved an AUC of 0.84 on a dataset comprising TB and non-PTB, where non-PTB includes other important diseases like Asthma, COPD, COVID-19, Pneumonia as well as healthy subjects 13. Having a greater number of latent features helps in distinguishing the signature better. Our model achieved an accuracy of 86.82% with 90.36% sensitivity and 84.67% specificity in the clinical validation phase. We conducted the pilot testing in real primary care setting to test the
accuracy of the tool. Upon deployed as a screening and triaging tool prior to molecular
testing, Swaasa was proven statistically effective in prioritizing at-risk patients for
confirmatory testing. In the pilot phase also, the model achieved a positive prediction value of
75% in a clinical setup at a tertiary care hospital.

Considering the performance of the present diagnostic tests for PTB, Swaasa’s technical and
clinical validation results are quite encouraging, given the device is primarily intended to be
used as a screening tool and helps in prioritizing and fast tracking the patients for subjecting
them to the standard reference tests for confirmation of diagnosis of PTB.

During our study we observed that on an average 10 to 12 patients are diagnosed with
extensive PTB with severe parenchymal damage, respiratory failure and poor lung function
every month at a remote community health centre in India. Most of these patients belong to
tribal areas. The delay in diagnosis is mainly due to lack of awareness, and social inhibitions
in reaching a doctor or a peripheral health worker. We believe that Swaasa will help in
reducing the gap in accessibility for the much-needed population.

Data availability

Due to the nature of this research, participants of this study did not agree for their data to be
shared publicly. However, the detailed analysis can be shared upon reasonable request.

Author contributions

GDY and DM defined study protocol, including the study design and methodology. NR
conceptualized the idea of using cough sounds for screening and diagnosing respiratory
problems. GR performed literature review. BM and CJ were involved in device development.
VY created value proposition for the device. PVS assisted in executing the project at AMC
by providing all the resources and extending research capabilities. SV, SK and KP performed
data analysis, sample size estimation and result analysis. PM provided subject matter
expertise. GR and PF wrote the manuscript. All the authors provided intellectual inputs and
helped in preparing the manuscript.

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Acknowledgement
This study is supported by the UK Government (British High Commission, New Delhi). This is a commissioned research report on commercial terms between C-CAMP and the UK Government (British High Commission, New Delhi). We would also like to acknowledge the team from Andhra Medical College Visakhapatnam, Government TB & Chest Hospital Visakhapatnam for all the support provided.

References

Table 1: Table showing mean values of the Zero crossing rate (ZCR), spectral centroid and dominant frequency of various disease conditions.

<table>
<thead>
<tr>
<th>Disease Conditions</th>
<th>ZCR Mean values</th>
<th>Spectral centroid mean values</th>
<th>Dominant Frequency Mean values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.169</td>
<td>2809</td>
<td>2809</td>
</tr>
<tr>
<td>ILD</td>
<td>0.099</td>
<td>2053</td>
<td>2053</td>
</tr>
<tr>
<td>COPD</td>
<td>0.08</td>
<td>1947</td>
<td>1947</td>
</tr>
<tr>
<td>Asthma</td>
<td>0.112</td>
<td>2093</td>
<td>2093</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0.118</td>
<td>2249</td>
<td>2249</td>
</tr>
<tr>
<td>COVID</td>
<td>0.216</td>
<td>3135</td>
<td>3135</td>
</tr>
<tr>
<td>TB</td>
<td>0.178</td>
<td>2867</td>
<td>2867</td>
</tr>
</tbody>
</table>

Table 2: List of different respiratory diseases showing characteristic cough signature, cough spectrograms and related LIME maps.
<table>
<thead>
<tr>
<th>Records</th>
<th>Train</th>
<th>Test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB Likely - Yes</td>
<td>204</td>
<td>122</td>
<td>326</td>
</tr>
<tr>
<td>TB Likely - No</td>
<td>853</td>
<td>152</td>
<td>1005</td>
</tr>
<tr>
<td>Total</td>
<td>1057</td>
<td>274</td>
<td>1331</td>
</tr>
<tr>
<td>Percentage</td>
<td>80%</td>
<td>20%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3: Data distribution of the cough records collected from subject in derivation phase.
Table 4: Confusion matrix for the validation phase

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB- Yes</td>
<td>64 (TP)</td>
</tr>
<tr>
<td>TB- No</td>
<td>10 (FP)</td>
</tr>
<tr>
<td></td>
<td>19 (FN)</td>
</tr>
<tr>
<td></td>
<td>127 (TN)</td>
</tr>
</tbody>
</table>

Table 5: Performance metrics of the validation phase

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>90.36%</td>
<td>66.58% to 85.62%</td>
</tr>
<tr>
<td>Specificity</td>
<td>84.67%</td>
<td>86.99% to 96.44%</td>
</tr>
<tr>
<td>Positive Likelihood Ratio</td>
<td>5.90</td>
<td>5.75 to 19.41</td>
</tr>
<tr>
<td>Negative Likelihood Ratio</td>
<td>0.11</td>
<td>0.17 to 0.37</td>
</tr>
<tr>
<td>Disease Prevalence</td>
<td>37.73%</td>
<td>31.30% to 44.49%</td>
</tr>
<tr>
<td>Positive Predicate Value</td>
<td>78.12%</td>
<td>77.70% to 92.16%</td>
</tr>
<tr>
<td>Negative Predicate Value</td>
<td>93.55%</td>
<td>81.79% to 90.87%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>86.82%</td>
<td>81.62% to 90.99%</td>
</tr>
</tbody>
</table>

Figure 1: Data distribution in the derivation phase, validation phase and pilot testing.
Figure 2: Block Diagram illustrating the flow of the TB prediction model.

Figure 3: Illustration of the combined logic - combining tabular model and Convolutional Neural Network (CNN) outputs

Figure 4: The representative graph for ROC curve, best among 10-fold validation of TB prediction model built using derivation data.