Title: Hospital contact patterns and vulnerability to SARS-CoV-2 outbreaks

Authors: George Shirreff1,2,3†, Bich-Tram Huynh1,2†, Audrey Duval1, Lara Cristina Pereira1, Djillali Annané3, Aurélien Dinh5, Olivier Lambotte6,7, Sophie Bulifon8, Magali Guichardon9, Sebastien Beaune10, Julie Toubiana11, Elsa Kermovant-Duchemin12, Gerard Chéron13, Hugues Cordel14, Laurent Argaud15, Marion Douplat16, Paul Abraham17, Karim Tazarourte18, Géraldine Martin-Gaujard19, Philippe Vanhems20,21, Delphine Hilliquin20, Duc Nguyen22, Guillaume Chelius23, Antoine Fraboulet23, Laura Temime24‡, Lulla Opatowski1,2‡, Didier Guillemot1,2,25‡*

†These authors contributed equally to this work
‡These authors contributed equally to this work
*Corresponding author

Affiliations:
1Epidemiology and Modelling of Antibiotic Evasion, Institut Pasteur; Paris, France
2UMR 1018, team "Anti-infective Evasion and Pharmacoepidemiology", Université Paris-Saclay, UVSQ, Inserm; Paris, France
3Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire National des Arts et Métiers; Paris, France
4Service de Réanimation Adulte, AP-HP. Paris Saclay, Hôpital Raymond Poincaré; Garches, France
5Service de Maladies Infectieuses et Tropicales, AP-HP. Paris Saclay, Hôpital Raymond Poincaré; Garches, France
6Service de Médecine Interne et Immunologie Clinique, AP-HP. Paris Saclay, Hôpital de Bicêtre; Le Kremlin Bicêtre, France
7UMR1184, IMVA-HB, Inserm, CEA, Université Paris Saclay; Le Kremlin Bicêtre, France
8Service de Pneumologie, AP-HP. Paris Saclay, Hôpital de Bicêtre; Le Kremlin Bicêtre, France
9Service de Gériatrie, AP-HP. Paris Saclay, Hôpital Paul Brousse; Villejuif, France
10Service des Urgences Adultes, AP-HP. Paris Saclay, Hôpital Ambroise Paré; Boulogne-Billancourt, France
11Service de Pédiatrie Générale, AP-HP. Centre – Université Paris Cité, Hôpital Necker-enfants malades; Paris, France
12Service de Réanimation Néonatale, AP-HP. Centre – Université Paris Cité, Hôpital Necker-enfants malades; Paris, France
13Service des Urgences Pédiatriques, AP-HP. Centre – Université Paris Cité, Hôpital Necker-enfants malades; Paris, France
14Service de Maladies Infectieuses et Tropicales, AP-HP. Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne; Bobigny, France
15Service de Réanimation Adulte, Hospices Civils de Lyon - Université Claude Bernard, Hôpital Edouard Herriot; Lyon, France

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
One Sentence Summary: We measured contacts between staff, patients and visitors in 15 hospital wards, and used models to predict epidemic risk and evaluate interventions.

Abstract: The transmission risk of SARS-CoV-2 within hospitals can exceed that in the general community because of more frequent close proximity interactions (CPIs). Heterogeneity of risk across wards is still poorly described. We measured CPIs in 15 clinical wards across three hospitals using wearable sensors over 36 hours in spring 2020. This data was combined with a transmission model to estimate and compare transmission risks across wards. We found a fourfold range of epidemic risk between wards, with patients frequently presenting high risk to patients and healthcare workers (HCWs). Using a simulation study, we then assessed the potential impact on global risk of targeting individuals for prevention based on their contact patterns. We found that targeting individuals with the highest cumulative contact hours was most
impactful. This study reveals patterns of interactions between individuals in hospital during a pandemic and opens new routes for research into airborne nosocomial risk.
Main Text:

INTRODUCTION

The epidemic vulnerability of healthcare facilities is a particularly important issue, especially in a pandemic situation. Nosocomial outbreaks of SARS-CoV-2 have been of major concern since the beginning of the pandemic, with both healthcare workers (HCWs) and patients at risk of hospital-acquired COVID-19 (1,2). There are direct medical risks when a patient or HCW acquires an infection in hospital, but also issues of disorganisation and access to care when infected HCWs can no longer carry out their work because they are ill or required to isolate. Hospital infections can also be source of further spread within the community. Many clusters of COVID-19 have been reported in hospitals (3) and studies suggest that a large proportion of confirmed cases among HCWs resulted from infection within facilities (4).

In hospitals the frequency and duration of inter-individual contacts can be much higher than in the general community, potentially leading to greatly elevated risk of transmission (5). However, such risk may depend on the ward activity, specialty and organization (5). Consequently, anticipating the risk and adapting and prioritizing preventive measures requires better understanding of the patterns of at-risk contacts in these settings (6). In this context, direct recording of close proximity interactions (CPIs) using electronic sensors is a powerful tool as it enables all human interactions to be recorded while avoiding inaccuracies in recall to which self-report methods are vulnerable (7).

Here we report collection of CPIs between individuals collected over April-June 2020 within 15 clinical departments, hereafter referred to as wards, within three French university hospital centres, and the investigation of the associated nosocomial SARS-Co2 epidemic risk. We also investigate the population heterogeneities in contact rate and explore the extent to which
targeting individuals based on their relative connectivity could help minimize SARS-CoV-2 nosocomial risk.

RESULTS

Subhead 1: High diversity of contact patterns

We used data collected using wearable log-sensors to reconstruct networks of contact between patients, visitors and HCWs in each ward (Figure 1). A large variety of patterns was observed. For instance, in some wards, contacts appear homogeneously distributed among patients and HCWs, leading to single-component networks (e.g. internal medicine), or multiple components of mixed types (e.g. geriatry #1, infectious diseases #3 and neonatal ICU). In others, contact networks are centered around a core of HCWs, with patients having contact with only one or a few HCW and almost no visitors (e.g. adult emergency #2). Where present, visitors remain peripheral to the network with a few links each in most wards (e.g. paediatric emergency), but in general paediatrics they have many links to different types of hospital users.

Subhead 2: A consistently key role played by HCWs

The overall connectivity of individuals across all wards is shown in Figure 2 in terms of the total number of individuals contacted for any length of time (degree) and the total cumulative time spent with all contacts (contact hours). For ease of comparison with other studies, we have also calculated the median number of contacts and total duration of contact for each ward, and we provide the median and range of these values across all wards in Supplementary Table S 1.

HCW contacts are widely distributed in terms of degree while most patients have few contacts. However, in terms of total contact hours, the overall distribution is dominated by HCWs and in particular nurses and physicians. As underlined by the per-ward contact matrices provided in
Figure 3, contact intensity among HCWs is relatively consistent between wards (on average, new contacts formed in each hour last a total of 18 to 41 contact minutes), with most HCW contacts occurring with other HCWs, in every ward. In 8 of the studied wards, patients also had the majority of their contacts with HCWs, while in the general paediatrics and paediatric emergency wards they had most of their contact with visitors, and with other patients in the remaining 5.

The contact rates per hour are shown in Supplementary Figure S 1. The average duration of each contact is shown in Supplementary Figure S 2, which shows the long duration of contacts, particularly between patients.

Subhead 3: Large variation in epidemic risk between wards

We explored how the observed contact patterns may translate into nosocomial COVID-19 risk. We wrote a transmission model to estimate, for each ward, the expected number of secondary infections per day after the introduction of a hypothetical index SARS-CoV-2 infectious case. This number was calculated based on the contact frequency, average time spent on the ward and average duration of contacts, assuming saturating probability of infection for long contacts.

Figure 4 shows over a four-fold variation in the predicted overall number of secondary infections per day between the different wards, from 0.12 to 0.49, with the lowest epidemic risk in the emergency wards. This variation between wards is even more striking for secondary infections specifically arising from patients, with a predicted range from 0.04 to 0.81.

In emergency units (adult and paediatric), we estimate that transmission between HCWs contributes for almost all of the epidemic risk. Indeed, the total time spent by patients and visitors in the wards is too short for them to transmit the virus to many individuals. For other wards, risk of transmission from patients was highly variable. In some wards, such as geriatry #1, the risk of direct patient-to-patient transmission was particularly high, perhaps as a result of
shared meals and activities which are typical of long-term care in geriatry. On the other hand, geriatry #2 exhibited much lower patient-patient risk, as in this ward the cumulative contact time between patients was considerably lower (Figure 3).

In adult general wards, visitors were officially not permitted at the time of the study, and therefore even if present, were few and presented low risk (up to 0.13 secondary infections per day). By opposition, because visits are considered essential to the medical prognosis in wards dedicated to children, visitors were expressly permitted in paediatric wards even during the first pandemic wave. As a consequence, estimated transmission risk from visitors could reach high levels (up to 0.83 secondary infections per day in general paediatrics).

The risk posed by HCWs is more consistent between wards (0.13 to 0.35 secondary infections per day), with other HCWs being at most risk in every ward.

Based on the risk between different types of hospital users in each ward, we used a clustering algorithm to identify clusters of wards with similar risk characteristics (Supplementary Figure S 3). We found that adult ICU wards formed a single cluster, as did the paediatric wards, with the remaining wards forming a third large cluster.

Subhead 4: Focusing infection control interventions on individuals based on their level of contact may prove highly effective

We examined the effect of targeting individuals for enhanced contact precautions using our knowledge of the contact network. The effect on epidemic risk of implementing control measures targeted at some individuals based on their connectivity (measured either by degree or contact hours, Figure 2) was assessed. We assumed that, for targeted individuals, intervention led to complete eradication of transmission and acquisition (100% efficacy), reflecting the
implementation of very strict contact precautions (e.g. FFP2 masks) during all contacts involving these individuals. The reduction in the number of secondary infections was calculated relative to the baseline in which no individuals were protected (Figure 5).

When reinforcing contact precautions for the top 5% most connected individuals, the greatest effect came when targeting individuals based on their contact hours (with a 22% reduction in secondary infections in the median ward), while targeting by degree reduced infections by 13%, and selecting at random 10%. If only high-contact patients were targeted, the reduction was similar (23%), whereas only 15% could be achieved by targeting only high-contact HCWs. Much lower reductions were possible from visitors as they always made up much less than 5% of the total population size. A similar analysis was also run targeting individuals by their closeness and betweenness centrality, but the results were negligibly different from those targeting by degree (data not shown).

Subhead 5: Sensitivity analyses

We conducted two separate sensitivity analyses. First, we examined the effect of protecting different proportions of the population, from 1-20% (Supplementary Figure S 4) and showed that the size of the effect increases with the number targeted. Up to a 61% reduction in secondary infections is achievable by targeting the 20% of the population with the highest contact hours. Second, we explored alternative assumptions around probability of infection per contact. We assumed that longer contacts result in diminishing increases in probability of infection (Equation [6]), with, in the baseline analysis, a 50% probability of infection after 11 hours of contact (Supplementary Figure S 5). Here, we repeated the analysis for different values of the parameter a which controls that relationship (Supplementary Figure S 6). While the level of a does control the scale of the reduction, it does not change the universal result that targeting by contact hours is
the most effective. Targeting all individuals or patients was also consistently better than targeting HCWs for all values of \(a \) except for the highest value \(a=0.5 \), which corresponds to a 50\% chance of transmission in 2.2 hours.

DISCUSSION

Pathogen transmission in healthcare settings can have devastating impacts, as evidenced by the high burden carried out in these settings during the COVID-19 pandemic. This work reveals that the basic epidemic risk of an airborne pathogen, such as SARS-Cov-2, can be very different between clinical units due to heterogeneous patterns of contacts. We estimate the epidemic risk presented by a hypothetical index infection, and find a four-fold difference between wards. This rises to a twenty-fold variation between wards if the index infection is a patient. The potential for high risk implies that mandatory mask-wearing to block transmission, particularly from patients, is a valuable safety measure across all wards.

The estimated number of secondary infections reached up to 0.8 infections per day. The resulting cumulative risk over the index infection's entire infectious period could be interpreted as an indicator of the basic reproduction number \(R_0 \) within the ward e.g. up to 5.6 based on an assumed constant risk during an infectious period of 7 days (8).

Using a clustering algorithm, we showed that paediatric wards, on the one hand, and adult ICUs, on the other hand, presented similar patterns of risk. This may reflect characteristics among these specific ward types according to their function, e.g. frequent visitors in paediatric settings or high levels of HCW-patient interactions in adult ICUs. Further analysis of our data would help to unravel the differences between wards, while additional data collection studies could reveal more general patterns.
We examined here how connectivity patterns can be exploited to improve prevention measures. Such a strategy may be particularly useful in a context of limited resources where it is critical to decide to whom a reinforcement of hygiene and protection measures must be targeted. Our model provides an estimation of the maximum possible gain under the assumption that these measures are 100% effective, analogous to fully protective contact precautions, or complete immunisation prior to contact.

We show that targeting the most connected individuals reduced secondary infections more than applying the measures at random. The biggest effect was achieved targeting individuals by their relative contact hours. Targeting patients was the most effective, and targeting HCWs also had a considerable effect. The gain from targeting visitors was generally low (except in paediatric wards). Future studies could identify patient characteristics, such as age and diagnosis, which may be predictive on admission of high contact time during their hospitalisation. High-risk patients could then be specifically targeted for reinforced precautions.

A limited number of studies have used wearable sensor technology to study CPIs in hospitals. Some have relied on sensors worn only by HCWs, interacting with each other (9) or with fixed-point sensors which interact with the sensors worn by HCWs (10,11). Before the COVID-19 pandemic, studies using sensors worn by patients and HCWs have been conducted in paediatrics (12), geriatry (13), acute care (14) and long-term care (15). In this last study, using the same type of wearable sensors, but in a rehabilitation hospital, the reported contact rates for all hospital users was on average 11.6 per day (15). This estimate is higher than our own average estimate of 6 contacts per day, obtained in acute care, in a time of pandemic, although our values range from 2 to 11 across the studied wards. The current study is, to our knowledge, the only one to have
used wearable sensors to sample from all hospital users during the COVID-19 pandemic.

Furthermore, our study is conducted over a range of wards with different clinical functions.

Evaluation of the use of different network measures to target individuals for prevention was previously proposed based on the simulation of SARS-CoV-2 transmission on a real population network (16). In this earlier study, focused on community transmission, targeting individuals based on betweenness centrality performed better than other measures including degree. Indeed it more efficiently disconnected clusters in the studied network, a large community network reconstructed from smartphone GPS over multiple weeks.

By opposition, we focused here on different types of network, characterising populations of single wards over 36 hours. These populations, typical of hospitals, are of much smaller size and shorter timescale, and the connectivity of clusters within each network was therefore less relevant. We assumed that only direct contact would lead to an epidemic, and that indirect or higher order contacts were not relevant for epidemic risk, with the consequence that higher order network measures such as betweenness provided no improvement over degree for targeting interventions.

Some limitations should be mentioned. First, the epidemic risk was estimated based on a simplified transmission model accounting only for the rate and duration of contact. The exact relationship between duration of contact and probability of infection is unknown, and is likely to be variable between different viral variants. Here we assumed that the pathogen had a 50% transmission probability after 11 hours of contact. We explored wider parameter space for this assumption through a sensitivity analysis and showed that modifying this between 2.2 and 110 hours did not change our general conclusions.
Second, all types of recorded contacts were assumed to provide equal risk of infection. Possible heterogeneity in risk levels may depend on types of contact (conversational or physical), prevention measures such as mask wearing or hand hygiene in each ward, and vaccine-derived or natural immunity, but these were not accounted for (17). In addition, the risk of infection from an infected patient to a HCW during an interaction might be greater than those from HCW-patient or patient-patient interactions, because of the requirement for physical or mask-free (for the patient) contacts during some care procedures. However, since our results support the prioritisation of preventive interventions on patients over HCWs, accounting for this asymmetry should only reinforce our conclusions.

Finally, the simulations we have implemented are limited to direct human-to-human transmission and do not take into account for the risk of diffusion via air flows from physically separated individuals within a clinical unit (18,19). However, despite the risk of longer range transmission for SARS-CoV-2, current evidence shows that droplet transmission during CPIs remains key for transmission (20).

Beyond the illustration of its results for SARS-CoV-2, this work proposes a straightforward method based on close proximity interaction measurements to assess and compare basic epidemic risks in clinical units. It allows the identification, among HCWs, patients and visitors, of those whose contribution to the global risk is highest, and proposes priority targets for control measures to minimize this risk. This work demonstrates the potential for combining contact monitoring and modelling to minimize the nosocomial epidemic risk, which may also be applied in a non pandemic context and to other airborne viral or bacterial pathogens.
MATERIALS AND METHODS

Subhead 1: Study design

We investigated large-scale dynamic networks of close proximity interactions (CPIs) among all hospital users (patients, visitors and HCW) in distinct wards.

The study was conducted at the end of the first COVID-19 wave in 2020 in France. The deployment was carried out in 15 wards from university hospital centres of Paris, Lyon and Bordeaux, selected based on their diversity of clinical activities (Supplementary Table S 2). Selected wards were specialised in: infectious diseases and geriatrics (n=3 each), adult medical intensive care and adult emergency (n=2 each), pneumology, internal medicine, general paediatrics, adult surgical intensive care, neonatal intensive care and paediatric emergency (n=1 each) (see SI -- Data description). Ward capacity ranged from 38 to 154 patients. Wards were classified as having all COVID-19 positive patients, having all COVID-19 negative patients, having a mix of the two, and emergency wards having patients of unknown status.

The CPIs were measured by wearable wireless sensors which signal and record the presence of others in a range of 1.5m (see see SI -- Wearable sensors). Sensors were distributed in all individuals present in a given ward and actively measured CPIs during 38 consecutive hours: starting from 6 or 7 a.m. of day 1 and ending at 8 or 9 p.m. of day 2.

Each participant was equipped with a sensor upon entering the ward and returned it when they left. In addition, the function (patient, visitor, or type of health professional) of the individual was collected upon receiving a sensor.

Subhead 2: Contact matrix calculation
The contact matrices summarise the amount of contact between each type of individual (patient, visitor and HCW) for each ward. The rate of contact per hour, average duration of each contact and the product of these two, contact intensity are calculated for individuals of type y with those of type x. Contact rate per hour c_{xy}, is calculated by Equation [1], where i is an individual of type x of which there are n_x in total, C_{iy} is the number of contacts that individual i has with type y, and t_i is the number of hours for which individual i is present.

$$c_{xy} = \frac{1}{n_x} \cdot \sum_i^n \frac{C_{iy}}{t_i}$$ \[1\]

The average duration of contact between individuals of type x and y, d_{xy}, is calculated as in Equation [2] by first taking the average duration of all contacts an individual i of type x has with individuals of type y, divided by the total number of individuals of type y contacted. The average of this value is then taken across all individuals i of type x. Between two individuals i and j, d_{ij} is the total cumulative time they spend in contact over the whole study.

$$d_{xy} = \frac{1}{n_x} \cdot \sum_i^n \frac{C_{iy}}{\sum_j d_{ij}}$$ \[2\]

The contact intensity k_{xy} is the product of average duration of contact and number of new contacts per hour (Equation [3]), and is interpreted as the total duration in minutes of contacts which are formed in each hour between individuals of type x and y.

$$k_{xy} = \frac{1}{n_x} \cdot \sum_i^n \frac{C_{iy}}{t_i} \cdot \sum_j d_{ij}$$ \[3\]

Subhead 3: Prediction of the epidemic risk
The epidemic risk was assessed by calculating M, a predicted number of secondary infections per day which would be expected from a single index infection in a completely susceptible population. It was defined as a function of the number of individuals' CPIs per day, their duration and the probability of transmission per interaction (Equation [4]).

$$M = \bar{c} \cdot \bar{p}_{\text{inf}} \cdot \bar{H}$$

[4]

Here \bar{c} is the average rate of new contacts per hour (Equation [5]), \bar{p}_{inf} the average transmissibility per hour of contact (i.e. probability of infection given contact between a susceptible and infected individual) and \bar{H} the average time (in hours) per day during which the individual was present in the ward (i.e., carried the sensor).

The average rate of CPIs per hour was calculated from the number of new contacts per hour and the total time in hours t_i for which individual i present on the ward (Equation [5]).

$$\bar{c} = \frac{1}{n} \cdot \sum_{i} \frac{C_i}{t_i}$$

[5]

The transmissibility (probability of transmission during an interaction between two individuals i and j when one of them is infectious) was modelled by a saturating function of the duration of contact between two individuals i and j, d_{ij}. Saturation was characterized by a shape parameter a (Equation [6]), assumed to be equal to 0.1 in all the analyses presented herein (see SI -- Transmissibility calibration). For each pair i and j of interacting individuals, $p_{\text{inf}_{ij}}$ was calculated based on their total contact duration.

$$p_{\text{inf}_{ij}} = \frac{1 - e^{-d_{ij} a}}{1 + e^{-d_{ij} a}}$$

[6]
Then the average transmissibility, \bar{p}_i, was calculated as follows (Equation [7]), with C_i representing the number of unique individuals with which a given individual i had an interaction.

$$\bar{p}_i = \frac{1}{n} \sum_{i} \frac{1}{C_i} \sum_{j} p_{inf_{ij}}$$ \[7\]

The average number of hours per 24 hour period during which individuals were present in the ward, \bar{H} was estimated by taking the average of the total time all individuals were present in the ward and normalising to T, the total duration of the investigation in the ward (Equation [8]).

$$\bar{H} = \frac{24}{n \cdot T} \sum_{i} t_i$$ \[8\]

Subhead 4: Prediction of the epidemic risk between types of hospital users

Specific predictions of numbers of secondary infections per day (patients to patients, patients to HCWs, HCWs to patients and HCWs to HCWs) were calculated using the same approach. The predicted number of secondary infections per index infection per day from an individual of type x to one of type y, M_{xy} can be calculated using disaggregated values (Equation [9]).

$$M_{xy} = c_{xy} \cdot p_{inf_{xy}} \cdot H_x$$ \[9\]

Here c_{xy} is the contact rate per hour (Equation [1]), $p_{inf_{xy}}$ the average probability of infection passing from an individual of type x to type y, and H_x the average number of hours per 24 hour period during which individuals of type x were present in the ward.

The probability of infection passing from an individual of type x to type y during an average interaction is calculated from the probability of infection for each pair of individuals based on
their total contact time (Equation [7], with \(a \) assumed to be 0.1, **Supplementary Figure S 5**) averaged over all interactions of that type (Equation [10]).

\[
P_{\text{inf}} = \frac{1}{n_x} \cdot \sum \frac{1}{C_{iy}} \cdot \sum P_{\text{infy}}
\]

[10]

The average number of hours per 24 hour period during which individuals of type \(x \) were present in the ward, \(H_x \), was estimated by taking the average total time individuals of type \(x \) were present (i.e. carrying the captor) and normalising to \(T \), the total duration of the investigation in the ward (Equation [11]).

\[
H_x = \frac{24}{n_x \cdot T} \cdot \sum t_i
\]

[11]

Finally, the overall number of secondary infections from type \(x \) to any type of individual is calculated by summing over all types \(y \) as in Equation [12].

\[
M_x = \sum y M_{xy}
\]

[12]

Subhead 5: Clustering

We used k-means clustering to identify clusters of wards with similar risk characteristics. Each ward was characterized by the vector of \(M_{xy} \) values for all type-combinations (patient, visitor and HCW) \(x \) and \(y \), using a square root transformation to control for overdispersion. Clustering k-means clustering was computed using the \textit{kmeans} package in \textit{R} (21).

Subhead 6: Simulated targeting contact precaution

Finally, we used a simulation analysis to explore to which extent the epidemic risk could be reduced by exploiting the information gathered about CPIs. Sections of the population who
displayed the highest connectivity, measured either by their number of contacts per hour, or their
total cumulative contact duration per hour, were assumed to be provided perfect protection from
giving or receiving infection. For comparison we also examined the effect when protected
individuals were chosen at random.

We assumed that 5% of the entire population size of the ward could be targeted by the
intervention. This number of individuals was then selected from all individuals on the ward, or
from within a particular group (patients, visitors or HCW). The value of M, or M_{xy} was
recalculated assuming null probability of infection p_{ij} from or to the chosen individuals. The
relative reduction was calculated according to Equation [13].

$$\text{Relative reduction} = \frac{M_{\text{baseline}} - M_{\text{targeted}}}{M_{\text{baseline}}}$$ [13]

Subhead 7: Sensitivity analysis: population proportion targeted

We relaxed the assumption from the main analysis of 5% of the population targeted for
prevention, and varied it between 0 and 20%, and measured the corresponding reduction in M, or M_{xy}, relative to no reduction at all, according to Equation [13].

Subhead 8: Sensitivity analysis: change in probability of infection over time

We examined the effect of changing the parameter a which controls the relationship between
d$_{ij}$ and p_{inf} (Equation [6]). This was varied between 0.01 and 0.5, and the relative reduction in
M, or M_{xy}, relative to no reduction at all, was calculated assuming that 5% of the population
were targeted.
List of Supplementary Materials

Materials and Methods

Fig. S1 to S8

Tables S1 to S3

References

Acknowledgments: We would like to thank: Nawal Derridj-Ait Younes, Naima Sghiouar, Tanga Vanessa Ntouba Christianne, Sylvie Azerad and Théo Debert from the clinical research unit of the Paris-Saclay university hospital; Gaetane Niel, Ga Han Park, Audrey Vallerix, Cypriane Tazi, Loueli Ouballa, Valentine Le Cardonnel, Lou Davaine, Madeleine Dutheil de la Rochère, Adeline Alleau, Tiphaine Biaggi, Manuela Carrico, Antoine Goudour, Pauline Jaubert, Marion Galliou, Mathilde de Menthon, Noémie Chanson for their participation in the field investigation; Ajmal Oodally for discussions around the network analysis; The EMEA-MESuRS working group on the nosocomial modelling of SARS-CoV-2, of whom additional members are as follows: Sophie Chervet, Kévin Jean, Sofía Jijón, David RM Smith, Niels Hendrickx.

Author contributions:

Study conception: DG, BTH, LO, LT
Supervised data collection: BTH, DG
Conducted data collection: BTH, DG, DA, A Dinh, OL, SB, MG, SB, JT, EKD, GC, HC, LA, MD, PA, KT, GMG, PV, DH, DN
Supervised analyses: GS, DG, BTH, LO, LT
Network analysis: GS, A Duval
Contact matrix analysis: GS, A Duval, LCP
Epidemic risk models: GS, LO, LT
Writing – original draft: GS, DG
Writing – review & editing: GS, DG, BTH, LO, LT

Funding:
Fondation de France (MODCOV project grant 106059) as part of the alliance framework

“Tous unis contre le virus” (LO)

Université Paris-Saclay (AAP Covid-19 2020) (LO)

The French government through its National Research Agency project Nods-Cov-2

ANR-20-COVI-0026-01 (DG) and SPHINX ANR-17-CE36-0008-01 (LT)

Competing interests: Authors declare that they have no competing interests.

Data and materials availability: The code used for each analysis is available at

https://gitlab.pasteur.fr/gshirref/nodscov2_risksim, along with a subset of the data.

Ethical approval: The study obtained all authorizations in accordance with French regulations agencies regarding medical research and information processing. All French IRB--equivalent agencies accorded the Nods--Cov--2 program official approval (CPP Ile-de-France VI: approval obtained the 14/04/2020; CNIL approval obtained the 16/04/2020). Signed consent by patients, medical and administrative staff, and visitors was not required according to the CPP and the CNIL to which the project was submitted.
Figure 1. **Representations of contact networks within a ward.** Each individual is a node and each link a contact, regardless of duration. Nodes are coloured according to status (patient = red, visitor = black, HCW = blue), and for the HCW the role category is indicated (N = nurse, Ph = physician, AdL = administration/logistic, O = other). The numbers present of each type are given in the subtitle.
Figure 2. Connectivity for each type of hospital user. Connectivity (degree, and total contact hours) across all individuals, patients, visitors, all HCW, nurses, physicians and other HCW, amalgamated across all wards. The width of the violin represents the frequency of that characteristic. The relative volumes of each violin represent the overall size of that population. The horizontal bar indicates the mean across all individuals.
Figure 3. Contact intensity between types of individuals on each ward. Each panel represents a ward, and each cell represents the contact intensity that each type of individual (patient, visitor or HCW, columns) has with each type of individual (rows). Contact intensity is defined in Equation [3] as the rate of forming new contacts per hour multiplied by the average duration of each contact, and can be interpreted as the cumulative duration (in minutes) of new contacts which are formed for each hour the individual is present on the ward. Where the type of individual in the column is not present, the cell is grey.
Figure 4. Predicted number of secondary infections per day from a single infected individual.

Each row represents a different hypothetical index infection, and the coloured bars represent the number of individuals of each type expected to be directly infected per day. The boxplots on the right illustrate the range of values in each bar plot.
Figure 5. The percentage reduction in number of secondary infections per day per infected individual, when the most connected 5% of the population are completely protected. In each panel, the 5% are taken only from the indicated group. The x-axis indicates the method by which connectivity is measured for targeting. Each point represents a single ward, and the horizontal red line represents the average across all wards. The shape of the point indicates the type of ward.