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ABSTRACT 31 

Background: Many children with pulmonary tuberculosis remain undiagnosed and 32 

untreated with related high morbidity and mortality. Diagnostic challenges in children include low 33 

bacterial burden, challenges around specimen collection, and limited access to diagnostic 34 

expertise. Algorithms that guide decisions to initiate tuberculosis treatment in resource-limited 35 

settings could help to close the persistent childhood tuberculosis treatment gap. Recent 36 

advances in childhood tuberculosis algorithm development have incorporated prediction 37 

modelling, but studies conducted to date have been small and localised, with limited 38 

generalizability. 39 

Methods: We collated individual participant data including clinical, bacteriological, and 40 

radiologic information from prospective diagnostic studies in high-tuberculosis incidence settings 41 

enrolling children <10 years with presumptive pulmonary tuberculosis. Using this dataset, we 42 

first retrospectively evaluated the performance of several existing treatment-decision algorithms 43 

and then developed multivariable prediction models, investigating model generalisability using 44 

internal-external cross-validation. A team of experts provided input to adapt the models into a 45 

pragmatic treatment-decision algorithm with a pre-determined sensitivity threshold of 85% for 46 

use in resource-limited, primary healthcare settings. 47 

Findings: Of 4,718 children from 13 studies from 12 countries, 1,811 (38·4%) were 48 

classified as having pulmonary tuberculosis; 541 (29·9%) bacteriologically confirmed and 1,270 49 

(70·1%) unconfirmed. Existing treatment-decision algorithms had highly variable diagnostic 50 

performance. Our prediction model had a combined sensitivity of 86% [95% confidence interval 51 

(CI): 0·68-0·94] and specificity of 37% [95% CI: 0·15-0·66] against a composite reference 52 

standard. 53 

Interpretation: We adopted an evidence-based approach to develop pragmatic 54 

algorithms to guide tuberculosis treatment decisions in children, irrespective of the resources 55 

locally available. This approach will empower health workers in resource-limited, primary 56 
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healthcare settings to initiate tuberculosis treatment in children in order to improve access to 57 

care and reduce tuberculosis-related mortality. These algorithms have been included in the 58 

operational handbook accompanying the latest WHO guidelines on the management of 59 

tuberculosis in children and adolescents.  60 

Funding: World Health Organization, US National Institutes of Health 61 
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RESEARCH IN CONTEXT 62 

Evidence before the study: Treatment-decision algorithms relate information gained in 63 

the evaluation of children into an assessment of tuberculosis disease risk and empower 64 

healthcare workers to make appropriate treatment decisions. Studies in primary healthcare 65 

centres have demonstrated that use of treatment-decision algorithms can improve childhood 66 

pulmonary tuberculosis case-detection and treatment initiation in settings with high-tuberculosis 67 

incidence. To identify primary research studies on treatment-decision algorithm performance 68 

evaluation and/or development for childhood pulmonary tuberculosis, we carried out a PubMed 69 

search using the terms (‘child*’ OR ‘paediatr*’ OR ‘pediatr*’) AND (‘tuberculosis’ OR ‘TB’) AND 70 

(‘treatment-decision’ OR ‘algorithm’ OR ‘diagnos*’) to identify primary research published in any 71 

language prior to 29 June 2022. 72 

We additionally consulted multiple experts in childhood pulmonary tuberculosis 73 

diagnosis and management, and we referred to existing, published reviews of treatment-74 

decision algorithms. With respect to treatment-decision algorithm performance, several studies 75 

have retrospectively estimated the performance of treatment-decision algorithms in a single 76 

geographic setting; a subset of these studies have also compared the performance of multiple 77 

algorithms using data from a single geographic setting. With respect to treatment-decision 78 

algorithm development, many existing algorithms have been developed without explicit analysis 79 

of data from children with presumptive pulmonary tuberculosis, often developed from expert 80 

consensus. Gunasekera et al. used model-based approaches to analyse diagnostic evaluations 81 

data (e.g., clinical history, physical examination, chest radiograph, and results from rapid 82 

molecular and culture testing for Mycobacterium tuberculosis) collected from children with 83 

presumptive pulmonary tuberculosis in a single geographic setting to inform the development of 84 

a diagnostic algorithm while Marcy et al. and Fourie et al analysed data from multiple 85 

geographic settings. However, these studies were relatively small with limited assessment of 86 

generalisability. 87 
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Added value of this study: We collated individual participant data from 13 prospective 88 

diagnostic studies from 12 countries including 4,718 children with presumptive pulmonary 89 

tuberculosis from geographically diverse settings with a high incidence of tuberculosis in order 90 

to 1) evaluate the performance of existing treatment-decision algorithms and 2) develop 91 

multivariable logistic regression models to quantify the contribution of individual features to 92 

discriminate tuberculosis from non-tuberculosis. A panel of child tuberculosis experts provided 93 

input into performance targets and advised on how to incorporate scores derived from these 94 

models into pragmatic treatment-decision algorithms to assist in the evaluation of children 95 

presenting with presumptive pulmonary tuberculosis in primary healthcare centres. 96 

Implications of all the available evidence: Our findings suggest that evidence-based, 97 

pragmatic treatment-decision algorithms can be developed to make sensitive and clinically 98 

appropriate decisions to treat a child with pulmonary tuberculosis. Although the specificity does 99 

not reach optimal targets for childhood tuberculosis diagnosis, pragmatic treatment-decision 100 

algorithms provide clinically relevant guidance that can empower health workers to start children 101 

on tuberculosis treatment at the primary healthcare setting and will likely contribute to reducing 102 

the case-detection gap in childhood tuberculosis. External, prospective evaluation of these 103 

novel algorithms in diverse settings is required, including assessment of their accuracy, 104 

feasibility, acceptability, impact, and cost-effectiveness. This work led to a new interim WHO 105 

recommendation to support the use of treatment-decision algorithms in the evaluation of 106 

children with presumptive tuberculosis in the 2022 updated consolidated guidelines on the 107 

management of tuberculosis in children. Two algorithms developed from this work have been 108 

included in the WHO operational handbook accompanying these guidelines.  109 
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INTRODUCTION 110 

Tuberculosis is a leading cause of mortality among children worldwide,1 accounting for 111 

~2·5% of the 6 million deaths in children <5 years each year.2 Modelling suggests that more 112 

than 96% of tuberculosis deaths in children and adolescents (<15 years) occurred in those not 113 

receiving tuberculosis treatment.3 The World Health Organization (WHO) estimates that fewer 114 

than 50% of the 1·1 million children <15 years who develop tuberculosis are diagnosed; the 115 

proportion is even lower among children <5 years, at about 27%.1 Thus, efforts to improve 116 

diagnosis, and thereby improve access to tuberculosis treatment, are an important opportunity 117 

to reduce tuberculosis morbidity and deaths among children. 118 

Diagnosing pulmonary tuberculosis among children is challenging as respiratory 119 

specimens tend to be paucibacillary, resulting in a low yield of bacteriologic confirmation.4 120 

Furthermore, collecting respiratory specimens from young children is invasive and requires 121 

resources that are generally concentrated in higher-level healthcare centres. Thus, careful 122 

symptom review, clinical examination, chest radiography, and history of Mycobacterium 123 

tuberculosis (Mtb) exposure can inform treatment decisions in clinical care. However, paediatric 124 

clinical expertise and resources to make a diagnosis are often limited at primary healthcare 125 

centres. This limits treatment access and leads to either delays in treatment initiation or no 126 

treatment initiation which are associated with worse outcomes, including mortality.5,6 Facilitating 127 

appropriate diagnostic assessment with rapid treatment initiation at healthcare settings where 128 

children initially present could contribute to reductions in tuberculosis-related morbidity and 129 

mortality. 130 

Treatment-decision algorithms aim to standardise clinical assessment and decision-131 

making. Algorithms relate information gained in the evaluation of children into an assessment of 132 

tuberculosis disease risk and empower healthcare workers to make appropriate treatment 133 

decisions. Adopting an algorithmic approach to treatment decision-making has been shown to 134 

improve childhood tuberculosis case detection and treatment access at primary healthcare 135 
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settings.7,8 However, these algorithms were developed using consensus expert opinion rather 136 

than analysis of data. 137 

Recent approaches for algorithm generation have used data from cross-sectional 138 

childhood tuberculosis diagnostic studies to quantify the contribution of clinical characteristics to 139 

the risk of tuberculosis disease.9-11 Evidence-based approaches are objective and offer the 140 

potential for validation; however, existing studies have been small and not generalisable. In this 141 

study, we assembled individual participant data (IPD) from children investigated for presumptive 142 

pulmonary tuberculosis. We then sought to first evaluate the performance of currently used 143 

diagnostic algorithms and then develop evidence-based treatment-decision algorithms. This 144 

work was conducted to inform the 2022 WHO guidelines for the management of tuberculosis in 145 

children and adolescents and the accompanying WHO operational handbook.12,13  146 

METHODS 147 

Establishment of individual participant data 148 

We identified potential sources of IPD through responses to a public WHO Global 149 

Tuberculosis Programme Public Call for Data on the Management of Children with Tuberculosis 150 

in July 2020 and through referral from paediatric tuberculosis experts. Studies were eligible for 151 

inclusion if they 1) prospectively recruited consecutive participants <10 years (the definition of a 152 

child in the 2022 WHO guideline) attending healthcare centres in high-tuberculosis incidence 153 

countries for clinical evaluation of pulmonary tuberculosis and 2) provided a final research 154 

classification of pulmonary tuberculosis for each child. Tuberculosis was classified using the 155 

revised US National Institutes of Health (NIH) clinical case definitions of intrathoracic 156 

tuberculosis in children.14 Broadly, this defines a confirmed tuberculosis case as culture- or 157 

Xpert MTB/RIF-confirmed Mtb from respiratory specimen(s); an unconfirmed tuberculosis case 158 

as having symptoms, chest radiography findings, and/or immune tests of Mtb sensitivity 159 

suggestive of tuberculosis (including follow-up to verify or rule out tuberculosis); and an unlikely 160 
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tuberculosis case as meeting criteria for neither confirmed nor unconfirmed tuberculosis. If the 161 

study did not use the NIH classification, we used the study-specific definition of unconfirmed 162 

tuberculosis and unlikely tuberculosis. Quality assessment was performed using a modified 163 

version of the Newcastle-Ottawa Scale for cohort studies.15 164 

After identification of eligible studies, we requested IPD including details from the clinical 165 

history, physical examination, chest radiograph, and results from rapid molecular and culture 166 

testing for Mtb performed on respiratory specimens collected at study entry (Supplementary 167 

Appendix A). All data assembly and analysis were carried out using R software version 4.1.1. 168 

To account for the uncertainty associated with incomplete data, we used multilevel multiple 169 

imputation by chained equations (MICE) implemented in the MICE package to generate 100 170 

imputed datasets (Supplementary Appendix B).16 171 

Evaluation of existing treatment-decision algorithms 172 

We identified existing treatment-decision algorithms and scores (henceforth referred to 173 

as algorithms) to guide the evaluation of children with presumptive pulmonary tuberculosis 174 

through consultation with members of the WHO Guideline Development Group (GDG) on the 175 

management of tuberculosis in children and adolescents. We defined a composite reference 176 

standard using the NIH definitions of confirmed and unconfirmed pulmonary tuberculosis to 177 

evaluate the performance of these algorithms. We carried out a sensitivity analysis of 178 

performance using a reference standard of confirmed pulmonary tuberculosis only (excluding 179 

children with unconfirmed tuberculosis). We used the “reitsma” function from the R package 180 

mada to pool study-level sensitivity and specificity estimates using a bivariate random effects 181 

meta-analysis (Supplementary Appendix C).17,18 182 

Prediction model development and validation 183 

We developed a multivariable logistic regression model to predict pulmonary 184 

tuberculosis using the composite reference standard in accordance with the Transparent 185 
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Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis standards 186 

using the internal-external cross-validation framework.19,20 Predictors included clinical features 187 

commonly considered in the evaluation of presumptive childhood pulmonary tuberculosis in 188 

primary and secondary healthcare centres that were available in the data with <50% 189 

missingness. We also built a model without chest radiograph data to inform predictions in 190 

healthcare centres without access to radiology services. 191 

To account for possible heterogeneity in the distribution of predictor and outcome 192 

variables, we fit the prediction model separately in each study and subsequently pooled their 193 

regression coefficients and respective standard errors. This approach was implemented in the 194 

“metapred” function of package metamisc.20,21 To account for missing data, we generated a 195 

prediction model as described above from each of the 100 imputed datasets and then used 196 

Rubin’s rules to pool the regression coefficients and standard errors to generate a final, single 197 

prediction model and compute odds ratios with 95% confidence interval (95% CI).22 We 198 

examined the c-statistic (also known as the area under the receiver operating characteristic 199 

curve) to assess the model’s ability to distinguish between children with tuberculosis and 200 

unlikely tuberculosis, and we examined the observed:expected (O:E) ratio to assess whether 201 

there were studies in which the model over- or under-predicted tuberculosis.  202 

Algorithm development 203 

To generate clinically and programmatically implementable algorithms, we scaled the 204 

coefficient estimates for the parameters of the final prediction models (developed from all n 205 

studies) to estimate scores for each parameter such that a combined score of >10 206 

corresponded to classification of tuberculosis at fixed sensitivities of 90%, 85%, 80%, 75%, and 207 

70% (Supplementary Appendix D). To estimate the sensitivity and specificity of the score in 208 

classifying tuberculosis using the composite reference standard, study-level sensitivities and 209 

specificities were pooled using the bivariate model of Reitsma et al. (implemented in the mada 210 

package) accounting for uncertainty introduced by imputation of missing data.17,18 As a 211 
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sensitivity analysis, we evaluated the performance of the score against a reference standard of 212 

confirmed pulmonary tuberculosis only. 213 

We worked with staff from the WHO Global TB Programme to identify a group of experts 214 

in childhood tuberculosis (henceforth referred to as the expert group; Supplementary Appendix 215 

E) to advise on the development of two treatment-decision algorithms from these scores. 216 

Specifically, we sought advice on how to use this score within an algorithm intended to be used 217 

at primary healthcare centres and on selection of a performance target for the development of 218 

the score to be included within the algorithm. 219 

Ethics 220 

This study was approved by the Stellenbosch University Health Research Ethics 221 

Committee (Ref No. X21/02/003) and the Yale Institutional Review Board (Ref No. 222 

2000028046). All collaborating investigators confirmed institutional ethical approval for their 223 

original data collection. 224 

RESULTS 225 

Data assembly 226 

Eighteen studies were identified as having potentially appropriate data, largely sourced 227 

from diagnostic evaluation studies. The study investigators for two studies were unable to 228 

provide data in the necessary timeline and an additional three studies did not meet the inclusion 229 

criteria. From the 13 included studies carried out in 12 countries, 4,718 IPD records from 230 

children <10 years with presumptive pulmonary tuberculosis were available, of which, 541 231 

(11·5%) were classified as having confirmed tuberculosis, 1,270 (26·9%) as having unconfirmed 232 

tuberculosis and 2,818 (59·7%) unlikely tuberculosis (Tables 1 and 2; Supplementary 233 

Appendices F and G). The data were predominantly collected at secondary or tertiary/referral 234 

healthcare centres. Although each study was required to include children with presumptive 235 

pulmonary tuberculosis, studies differed slightly with respect to inclusion criteria, variable 236 
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definitions, and reference classification of tuberculosis (Supplementary Appendices H-K). All 237 

contributing studies achieved quality assessment scores of 4/5 or 5/5. (Supplementary 238 

Appendix L).  239 

Existing treatment-decision algorithm performance 240 

We evaluated the performance of eight existing treatment-decision algorithms. One of 241 

these algorithms was evaluated only on data from children living with HIV, and another 242 

evaluated only on data from children without HIV. Because some algorithms considered 243 

evidence that were not available in the IPD, we modified all algorithms slightly (Supplementary 244 

Appendix M). The sensitivities varied from 17% to 93% with specificities varying from 88% to 245 

16% when evaluated against the composite reference standard (Figure 1; Supplementary 246 

Appendix N). A sensitivity analysis evaluating performance to discriminate confirmed 247 

tuberculosis from unlikely tuberculosis demonstrated marginally higher sensitivities and 248 

comparable specificities to the performance in the entire dataset (Supplementary Appendix O).  249 

Prediction model development and validation 250 

Odds ratios and 95% CI of the predictors included in the model are displayed in Table 3. 251 

The pooled c-statistic for the prediction model including chest x-ray features was 0·71 (95% CI: 252 

0·66-0·76), with a summary O:E ratio of 0·90 (95% CI: 0·28-2·98). Additional internal-external 253 

cross-validation c-statistic and O:E ratio estimates are included in Supplementary Appendix P. 254 

Estimates for the model without chest x-ray features are included in Supplementary Appendix 255 

Q. 256 

Algorithm development 257 

The scores derived from the model prediction coefficients that correspond to 258 

classification of all tuberculosis with respective sensitivities of 90%, 85%, 80%, 75%, and 70% 259 

can be found in Supplementary Appendix R. The study-level and summary performance of 260 

these scores in classifying tuberculosis can be found in Supplementary Appendix S. 261 
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To balance the consequences of untreated tuberculosis versus the consequences of 262 

overtreatment, the expert group recommended a sensitivity threshold of 85% in classifying 263 

tuberculosis using the composite reference standard, resulting in the development of a score 264 

with a sensitivity of 0·86 (95% CI: 0·68-0·94) and a specificity of 0·37 (95% CI: 0·15-0·66) 265 

(Figure 2). An analysis of the performance in classifying confirmed tuberculosis vs. unlikely 266 

tuberculosis demonstrated a sensitivity of 0·88 (95% CI: 0·71-0·95) and specificity of 0·37 (95% 267 

CI: 0·15-0·67) (Supplementary Appendix T). Under a sensitivity threshold of 85%, the model that 268 

included only features from the baseline clinical evaluation (without chest x-ray findings) had a 269 

sensitivity of 0·84 (95% CI: 0·66-0·93) and specificity of 0·30 (95% CI: 0·13-0·56) in classifying 270 

tuberculosis (Supplementary Appendix U). 271 

To adapt the scores into treatment-decision algorithms to be used at primary healthcare 272 

centres, the expert group recommended the following triage steps prior to classification using 273 

the score: 1) identifying children with clinical symptoms and signs requiring urgent referral to 274 

higher levels of healthcare, and 2) stratifying children by risk of mortality and progression of 275 

tuberculosis. Higher-risk children were defined by the expert group as those <2 years, severely 276 

malnourished, and/or living with HIV. These children would be evaluated using the score at the 277 

time of the initial evaluation. Children not meeting this definition would be treated for the most 278 

likely non-tuberculosis condition and complete re-evaluation in 1-2 weeks: those with 279 

persistent/worsening symptoms at follow-up would be evaluated using the score. The expert 280 

group additionally recommended to pursue, wherever available, bacteriological testing on 281 

respiratory and/or stool specimens with rapid molecular diagnostics for all children and urine 282 

lateral flow assays for HIV-positive children to align with existing WHO recommendations23. 283 

The expert group recommendations resulted in the development of a treatment-decision 284 

algorithm (Figure 3), in which children <10 years with presumptive pulmonary tuberculosis are 285 

triaged by risk of tuberculosis-related morbidity and mortality prior to being evaluated for the 286 

presence of clinical and chest x-ray features to assign a score corresponding to tuberculosis 287 
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risk. A total score of >10 results in classification of tuberculosis with a sensitivity of 85%. Known 288 

exposure to tuberculosis alone has a score >10, so this was placed above the other elements. 289 

The same parameters were used to construct the treatment-decision algorithm from the model 290 

without chest x-ray features (Supplementary Appendix V). 291 

DISCUSSION 292 

 We assembled a large IPD dataset from nearly five thousand children from 293 

geographically diverse, high-tuberculosis incidence settings to evaluate existing treatment-294 

decision algorithms and develop new evidence-based treatment-decision algorithms to guide 295 

evaluation of children with presumptive pulmonary tuberculosis. This algorithm-building 296 

approach uses the best currently available data to provide practical guidance to healthcare 297 

workers in primary healthcare settings to identify which clinical features, with or without chest x-298 

ray assessment, indicate whether initiation of tuberculosis treatment is warranted. The newly 299 

developed algorithms were incorporated into the WHO operational handbook to support 300 

implementation of the new consolidated guidelines.12,13 301 

 Modelling diagnostic evaluations IPD provides a quantitative description of the strength 302 

of evidence for childhood pulmonary tuberculosis treatment-initiation decisions. Of the clinical 303 

features, only reported exposure to tuberculosis was independently sufficient to meet the 304 

threshold for treatment initiation. This was true even in the model-based score without chest x-305 

ray features, suggesting that none of the common clinical features could independently inform 306 

highly sensitive/specific treatment decisions. While results from tuberculin skin testing were 307 

used by studies to inform classification of tuberculosis and to improve imputation of missing 308 

data, we did not include these in the algorithms given operational limitations in using tuberculin 309 

skin testing at scale in high-burden settings. Of the chest X-ray features included in the 310 

algorithm, the presence of intrathoracic lymphadenopathy and a miliary pattern, respectively, 311 

were independently sufficient to start treatment. It is worth noting that inclusion of chest x-ray 312 
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features only increased the specificity of the score slightly as compared to the score developed 313 

from the model with clinical features only. Chest x-ray has additional utility in guiding childhood 314 

pulmonary tuberculosis treatment duration for severe vs. non-severe disease,24 in monitoring TB 315 

treatment response (including associated complications and sequelae) and in the diagnosis of 316 

other non-tuberculosis intrathoracic pathology. 317 

The decision to prioritise sensitivity in our algorithm development is critical to initiate 318 

more children with tuberculosis on appropriate therapy; however, many children may be falsely 319 

treated for tuberculosis given the resulting specificity. No test or algorithm meets the WHO-320 

target sensitivity and specificity for a confirmatory diagnostic test for childhood pulmonary 321 

tuberculosis.25 Thus, the expert group advised to develop an algorithm with a minimum 322 

sensitivity target of 85% as an acceptable balance between sensitivity and the resulting 323 

specificity. Tuberculosis treatment for drug-susceptible disease is relatively safe in children;26 324 

especially considering the potentially severe consequences of a missed tuberculosis diagnosis. 325 

However, falsely treating for tuberculosis carries risk of delayed diagnosis of other disease, drug 326 

adverse events, and unnecessary burden on families and healthcare services. It should be 327 

noted that while these performance estimates relate to the score component of the algorithm, 328 

the overall sensitivity and specificity of the whole algorithm, including the triage steps, remains 329 

unknown and should be evaluated prospectively. As low-risk children are made to wait prior to 330 

being evaluated with the scored part of the algorithm, symptoms in some with diagnoses other 331 

than tuberculosis will resolve, likely improving specificity.  332 

We note that the model-based scoring component of the algorithm demonstrates 333 

considerable study-level heterogeneity in sensitivity and specificity. Although this IPD is the 334 

largest of its size compiled to date, there were not enough studies to quantitatively describe the 335 

features that drive the observed heterogeneity. Given that we used data made available to 336 

WHO following a public call rather than conducting a systematic review, it is possible that some 337 

diagnostic studies may have been excluded. The inclusion of more data from existing, ongoing, 338 
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and future studies, may allow meta-regression to describe study-level sources of heterogeneity. 339 

Heterogeneity may have been driven in part by varied tuberculosis prevalence in the cohorts 340 

included as well as heterogeneities in disease presentation. Given that the pre-existing 341 

treatment-decision algorithms demonstrated similar heterogeneities in performance compared 342 

to the evidence-based algorithm developed, we suggest that our approach is robust as it offers 343 

the flexibility to further interrogate the sources of heterogeneity as additional data are available. 344 

A distinct advantage of the modelling approach we used for algorithm development is the ability 345 

to revise and calibrate the model to specific settings as additional data become available. 346 

We considered it important to evaluate existing treatment-decision algorithms and 347 

develop new algorithms using a composite standard rather than solely a microbiological 348 

standard, given the high percentage of children treated for tuberculosis without bacteriological 349 

confirmation, even in the best resourced settings, which reflects the paucibacillary nature of 350 

disease in most young children. However, this reference standard remains imperfect, and 351 

misclassification may occur.27 The underlying composition of the unconfirmed tuberculosis 352 

group may represent a heterogeneous group in which some children have tuberculosis, and 353 

some have other causes for their observed symptoms and signs. Additionally, it is possible that 354 

inclusion of unconfirmed pulmonary tuberculosis biased the estimation of the prediction model 355 

parameters, especially those used to classify the unconfirmed group. Although this is a limitation 356 

of our study, the similar performance estimates of the score developed in the primary analysis 357 

using both the composite and confirmed tuberculosis reference standards suggest that this may 358 

not be a major issue. 359 

Given that our algorithms are intended to guide decisions to treat children in primary 360 

healthcare centres, it is a limitation that IPD was derived from primarily tertiary and referral 361 

health centres. We are not aware of studies that provide this quality of diagnostic evaluations 362 

data from presumptive childhood tuberculosis in primary healthcare centres. However, in 363 

several studies, children presenting at primary healthcare settings were directly referred for 364 
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study evaluation, providing some degree of reassurance as to the generalisability of results. The 365 

pre-test probability of tuberculosis (i.e., the prevalence) is likely substantially lower among 366 

children attending primary healthcare centres and the clinical presentation may be different as 367 

compared to tertiary and referral centres from which the data were obtained. These are 368 

important given that many children with tuberculosis first present to primary healthcare 369 

centres.28 We believe that the risk-stratification and delayed entry of lower risk children with 370 

presumptive tuberculosis (who should tolerate the delay) is a practical attempt to safely raise 371 

the pre-test probability when implementing the algorithm in primary health centres. Prospective 372 

external validation of the entire algorithms will be critical to determining their accuracy, 373 

acceptability and feasibility of use at different levels of the healthcare system. 374 

There are inherent limitations to developing a prediction model developed on data from 375 

multiple cohorts for a disease with an imperfect diagnostic gold standard. Study inclusion criteria 376 

varied, which impacts the baseline tuberculosis prevalence and applicability of the score 377 

prediction estimates. Additionally, prediction variable definitions varied among the included 378 

studies—for example, history of weight loss was variably defined as caregiver reported history 379 

of weight loss or objective weight loss and/or deviation from previous growth trajectory. This 380 

heterogeneity is also true for the study-level reference classifications, especially for unconfirmed 381 

tuberculosis. Some studies used a previous version of the NIH reference classification, which 382 

included probable and possible tuberculosis categories that we reclassified as unconfirmed 383 

tuberculosis, despite limitations using this approach.29 These may contribute to heterogeneities 384 

in estimating the association between the predictors and the outcome of tuberculosis. Finally, 385 

we note that using a prespecified prediction model, as we did, may lead to overfitting.30 Despite 386 

a reasonable summary O:E ratio for our model, the heterogeneity in study-level O:E ratio 387 

demonstrated in our internal-external cross-validation suggests that overfitting may be an issue. 388 

As more data become available, future investigation into the causes driving heterogeneity may 389 

inform more nuanced use of this algorithm within specific contexts and populations. 390 
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Pragmatic treatment-decision algorithms can lead to better detection of tuberculosis in 391 

children, with improved access to early treatment and reduced tuberculosis morbidity and 392 

mortality. Although we developed these algorithms using a thorough modelling analysis of a 393 

large high-quality IPD dataset, the disappointing specificity of the scoring component suggests 394 

that improved diagnostic tools will be necessary to meet sensitivity and specificity targets. As 395 

these diagnostic tools are identified, their data may be incorporated into treatment-decision 396 

algorithms to improve the specificity of the algorithms while maintaining high sensitivity. 397 

Additionally, decision-analytic modelling of the relative “cost” of false positive versus false 398 

negative classification of tuberculosis and prevalence of tuberculosis may provide insight to 399 

select an appropriate sensitivity threshold in future algorithm development. 400 

Treatment-decision algorithms are now conditionally recommended by the WHO in the 401 

evaluation of children with presumptive tuberculosis, which should lead to improved diagnostic 402 

capacity at and treatment initiation at primary healthcare centres where paediatric tuberculosis 403 

expertise may be lacking. This work represents a paradigm shift in pragmatic and evidence-404 

based approaches using advanced analytic methods to develop algorithms that draw on the 405 

best globally available data. This approach can be further improved and interrogated as 406 

additional data and diagnostic tools become available. 407 

  408 
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TABLES 556 

Table 1. Study-level descriptions of data included in the individual participant dataset. HIV – human immunodeficiency virus, SAM – 557 
severely acutely malnourished, PTB – pulmonary tuberculosis, Refs – references, BD – Bangladesh, BR – Brazil, KE – Kenya, MM – Myanmar, 558 
Multi – Multi-country study (includes Burkina Faso, Cameroon, Vietnam, and Cambodia), MZ – Mozambique, PK – Pakistan, UG – Uganda, VN – 559 
Vietnam, ZA – South Africa. *Note: Modified version of the Newcastle-Ottawa Scale for cohort studies. 560 

Study Size <2 years <5 years HIV SAM Confirmed 
PTB 

Unconfirmed 
PTB 

Unlikely 
PTB 

NOS* 

 N N (%) N (%) N (%) N (%) N (%) N (%) N (%)  

Aurilio/2020/BR 50 21 (42) 31 (62) 6 (12) 0 (0) 9 (18) 11 (22) 24 (48) 5/5 

Giang/2015/VN 113 86 (76) 106 (94) 0 (0) 8 (7) 20 (18) 77 (68) 16 (14) 5/5 

Hamid/2019/PK 445 41 (9) 175 (39) 0 (0) 26 (6) 0 (0) 29 (7) 416 (93) 5/5 

Kabir/2020/BD 402 219 (54) 296 (74) 0 (0) 93 (23) 63 (16) 36 (9) 303 (75) 4/5 

LopezVarela/2015/MZ 789 549 (70) 789 (100) 104 (13) 68 (9) 13 (2) 128 (16) 648 (82) 4/5 

Marcy/2019/Multi 338 78 (23) 142 (42) 338 (100) 64 (19) 41 (12) 155 (46) 142 (42) 5/5 

Myo/2018/MM 223 72 (32) 150 (67) 27 (12) 46 (21) 27 (12) 84 (38) 112 (50) 5/5 

Orikiriza/2018/UG 338 124 (37) 222 (66) 101 (30) 41 (12) 12 (4) 145 (43) 167 (49) 5/5 

Orikiriza/2022/UG 217 157 (72) 196 (90) 70 (32) 108 (50) 12 (6) 58 (27) 125 (58) 4/5 

Song/2021/KE 300 146 (49) 300 (100) 73 (24) 8 (3) 31 (10) 65 (22) 170 (57) 4/5 

Valencia/2017/MZ 142 59 (42) 95 (67) 70 (49) 27 (19) 5 (4) 28 (20) 109 (77) 5/5 

Walters/2017/ZA 595 389 (65) 548 (92) 70 (12) 18 (3) 119 (20) 180 (30) 283 (48) 5/5 

Zar/2019/ZA 766 362 (47) 603 (79) 137 (18) 32 (4) 189 (25) 274 (36) 303 (40) 5/5 

Total IPD 4 718 2 303 (49) 3 653 (77) 996 (21) 539 (11) 541 (11) 1 270 (27) 2 818 (60)  

 561 
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Table 2. Characteristics of individual participant dataset. All clinical, bacteriology, and imaging data 562 
collected from the initial evaluation. IPD – Individual participant data, IQR – interquartile range, BCG – 563 
bacille Calmette-Guerin, HIV – human immunodeficiency virus, Mtb – Mycobacterium tuberculosis, CXR – 564 
chest x-ray, TST – tuberculin skin test. 565 

Variable Value 
Confirmed 

tuberculosis 
(N=541) 

Unconfirmed 
tuberculosis  

(N=1 270) 

Unlikely 
tuberculosis  

(N=2 818) 

 
 

n (%) OR median 
(IQR) 

n (%) OR median 
(IQR) 

n (%) OR median 
(IQR) 

Age Months 25·6 (12,58·7) 24·1 (12,53·6) 24·4 (13·4,54) 
Unknown 0 (0) 0 (0) 0 (0) 

Sex 
Male 285 (53) 715 (56) 1512 (54) 
Female 256 (47) 554 (44) 1306 (46) 
Unknown 0 (0) 1 (0) 0 (0) 

Weight-for-age z-score -1.7 (-2.9,-0.6) -1.7 (-2.9,-0.6) -1.8 (-3,-0.7) 
Unknown 7 (1) 16 (1) 119 (4) 

BCG vaccination 

Evidence of BCG 
vaccination 462 (85) 1 084 (85) 2 105 (75) 
No evidence of BCG 
vaccination 45 (8) 89 (7) 152 (5) 
Unknown 34 (6) 97 (8) 561 (20) 

HIV status 
HIV-positive 111 (21) 396 (31) 464 (16) 
HIV-negative 425 (79) 841 (66) 2 254 (80) 
Unknown 5 (1) 33 (3) 100 (4) 

Cough duration 

No cough 75 (14) 205 (16) 823 (29) 
Cough 0-13 days 148 (27) 279 (22) 598 (21) 
Cough 14-20 days 90 (17) 140 (11) 321 (11) 
Cough 21-27 days 52 (10) 96 (8) 224 (8) 
Cough >27 days 125 (23) 260 (20) 512 (18) 
Unknown 51 (9) 290 (23) 340 (12) 

Cough ≥ 2 weeks 
Cough ≥2 weeks present 295 (55) 697 (55) 1 247 (44) 
Cough ≥2 weeks not present 238 (44) 562 (44) 1531 (54) 
Unknown 8 (1) 11 (1) 40 (1) 

Fever duration 

No fever 146 (27) 352 (28) 1 157 (41) 
Fever 0-13 days 136 (25) 281 (22) 712 (25) 
Fever 14-20 days 67 (12) 122 (10) 262 (9) 
Fever 21-27 days 20 (4) 40 (3) 88 (3) 
Fever >27 days 77 (14) 119 (9) 184 (7) 
Unknown 95 (18) 356 (28) 415 (15) 

Fever ≥1 week 
Fever ≥1 week present 209 (39) 388 (31) 779 (28) 
Fever ≥1 week not present 242 (45) 650 (51) 1 776 (63) 
Unknown 90 (17) 232 (18) 263 (9) 

Lethargy 
Lethargy 268 (50) 479 (38) 838 (30) 
No lethargy 226 (42) 565 (44) 1 204 (43) 
Unknown 47 (9) 226 (18) 776 (28) 

Weight loss 
Weight loss 358 (66) 763 (60) 1 631 (58) 
No weight loss 172 (32) 492 (39) 1 155 (41) 
Unknown 11 (2) 15 (1) 32 (1) 

Documented tuberculosis 
exposure 

Documented tuberculosis 
exposure in previous 12 
months 257 (48) 491 (39) 497 (18) 
No documented tuberculosis 
exposure in previous 12 
months 284 (52) 775 (61) 2315 (82) 
Unknown 0 (0) 4 (0) 6 (0) 

Night sweats 
Night sweats 206 (38) 422 (33) 568 (20) 
No night sweats 187 (35) 577 (45) 1 845 (65) 
Unknown 148 (27) 271 (21) 405 (14) 

Haemoptysis 
Haemoptysis 2 (0) 13 (1) 12 (0) 
No haemoptysis 88 (16) 410 (32) 851 (30) 
Unknown 451 (83) 847 (67) 1 955 (69) 

Objective fever (≥38 
degrees Celsius) 

Objective fever 71 (13) 101 (8) 156 (6) 
No objective fever 228 (42) 738 (58) 1 476 (52) 
Unknown 242 (45) 431 (34) 1 186 (42) 

Tachycardia Tachycardia 80 (15) 150 (12) 175 (6) 
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No tachycardia 179 (33) 611 (48) 1 187 (42) 
Unknown 282 (52) 509 (40) 1 456 (52) 

Tachypnoea 
Tachypnoea 128 (24) 264 (21) 320 (11) 
No tachypnoea 276 (51) 742 (58) 1 494 (53) 
Unknown 137 (25) 264 (21) 1 004 (36) 

Peripheral 
lymphadenopathy 

Peripheral lymphadenopathy 134 (25) 242 (19) 280 (10) 
No peripheral 
lymphadenopathy 295 (55) 759 (60) 1 444 (51) 
Unknown 112 (21) 269 (21) 1 094 (39) 

First Xpert MTB/RIF 
Xpert positive for Mtb 247 (46) 0 (0) 0 (0) 
Xpert negative for Mtb 273 (50) 1148 (90) 2 306 (82) 
Unknown/not performed 21 (4) 122 (10) 512 (18) 

Overall CXR read 

CXR consistent with 
tuberculosis 344 (64) 644 (51) 653 (23) 
CXR not consistent with 
tuberculosis 101 (19) 474 (37) 1 744 (62) 
Unknown/not assessed 96 (18) 152 (12) 421 (15) 

Opacities on CXR 

Opacities present on CXR 237 (44) 487 (38) 594 (21) 
Opacities not present on 
CXR 154 (28) 459 (36) 1 042 (37) 
Unknown/not assessed 150 (28) 324 (26) 1 182 (42) 

Cavities on CXR 
Cavities present on CXR 32 (6) 25 (2) 20 (1) 
Cavities not present on CXR 348 (64) 793 (62) 973 (35) 
Unknown/not assessed 161 (30) 452 (36) 1 825 (65) 

Miliary infiltrate on CXR 

Miliary infiltrate present on 
CXR 33 (6) 19 (1) 7 (0) 
Miliary infiltrate not present 
on CXR 358 (66) 927 (73) 1 614 (57) 
Unknown/not assessed 150 (28) 324 (26) 1 197 (42) 

Intrathoracic 
lymphadenopathy on CXR 

Intrathoracic 
lymphadenopathy present 
on CXR 154 (28) 248 (20) 104 (4) 
Intrathoracic 
lymphadenopathy not 
present on CXR 237 (44) 684 (54) 1 485 (53) 
Unknown/not assessed 150 (28) 338 (27) 1 229 (44) 

Pleural effusion on CXR 

Pleural effusion present on 
CXR 56 (10) 63 (5) 49 (2) 
Pleural effusion not present 
on CXR 335 (62) 883 (70) 1 570 (56) 
Unknown/not assessed 150 (28) 324 (26) 1 199 (43) 

Tuberculin skin test 
TST positive 298 (55) 464 (37) 262 (9) 
TST negative 174 (32) 674 (53) 1 972 (70) 
Unknown/not performed 69 (13) 132 (10) 584 (21) 

  566 
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Table 3. Estimates from logistic regression prediction model to classify pulmonary tuberculosis 567 
using variables from initial evaluation. Parameter estimate with 95% confidence intervals, odds ratio 568 
estimate with 95% confidence interval, and p-values for each parameter included in the logistic regression 569 
prediction model. The estimate provided for each predictor is computed against a reference that reflects 570 
the absence of that feature. The model parameter estimates account for potential clustering at the study-571 
level as well as uncertainty introduced by missing data. *P-value calculated using Rubin’s rules for 572 
multiple imputed data. OR – odds ratio, CI – confidence interval, CXR – chest x-ray. 573 

Predictors Coefficient Coefficient 
95% CI OR OR 95% CI P-value* 

Intercept -1·92 -2·58, -1·25 -- -- -- 
Cough duration ≥2 weeks 
(Absence is no cough or cough 
<2 weeks) 

0·17 -0·09, 0·43 1·19 0·91, 1·54 0·86 

Fever duration ≥2 weeks 
(Absence is no fever or fever <2 
weeks) 

0·45 0·16, 0·74 1·57 1·18, 2·09 0·25 

Lethargy 0·25 0·02, 0·48 1·28 1·02, 1·62 0·66 
Weight loss 0·22 -0·03, 0·48 1·25 0·97, 1·62 0·75 
History of documented 
tuberculosis exposure 

1·43 0·87, 2·00 4·20 2·39, 7·38 <0·001 

Haemoptysis 0·34 -0·37, 1·05 1·40 0·69, 2·86 0·78 
Night sweats 0·2 0·02, 0·38 1·22 1·02, 1·47 0·71 
Peripheral lymphadenopathy 0·35 0·13, 0·57 1·42 1·14, 1·77 0·35 

Temperature ≥38 Celsius 0·00 -0·25, 0·26 1·00 0·78, 1·30 >0·999 

Tachycardia 0·15 -0·13, 0·42 1·16 0·88, 1·53 0·90 
Tachypnoea -0·05 -0·27, 0·16 0·95 0·77, 1·18 0·98 
Cavities on CXR 0·47 -0·11, 1·05 1·60 0·90, 2·85 0·53 
Intrathoracic lymphadenopathy 
on CXR 1·46 1·00, 1·92 4·32 2·73, 6·85 <0·001 

Opacities on CXR 0·43 0·02, 0·84 1·54 1·02, 2·32 0·45 
Miliary infiltrate on CXR 1·27 0·57, 1·97 3·56 1·76, 7·19 <0·001 
Pleural effusion on CXR 0·64 0·2, 1·09 1·90 1·22, 2·96 0·13 
  574 
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FIGURES 575 

Figure 1. Performance of existing treatment-decision algorithms at classifying tuberculosis. 576 
Retrospective estimates of the pooled (A) sensitivity and (B) specificity of eight algorithms to guide 577 
decisions to treat children with presumptive pulmonary tuberculosis, had they been used to evaluate the 578 
children for whom we have IPD records. The reference classification of pulmonary tuberculosis included 579 
bacteriologically-confirmed pulmonary tuberculosis as well as unconfirmed pulmonary tuberculosis. 580 
Modifications were made to the algorithms to maximise the use of the available IPD. IPD – individual 581 
participant data, HIV – human immunodeficiency virus, BD – Bangladesh, BR – Brazil, KE – Kenya, MM – 582 
Myanmar, Multi – (PAANTHER) Multi-country study (includes Burkina Faso, Cameroon, Vietnam, and 583 
Cambodia), MZ – Mozambique, PK – Pakistan, UG – Uganda, VN – Vietnam, ZA – South Africa, MoH – 584 
(Brazil) Ministry of Health, NTLP – (Uganda) National TB and Leprosy Program. *Performance estimates 585 
of the Marcy et al. Algorithm were derived from only HIV-positive children in the IPD that excludes data 586 
form the Marcy/2016/Multi cohort (from which the algorithm was developed), **Performance estimates of 587 
the Gunasekera et al. Algorithm were derived from only HIV-negative children in the IPD that excludes 588 
data from the Walter/2017/ZA population (from which the algorithm was developed). 589 
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Figure 2. Forest plot depicting performance of scaled scores from prediction model to classify 591 
tuberculosis with 85% sensitivity. Study-level and pooled estimates of the (A) sensitivity and (B) 592 
specificity of classifying tuberculosis (composite reference standard: bacteriologically-confirmed 593 
pulmonary tuberculosis and unconfirmed pulmonary tuberculosis) of the scores derived from the 594 
prediction model developed from the IPD to classify TB with 85% sensitivity. IPD – individual participant 595 
data, BD – Bangladesh, BR – Brazil, KE – Kenya, MM – Myanmar, Multi – Multi-country study (includes 596 
Burkina Faso, Cameroon, Vietnam, and Cambodia), MZ – Mozambique, PK – Pakistan, UG – Uganda, 597 
VN – Vietnam, ZA – South Africa. 598 

 599 

 600 

  601 
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Figure 3. Treatment-decision algorithm including chest x-ray features derived from the prediction 602 
model. Tuberculosis treatment-decision algorithm for use among children <10 years with symptoms 603 
suggestive of pulmonary tuberculosis, reproduced from the operational handbook accompanying the 604 
WHO consolidated guidelines on the management of tuberculosis in children and adolescents.12,13 605 
Selection steps prior to entering scoring system reflect recommendations from the WHO expert panel to 606 
enrich the probability of tuberculosis among the population of children proceeding through the algorithm 607 
to the model such that the probability would more closely reflect the preselected population producing the 608 
data from which the prediction model was built while balancing the consequences of untreated 609 
tuberculosis among high-risk children. Scores associated with features from clinical history and physical 610 
exam and chest X-ray translate to risk of tuberculosis and are scaled from the prediction model 611 
developed from the IPD. Guidance on the practical use of this algorithm is outlined in the WHO 612 
operational handbook. WHO – World Health Organization, TB – tuberculosis, IPD – individual participant 613 
data, HIV – human immunodeficiency virus, mWRD – molecular WHO-recommended rapid diagnostic 614 
test, CLHIV – children living with HIV, LF-LAM – lateral flow urine lipoarabinomannan assay, CXR – chest 615 
X-ray.  616 
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