Role of procalcitonin in chronic kidney diseases patients undergoing renal therapy

Abdul Ghaffar Khan¹, Nosheen Akhtar², Zartasha Tariq¹, Muhammad Arif³

1. Holy Family Hospital, Rawalpindi
2. Services Hospital, Lahore
3. Lahore General Hospital, Lahore

Corresponding Author: Abdul Ghaffar Khan, Holy Family Hospital, Rawalpindi.

Abstract

Introduction: Inflammation is an established mortality risk factor in chronic kidney disease patients and particularly in patients on dialysis. Objectives: The main objective of the study is to find the role of procalcitonin in chronic kidney diseases patients undergoing renal therapy. Material and methods: This cross sectional study was conducted in Holy Family Hospital, Rawalpindi during November 2021 to June 2022. The data was collected with the permission of ethical committee of hospital. Baseline characteristics of patients were collected, including age, gender, BMI, history of diseases and time of dialysis. Results: The data was collected from 200 patients. There were 88 (44.0%) male and 112 (57.0%) female patients. The mean age for male was 45.9 ± 11.7 years and for female 49.8 ± 14.1 years. The PCT level in CKD patients (0.45 ± 0.70 ng/mL) was significantly higher as compared to reference value of healthy control subjects. Significance increase in the value of BUN, Na, K, CRP and BUN is also observed in CKD patients. Conclusion: It is concluded that PCT is the best biomarker for the detection of acute infection in kidney but CRP and BUN shows the significantly high level in chronic kidney diseases. This study shows the high cut-off value of PCT and it contribute in the management of infection in CKD patients.

Key words: CKD, PCT, CRP, Inflammation
Introduction

Inflammation is an established mortality risk factor in chronic kidney disease patients and particularly in patients on dialysis. Individuals with a decreased glomerular filtration rate have elevated levels of inflammatory markers that increase with the extent of renal damage and are caused by oxidative stress, endothelial dysfunction, and vascular calcification [1]. Thus, since inflammation is a cardiovascular risk marker in hemodialysis (HD), finding the best predictor of inflammation is a priority concern for nephrologists. Many biomarkers have been evaluated in the last 20 years, though no clear consensus has been reached [2].

Chronic kidney disease (CKD) is a kidney disease in which there is gradual loss of renal function over a period of years or decades. During the early stages of CKD, due to the kidney’s significant compensation mechanism, patients with CKD can be asymptotic since the remaining renal nephrons are capable of removing toxins and maintaining homeostasis. Therefore, symptoms of CKD only appear when the kidneys are significantly impaired [3].

The main challenge faced by the public health system is the accurate diagnosis of CKD; without regular surveillance of renal function, most CKD patients have progressed to the advanced stage when diagnosed. Under such circumstances, patients with CKD might need to receive regular dialysis or a kidney transplant to survive. According to statistics, in 2013, there were 956 000 deaths attributed to CKD worldwide; therefore, CKD has been considered to have a major impact on the quality of life, especially in the elderly population [4]. Among the general population, the prevalence of CKD including all five stages is approximately 13.4%. Despite this astonishing high prevalence of CKD, the trend of this chronic disease is expected to grow in coming decades [5]. The high prevalence of diabetes, hypertension, and tobacco abuse is believed to be responsible for the increasing trend of CKD. With the facts stated above, we can conclude that CKD is a pressing public health issue affecting the health and quality of life of the general population [6].
In 1975, procalcitonin was identified as one of the precursors to calcitonin in animals prior to being discovered in humans. A similar precursor to calcitonin that was found in animals was subsequently identified in human thyroid medullary carcinoma tissue and was termed “serum immunoreactive calcitonin” (iCT). Levels of iCT increase in response to cellular injury, first noted in patients with inhalation injury secondary to burns [7]. An elevated level of the large molecular mass form of iCT was associated with early death and worsening outcomes in relation to other forms of iCT. The high molecular form of iCT was subsequently termed “procalcitonin” (PCT). The first study to investigate the usefulness of PCT in patients with infection was published in 1993 and showed that serum concentrations of PCT correlated with the severity of microbial infection [8]. The PCT level in healthy individuals without infection is below the limit of detection (0.01 ng/mL), and it is significantly elevated under the stimulation of pathogens. However, due to the pre-existing endogenous inflammation that occurs in CKD patients and the impaired kidney clearance, the reference range that applies to the general population may not be appropriate for diagnosing infections in CKD patients. More recently, debate has continued regarding whether the PCT level is increased in CKD patients without infection, and the optimal reference for CKD patients remains undetermined [9-11].

Objectives

The main objective of the study is to find the role of procalcitonin in chronic kidney diseases patients undergoing renal therapy.

Material and methods

This cross sectional study was conducted in Holy Family Hospital, Rawalpindi during November 2021 to June 2022. The data was collected with the permission of ethical committee of hospital.
Inclusion Criteria

- Age > 18 years
- Both male and female
- Confirmed diagnosis of CKD

Exclusion criteria

- Taking any anticoagulant drug
- Patients with renal failure
- Do not want to participate in the study.

Data collection

The data was collected from 200 patients suffering from chronic kidney disease. The data was collected from both and female patients. Baseline characteristics of patients were collected, including age, gender, BMI, history of diseases and time of dialysis. All the stages of CKD were assessed by using the glomerular filtration rate (GFR) which was calculated by using emission computed tomography. 5ml of blood sample was drawn for biochemical analysis of PCT. Blood was then centrifuged at 3000rpm for 10 mins for the separation of plasma. Then this plasma was stored for further analysis of PCT, CRP, Urea, Creatinine, BUN, Ca, Na and Potassium levels. All the tests was performed according to manuals provided by Randox Kit manufacturer.

Statistical analysis

The data was collected and analyzed using SPSS version 20.0. All the quantitative variables were expressed in mean and standard deviation.

Results
The data was collected from 200 patients. There were 88 (44.0%) male and 112 (57.0%) female patients. The mean age for male was 45.9 ± 11.7 years and for female 49.8 ± 14.1 years.

Table 01: Demographic Profile of the study Population

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Mean Age ± SD (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>88 (44.0)</td>
<td>45.9 ± 11.7</td>
</tr>
<tr>
<td>Females</td>
<td>112 (57.0%)</td>
<td>49.8 ± 14.1</td>
</tr>
<tr>
<td>Total</td>
<td>200 (100%)</td>
<td>47.6 ± 12.8</td>
</tr>
</tbody>
</table>

Table 02 shows the baseline values of selected patients and history of diseases.

Table 02: Baseline values for CKD patients (n=200)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency</th>
<th>COR (95% CI)</th>
<th>AOR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-28</td>
<td>37</td>
<td>1.29 (0.95, 1.75)</td>
<td>1.46 (1.05, 2.03)</td>
<td>0.02</td>
</tr>
<tr>
<td>29-38</td>
<td>50</td>
<td>1.62 (1.08, 2.43)</td>
<td>1.50 (0.95, 2.36)</td>
<td>0.08</td>
</tr>
<tr>
<td>39-48</td>
<td>57</td>
<td>2.11 (1.44, 3.09)</td>
<td>2.40 (1.59, 3.65)</td>
<td>0.01</td>
</tr>
<tr>
<td>49-58</td>
<td>29</td>
<td>0.91 (0.62, 1.32)</td>
<td>0.77 (0.49, 1.23)</td>
<td>0.28</td>
</tr>
<tr>
<td>59-68</td>
<td>18</td>
<td>1.02 (0.67, 1.56)</td>
<td>1.40 (0.85, 2.32)</td>
<td>0.19</td>
</tr>
<tr>
<td>>68</td>
<td>8</td>
<td>2.89 (1.29, 6.45)</td>
<td>3.16 (1.36, 7.35)</td>
<td>0.07</td>
</tr>
<tr>
<td>Stage of CKD</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Stage III</td>
<td>69</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>131</td>
<td>0.78 (0.60, 1.02)</td>
<td>1.26 (0.97, 1.64)</td>
<td></td>
</tr>
<tr>
<td>History of DM</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>No</td>
<td>34</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>166</td>
<td>1.16 (0.94, 1.43)</td>
<td>0.70 (0.51, 0.96)</td>
<td></td>
</tr>
<tr>
<td>History of non-steroid anti-inflammatory medicine</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>No</td>
<td>170</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Yes | 30 | 0.65 (0.53, 0.81) | 0.48 (0.37, 0.61)
---|---|---|---
Habitual of prescribed medication | | 0.01 |
No | 75 | 1.00 | 1.00
Yes | 125 | 1.73 (1.32, 2.27) | 2.22 (1.65, 2.98)
---|---|---|---
History of renal stone | | 0.79 |
No | 124 | 1.00 | 1.00
Yes | 76 | 1.76 (1.34, 2.31) |

Table 03 shows the PCT, BUN, CREA, Na, K and CRP levels in CKD patients. The PCT level in CKD patients (0.45 ± 0.70 ng/mL) was significantly higher as compared to reference value of healthy control subjects. Significance increase in the value of BUN, Na, K, CRP and BUN is also observed in CKD patients.

Table 3: Comparison of PCT levels and biochemistry parameters

<table>
<thead>
<tr>
<th>Variables</th>
<th>CKD patients</th>
<th>Reference Value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT (ng/mL)</td>
<td>0.45 ± 0.70</td>
<td>0.04 ± 0.06</td>
<td><.001</td>
</tr>
<tr>
<td>BUN (mmol/L)</td>
<td>22.17 ± 9.10</td>
<td>5.32 ± 1.37</td>
<td><.001</td>
</tr>
<tr>
<td>CREA (μmol/L)</td>
<td>669.45 ± 387.11</td>
<td>70.46 ± 15.96</td>
<td><.001</td>
</tr>
<tr>
<td>K (mmol/L)</td>
<td>4.50 ± 0.81</td>
<td>4.21 ± 0.40</td>
<td>.011</td>
</tr>
<tr>
<td>Na (mmol/L)</td>
<td>137.48 ± 4.56</td>
<td>141 ± 1.96</td>
<td><.001</td>
</tr>
<tr>
<td>Ca (mmol/L)</td>
<td>2.21 ± 0.23</td>
<td>2.34 ± 0.12</td>
<td><.001</td>
</tr>
<tr>
<td>CRP (ng/mL)</td>
<td>13.78 ± 6.71</td>
<td>4.73 ± 7.89</td>
<td><.001</td>
</tr>
</tbody>
</table>

The ROC curve analysis was applied to evaluate the diagnostic performance of PCT in differentiating between CKD patients without infection and healthy controls.
Discussion

Procalcitonin (PCT), a 116-amino acid precursor protein of calcitonin, has been reported to be an accurate and specific marker for the early diagnosis of bacterial infections in patients undergoing HD [12]. However, renal elimination is supposedly one of the major pathways for PCT eradication, and PCT release seems to be mediated by uremia or extracorporeal treatment. Moreover, elevated levels of baseline PCT have been found in a large number of chronic HD patients without any signs of infections [13-15]. A study reported that up to 44% of HD patients without bacterial infection had increased PCT levels (0.6–1.5 ng/ml) [16]. Furthermore, a recent study suggested that PCT could not effectively identify patients undergoing HD and having bacterial infections, because when the PCT cutoff value was ≥1 ng/ml, both diagnostic sensitivity and specificity were poor [17].

The PCT level can be elevated in patients with renal insufficiency since PCT is a low molecular weight protein that can be filtered by the renal glomerulus and absorbed by the renal tubules. Herget-Rosenthal et al. reported that the PCT level gradually increased.
according to the degree of deterioration in renal function and was influenced by the type of the renal replacement therapy. The baseline levels of PCT in CKD patients at stages I to IV did not differ from those in controls [18]. On the other hand, PCT levels in patients with stage V CKD and peritoneal dialysis (PD) were significantly higher than those in controls and patients with stages I to IV CKD. PCT levels in hemodialytic patients were significantly higher than those in CKD and PD patients in any stage [19]. In general, PD patients tend to have more residual renal function than hemodialytic patients, which may be the reason for the difference of PCT levels between them.

PCT levels drop significantly once a patient with CKD is started on RRT [20]. Patients with CKD started on RRT have displayed the most significant decrease in PCT levels following a 4-hour session of high-flux hemodialysis (HFHD) compared with all other forms of RRT. The magnitude of drop in PCT levels following HFHD has been attributed to the high permeability of PCT through the dialysis filter. Studies have failed to show a significant drop in PCT following low-flux hemodialysis (LFHD), resulting in a trend toward higher baseline PCT levels in patients on LFHD compared with those receiving HFHD [21]. To date, studies have consistently shown a significant decrease in PCT levels following HFHD, peritoneal dialysis (PD), and continuous venovenous hemodialysis (CVVHD). However, the magnitude of drop in PCT level varies depending on the method of RRT studied.

Conclusion

It is concluded that PCT is the best biomarker for the detection of acute infection in kidney but CRP and BUN shows the significantly high level in chronic kidney diseases. This study shows the high cut-off value of PCT and it contribute in the management of infection in CKD patients.

References

8. Mei Tao, Danna Zheng, Xudong Liang, Qiang He & Wei Zhang (2022) Diagnostic value of procalcitonin for bacterial infections in patients undergoing hemodialysis: a
systematic review and meta-analysis, Renal Failure, 44:1, 81-93, DOI: 10.1080/0886022X.2021.2021236

