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Supplementary Methods 1: Costs of decision processes 
A decision process d incorporates a subset of all available data for its decision according to a decision 
rule and—in case of sequential classifiers, also a sequence selection strategy. The cost of the decision 
process is an empirical metric of performance (lower is better) that is the sum of multiple costs each 
reflecting a different desirable quality. We implement binary decision processes that predict whether 
a participant 𝑖𝑖 ∈ {1, . . ,𝑛𝑛} will progress from a sub-clinical stage of mild cognitive impairment (MCI) to 
the manifest stage of dementia due to Alzheimer’s disease (AD) within a time interval of approximately 
three years. The total costs 𝑐𝑐𝑑𝑑,𝑖𝑖

𝒯𝒯  of a process p are defined as the sum of misclassification costs 𝑐𝑐𝑑𝑑,𝑖𝑖
𝒞𝒞  and 

measurement costs c𝑑𝑑,𝑖𝑖
ℳ  consisting of the costs of delaying the decision c𝑑𝑑,𝑖𝑖

𝒟𝒟  and costs of acquisition 𝑐𝑐𝑑𝑑,𝑖𝑖
𝒜𝒜 , 

i.e. 

𝑐𝑐𝑑𝑑,𝑖𝑖
𝒯𝒯 = 𝑐𝑐𝑑𝑑,𝑖𝑖

𝒞𝒞 + 𝑐𝑐𝑑𝑑,𝑖𝑖
ℳ = 𝑐𝑐𝑑𝑑,𝑖𝑖

𝒞𝒞 + 𝑐𝑐𝑑𝑑,𝑖𝑖
𝒟𝒟 + 𝑐𝑐𝑑𝑑,𝑖𝑖

𝒜𝒜 . 

Participants that do not progress to manifest AD are assigned the class label 𝑧𝑧 = 1; participants that 
do progress to manifest AD are assigned the class label 𝑧𝑧 = 2. The diagnosis is based on one or more 
optional visits 𝑗𝑗 ∈  {1, … ,𝑚𝑚𝑖𝑖} in which a measurement 𝑦𝑦𝑖𝑖,𝑗𝑗 assessed at time point 𝑡𝑡𝑖𝑖,𝑗𝑗  of one of multiple 
disease markers ℎ𝑖𝑖,𝑗𝑗 ∈ 𝐻𝐻 = {MMSE, RAVLT, Aβ1−42 CSF, SPARE − AD} is taken. The vector 𝒚𝒚𝑖𝑖  contains 
all available 𝑚𝑚𝑖𝑖  measurements of subject 𝑖𝑖 from all markers over all time points. A process 𝑑𝑑 chooses a 
sequence of 𝑘𝑘𝑑𝑑,𝑖𝑖  observations identified by the set of indices 𝑀𝑀𝑑𝑑,𝑖𝑖 = {𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, … , 𝑗𝑗𝑘𝑘𝑑𝑑,𝑖𝑖} ⊆ {1, … ,𝑚𝑚𝑖𝑖}. Each 

classification of an individual with the process 𝑑𝑑 carries a cost defined as a weighted sum of cost 
parameters that characterize various aspects of model performance.  

Misclassification costs 𝑐𝑐𝑑𝑑,𝑖𝑖
𝒞𝒞  for participant 𝑖𝑖 depend on the class label and are defined as  

𝑐𝑐𝑑𝑑,𝑖𝑖
𝒞𝒞 = �

𝑐𝑐2
(1)                for classifying 1 as 2,
𝑐𝑐1

(2)                for classifying 2 as 1,
0          for a correct classification.

 

The costs for delaying a decision of participant 𝑖𝑖 is proportional to the time lapse 𝑡𝑡𝑖𝑖,𝑗𝑗𝑔𝑔 − 𝑡𝑡𝑖𝑖,𝑗𝑗𝑔𝑔−1  of the 

visit 𝑔𝑔 with respect to the last completed visit 𝑔𝑔 − 1, irrespective of the conversion status. We prescribe 

that the cost is 𝑐𝑐𝑡𝑡  per every year of delay, resulting in costs of 𝑐𝑐𝑡𝑡 �𝑡𝑡𝑖𝑖,𝑗𝑗𝑔𝑔 − 𝑡𝑡𝑖𝑖,𝑗𝑗𝑔𝑔−1� for the time of 

postponing the decision until visit 𝑔𝑔. The cost of an assessment includes the material cost of the 
acquisition of a disease marker and the associated patient burden. The cost of acquisition is denoted 
as 𝑐𝑐ℎ𝑖𝑖,𝑗𝑗  for ℎ𝑖𝑖,𝑗𝑗 ∈ 𝐻𝐻. For the whole sequence of measurements of subject 𝑖𝑖, the delaying costs are c𝑑𝑑,𝑖𝑖

𝒟𝒟 =

𝑐𝑐𝑡𝑡𝑡𝑡𝑑𝑑,𝑖𝑖
max with 𝑡𝑡𝑑𝑑,𝑖𝑖

max = max
𝑗𝑗∈𝑀𝑀𝑑𝑑,𝑖𝑖

�𝑡𝑡𝑖𝑖𝑗𝑗� and the costs of acquisition are c𝑑𝑑,𝑖𝑖
𝒜𝒜 = ∑ 𝑐𝑐ℎ𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑀𝑀𝑑𝑑,𝑖𝑖 . 

If the sequence 𝑀𝑀𝑝𝑝,𝑖𝑖  of a of a process is fixed, it includes all pre-defined assessments independently of 
the evidence given by the previously assessed measurements. The adaptive strategies sequentially 
weighing the expected accuracy from acquired evidence against expected gain in accuracy and costs 
of acquiring new data and delaying the decision. 
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Supplementary Methods 2: More information about decision rules of classification 
Overview 

In this section we consider different classifier. First, we derive equations for forced-choice classifiers, 
i.e., classifiers that assigns one of the possible classes by minimizing the expected misclassification 
costs. In a next step we introduce a "no-decision" classifier from the family of neutral zone classifier 
that allows to not choose one of the possible classes by staying in the so-called neutral zone. Such a 
classifier assumes that subjects can stay in the neutral zone i.e., that we never have to make a definite 
decision for them because misclassification costs would be too high. They minimize the expected costs 
for situation where one can dispense to (never) select one of the possible classes for subject with high 
expected misclassification costs. While they are optimized for non-sequential classification where no 
definite decision can be made, they were also, implemented within sequential approaches in earlier 
studies1 where at the end a forced-choice classification was made. Finally, multiple sub-sections are 
dedicated for a prospective neutral zone classifier that take into account the added value of optional 
measurements such that subjects only are assigned to the neutral zone in case expected costs of a 
forced-choice classification can be reduced when the optional measurements are included as well. 
These classifiers specifically considers that the label neutral zone can only be assigned temporary. 
Prospective neutral zone classifier minimize the expected (total) costs for situations where at the end 
one of the possible classes has to be chosen but optional measurements can be selected conditional on 
already passed measurements.  

As in the main text of this article we consider a random vector 𝒚𝒚 ∈ ℝ𝑚𝑚 and the class label 𝑧𝑧 ∈ {1; 2} a 
random Bernoulli-distributed variable with prevalence 𝜋𝜋0 = 𝑃𝑃(z = 2). We assume that 𝒚𝒚 ∈
ℝ𝑚𝑚conditional on 𝑧𝑧 follow a multivariate normal distribution with densities ϕ(𝑧𝑧) given by the mean 
vectors  𝝁𝝁(𝑧𝑧) = 𝐸𝐸(𝒚𝒚|𝑧𝑧) and covariance matrices 𝚺𝚺(𝑧𝑧) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝒚𝒚|𝑧𝑧) (𝑧𝑧 ∈ {1; 2}). For the derivations of 
equations for the prospective neutral zone classifier, we consider a participation of the vector of 
measurements 𝒚𝒚 ∈ ℝ𝑚𝑚 into two sets with either 𝑚𝑚𝑘𝑘 or 𝑚𝑚𝑙𝑙  (𝑚𝑚 = 𝑚𝑚𝑘𝑘 + 𝑚𝑚𝑙𝑙) measurements where we 
denote the vector of all observations of a set with 𝒚𝒚𝑘𝑘 ∈ ℝ𝑚𝑚𝑘𝑘  and 𝒚𝒚𝑙𝑙 ∈ ℝ𝑚𝑚𝑙𝑙 . The vector 𝒚𝒚𝑘𝑘 contains 
passed, completed measurement and the vector 𝒚𝒚𝑙𝑙  optional measurements that might be assessed in 

future. We write  𝒚𝒚 = �
𝒚𝒚𝑘𝑘
𝒚𝒚𝑙𝑙 � (without loss of generality) such that 𝝁𝝁(𝑧𝑧) = �𝝁𝝁𝑘𝑘

(𝑧𝑧)

𝝁𝝁 𝑙𝑙
(𝑧𝑧)� and 𝚺𝚺(𝑧𝑧) =

�𝚺𝚺𝑘𝑘𝑘𝑘
(𝑧𝑧) 𝚺𝚺𝑘𝑘𝑙𝑙

(𝑧𝑧)

𝚺𝚺𝑙𝑙𝑘𝑘
(𝑧𝑧) 𝚺𝚺𝑙𝑙𝑙𝑙

(𝑧𝑧)�  where 𝒚𝒚𝑘𝑘|𝑧𝑧~𝑁𝑁𝑚𝑚𝑘𝑘(𝝁𝝁𝑘𝑘(𝑧𝑧),𝚺𝚺𝑘𝑘
(𝑧𝑧)) and 𝒚𝒚𝑙𝑙|𝑧𝑧~𝑁𝑁𝑚𝑚𝑙𝑙(𝝁𝝁𝑙𝑙

(𝑧𝑧),𝚺𝚺𝑙𝑙
(𝑧𝑧)) (𝑧𝑧 ∈ {1; 2}).  To compute 

expected future cost reduction by including additional measurements for classification the distribution 
of 𝒚𝒚𝑙𝑙 , 𝑧𝑧 |𝒚𝒚𝑘𝑘 respectively the distributions of 𝑧𝑧|𝒚𝒚𝑘𝑘~Bernoulli(𝜋𝜋𝑘𝑘) (with 𝜋𝜋𝑘𝑘 = 𝑃𝑃(𝑧𝑧 = 2|𝒚𝒚𝑘𝑘))and 

𝒚𝒚𝑙𝑙|𝑧𝑧,𝒚𝒚𝑘𝑘~𝑁𝑁𝑚𝑚𝑙𝑙�𝝁𝝁𝑙𝑙.𝑘𝑘
(𝑧𝑧),𝚺𝚺𝑙𝑙.𝑘𝑘

(𝑧𝑧) � (with 𝝁𝝁𝑙𝑙.𝑘𝑘
(𝑧𝑧) = 𝐸𝐸(𝒚𝒚𝑙𝑙|𝑧𝑧,𝒚𝒚𝑘𝑘) and 𝚺𝚺𝑙𝑙.𝑘𝑘

(𝑧𝑧) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝒚𝒚𝑙𝑙|𝑧𝑧,𝒚𝒚𝑘𝑘) (𝑧𝑧 ∈ {1; 2})) are needed. 
The distributions 𝒚𝒚𝑙𝑙|𝑧𝑧,𝒚𝒚𝑘𝑘 are given by (follows from 2):  

𝒚𝒚𝑙𝑙 , 𝑧𝑧 |𝒚𝒚𝑘𝑘~𝑁𝑁𝑚𝑚𝑙𝑙(𝝁𝝁𝑙𝑙.𝑘𝑘
(𝑧𝑧),𝚺𝚺𝑙𝑙.𝑘𝑘

(𝑧𝑧)) 

𝝁𝝁𝑙𝑙.𝑘𝑘(𝑧𝑧) = 𝝁𝝁𝑙𝑙(𝑧𝑧) − 𝚺𝚺𝑙𝑙𝑘𝑘
(𝑧𝑧)�𝚺𝚺𝑘𝑘𝑘𝑘

(𝑧𝑧)�
−1
�𝒚𝒚𝑘𝑘 − 𝝁𝝁𝑘𝑘(𝑧𝑧)� 

𝚺𝚺𝑙𝑙.𝑘𝑘
(𝑧𝑧) = 𝚺𝚺𝑙𝑙𝑙𝑙

(𝑧𝑧) − 𝚺𝚺𝑙𝑙𝑘𝑘
(𝑧𝑧)�𝚺𝚺𝑘𝑘𝑘𝑘

(𝑧𝑧)�
−1
𝚺𝚺𝑘𝑘𝑙𝑙

(𝑧𝑧) 

(S1) 
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Expected misclassification costs of a forced-choice classifier 
In the main text of this article, we derived decision rules by directly comparing the expected costs of 
outcomes of a classifier. In the following we consider a test statistic 𝑇𝑇 = 𝑇𝑇(𝒚𝒚) and decision boundary 

𝑏𝑏 that define regions of classification outcome. We consider the misclassification costs 𝑐𝑐2
(1)and 𝑐𝑐1

(2) (as 
defined previously) and assume for the moment that there are no measurement costs.  When assuming 
that 𝑇𝑇(𝒚𝒚) is a function so that higher values of the test statistic are indicative for the class 𝑧𝑧 = 2, then 
a forced choice classifier 𝛿𝛿𝐹𝐹𝐹𝐹  for z is given as:   

𝛿𝛿𝐹𝐹𝐹𝐹 = �1 if  𝑇𝑇(𝒚𝒚) < b
2 if  𝑇𝑇(𝒚𝒚) ≥  b (S2) 

 

As test-statistic e.g., the posterior probability π = P(z = 2|𝒚𝒚) (see Equation (2) in the main article of 

this study) can be used for which the decision boundary is 𝑏𝑏 = 𝑐𝑐2
(1)

𝑐𝑐2
(1)+𝑐𝑐1

(2) . 

The costs 𝐶𝐶(𝒚𝒚, 𝑧𝑧) of the forced choice classifier (random variable) is a function of the random vector 𝒚𝒚 
and random variable 𝑧𝑧 and we get the expected costs of a forced choice classifier before assessing 𝒚𝒚 as 
(assuming no measurement costs, i.e., only the misclassification costs): 

E�𝐶𝐶(𝒚𝒚, 𝑧𝑧)� = 𝑃𝑃(𝛿𝛿𝐹𝐹𝐹𝐹 = 𝑧𝑧) ∙ 0 + 𝑃𝑃(𝛿𝛿𝐹𝐹𝐹𝐹 = 2, 𝑧𝑧 = 1) ∙ 𝑐𝑐2
(1) + 𝑃𝑃(𝛿𝛿𝐹𝐹𝐹𝐹 = 1, 𝑧𝑧 = 2) ∙ 𝑐𝑐1

(2)

= 𝑃𝑃(𝑇𝑇(𝒚𝒚) ≥  𝑏𝑏|𝑧𝑧 = 1)(1 − 𝜋𝜋0)𝑐𝑐2
(1) + 𝑃𝑃(𝑇𝑇(𝒚𝒚) < 𝑏𝑏|𝑧𝑧 = 2)𝜋𝜋0𝑐𝑐1

(2) 
 

 

where 𝑃𝑃(𝑇𝑇(𝒚𝒚) ≥  𝑏𝑏|𝑧𝑧 = 1) is the expected false positive and 𝑃𝑃(𝑇𝑇(𝒚𝒚) < 𝑏𝑏|𝑧𝑧 = 2) the expected false 
negative rate when classifying 𝑧𝑧 based on 𝒚𝒚 via a test statistic 𝑇𝑇(𝒚𝒚). The decision boundary 𝑏𝑏 is chosen 
such that the expected (misclassification) costs are minimized. The function 𝑇𝑇(𝒚𝒚) and the boundary 𝑏𝑏 

are given by the misclassification cost parameters 𝑐𝑐2
(1) and 𝑐𝑐1

(2) and the joint distribution of 𝒚𝒚 and 𝑧𝑧 
respectively the probability 𝜋𝜋0 = 𝑝𝑝(𝑧𝑧 = 2) (prevalence) and the parameters 𝝁𝝁(1),𝝁𝝁(2),𝜮𝜮(1) and 𝜮𝜮(2) of 
the distributions of 𝒚𝒚|𝑧𝑧 (𝑧𝑧 ∈ {1; 2}). To denote the underlying distribution used for the classification 
task, we specify the false positive rate as 𝐹𝐹𝑃𝑃�𝜋𝜋0,𝝁𝝁(1),𝝁𝝁(2),𝜮𝜮(1),𝜮𝜮(2)� and false negative rate as 
𝐹𝐹𝑁𝑁�𝜋𝜋0,𝝁𝝁(1),𝝁𝝁(2),𝜮𝜮(1),𝜮𝜮(2)� as a function of the distributional parameters. We can write the expected 
misclassification costs 𝐸𝐸�𝐶𝐶(𝒚𝒚, 𝑧𝑧)� as:  

𝐸𝐸�𝐶𝐶(𝒚𝒚, 𝑧𝑧)� = 𝐹𝐹𝑃𝑃�𝜋𝜋0,𝝁𝝁(1),𝝁𝝁(2),𝜮𝜮(1),𝜮𝜮(2)�(1 − 𝜋𝜋0)𝑐𝑐2
(1) + 𝐹𝐹𝑁𝑁�𝜋𝜋0,𝝁𝝁(1),𝝁𝝁(2),𝜮𝜮(1),𝜮𝜮(2)�𝜋𝜋0𝑐𝑐1

(2) (S3) 

 

Of note, 𝐸𝐸�𝐶𝐶(𝒚𝒚, 𝑧𝑧)� are the expected misclassification costs before knowing any measurement of 𝒚𝒚. For 
the homogeneous case where both populations have different means 𝝁𝝁(1) ≠ 𝝁𝝁(2) but a common 
covariance matrix 𝜮𝜮(1) = 𝜮𝜮(2) = 𝜮𝜮 we derived a closed form solution for both expected 
misclassification rates (and consequently the expected costs 𝐸𝐸�𝐶𝐶(𝒚𝒚, 𝑧𝑧)�). For the heterogeneous case 
(𝜮𝜮(1) ≠ 𝜮𝜮(2)) we approximated the expected misclassification rates with Monte Carlo simulations. For 
a given boundary 𝑏𝑏 of a forced-choice classifier (minimizing the expected costs 𝐸𝐸�𝐶𝐶(𝒚𝒚, 𝑧𝑧)� in equation 
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(S3)) the expected misclassification costs in case 𝒚𝒚 is already assessed can be written as (depending 
on the outcome of 𝛿𝛿𝐹𝐹𝐹𝐹  one of the expected misclassification rate is 0 and the other 1 in Equation (S3)):  

𝐸𝐸(𝐶𝐶(𝒚𝒚, 𝑧𝑧)|𝒚𝒚) = �
𝜋𝜋𝑐𝑐1

(2), 𝑇𝑇(𝒚𝒚) < 𝑏𝑏
(1 − 𝜋𝜋)𝑐𝑐2

(1), 𝑇𝑇(𝒚𝒚) ≥  𝑏𝑏
= 𝑚𝑚𝑖𝑖𝑛𝑛(𝜋𝜋𝑐𝑐1

(2), (1 − 𝜋𝜋)𝑐𝑐2
(1))  

In the following we will derive the closed form solutions of the misclassification rates for the 
homogeneous case. To this end, we consider the test statistic denoted by 𝑠𝑠:  

𝑠𝑠 =
�𝒚𝒚 − 𝝁𝝁(1,2)�

𝑇𝑇
𝜮𝜮−1�𝝁𝝁(1) − 𝝁𝝁(2)�
Δ

 (S4) 

Where 𝝁𝝁(1,2) = 𝝁𝝁(1)−𝝁𝝁(2)

2
 and Δ = �𝝁𝝁(2) − 𝝁𝝁(1)�

𝜮𝜮
= �(𝝁𝝁(1) − 𝝁𝝁(2))𝑇𝑇𝜮𝜮−1(𝝁𝝁(1) − 𝝁𝝁(2)) (Mahalanobis 

distance between the mean vectors of the two populations). The distance Δ is the standardized effect 
size for the multivariate differences between the two populations 3. The distribution of 𝑠𝑠|𝑧𝑧 is given by 
(adapted from 4):  

𝑠𝑠|𝑧𝑧~𝑁𝑁1 �(−1)𝑧𝑧 ∙
Δ
2

, 1� (S5) 
 

 

With the distribution in Equation (S4) and given boundary 𝑏𝑏 the expected false positive rate 
𝑃𝑃(𝑠𝑠 ≥  𝑏𝑏|𝑧𝑧 = 1) and false negative rate P(𝑠𝑠 <  𝑏𝑏|𝑧𝑧 = 2) can be computed. Using differential calculus, 
the boundary 𝑏𝑏 for the statistic 𝑠𝑠 (that minimize the expected costs as in Equation (S2)) can be 
computed with (proof can be delivered if requested): 

𝑏𝑏 =
log �1 − 𝜋𝜋0

𝜋𝜋0
� + log�𝑐𝑐2

(1)

𝑐𝑐1
(2)�

Δ
 (S6) 

As shown below both misclassification rates (and expected misclassification costs in Equation (S3)) 
are given entirely with the prescribed misclassification cost parameters, prevalence 𝜋𝜋0 and 
standardized distance between the mean vectors Δ. Consequently, we denote (for a fixed cost 
structure) the false positive rate as 𝐹𝐹𝑃𝑃(𝜋𝜋0,Δ), false negative rate as 𝐹𝐹𝑁𝑁(𝜋𝜋0,Δ), the specificity as 
𝑆𝑆𝑃𝑃(𝜋𝜋0,Δ)(= 1 − 𝐹𝐹𝑃𝑃(𝜋𝜋0,Δ)) and the sensitivity as 𝑆𝑆𝐸𝐸(𝜋𝜋0,Δ)(= 1 − 𝐹𝐹𝑁𝑁(𝜋𝜋0,Δ)). With Equations (S4) and 
(S5) the following equations for the expected misclassification rates, specificity and sensitivity can be 
derived (Φ is the cumulative distribution function of a univariate standard normal distribution): 

𝐹𝐹𝑃𝑃(𝜋𝜋0,Δ) = 𝑃𝑃(𝑠𝑠 ≥  𝑏𝑏|𝑧𝑧 = 1) = 1 −Φ

⎝

⎜
⎛

log �1 − 𝜋𝜋0
𝜋𝜋0

� + log�𝑐𝑐2
(1)

𝑐𝑐1
(2)�

Δ
+
Δ
2

⎠

⎟
⎞

 (S7) 
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𝐹𝐹𝑁𝑁(𝜋𝜋0,Δ) = 𝑃𝑃(𝑠𝑠 <  𝑏𝑏|𝑧𝑧 = 2) = Φ

⎝

⎜
⎛

log �1 − 𝜋𝜋0
𝜋𝜋0

� + log�𝑐𝑐2
(1)

𝑐𝑐1
(2)�

Δ
−
Δ
2

⎠

⎟
⎞

 

𝑆𝑆𝐸𝐸(𝜋𝜋0,Δ) = 1 − 𝐹𝐹𝑁𝑁(𝜋𝜋0,Δ) = 1 −Φ

⎝

⎜
⎛

log �1 − 𝜋𝜋0
𝜋𝜋0

� + log�𝑐𝑐2
(1)

𝑐𝑐1
(2)�

Δ
−
Δ
2

⎠

⎟
⎞

 

𝑆𝑆𝐸𝐸(𝜋𝜋0,Δ) = 1 − 𝐹𝐹𝑃𝑃(𝜋𝜋0,Δ) = Φ

⎝

⎜
⎛

log �1 − 𝜋𝜋0
𝜋𝜋0

� + log�𝑐𝑐2
(1)

𝑐𝑐1
(2)�

Δ
+
Δ
2

⎠

⎟
⎞

 

A non-prospective neutral zone classifier  

Neutral zone classifiers add a no decision label 𝑁𝑁𝑁𝑁 to the set of possible predicted outcomes and 
associated costs 𝑐𝑐𝑁𝑁𝑁𝑁. We call a neutral zone classifier that assigns output label based on the current 
evidence solely (without anticipating distribution of future measurements) as non-prospective neutral 
zone classifiers.  For a non-prospective neutral zone classifier denoted by δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 based on the 
measurements 𝒚𝒚 the label 𝑁𝑁𝑁𝑁 is chosen whenever the expected misclassification costs are higher than 
𝑐𝑐𝑁𝑁𝑁𝑁 (with 𝑐𝑐𝑁𝑁𝑁𝑁 < 𝑚𝑚𝑖𝑖𝑛𝑛(𝑐𝑐2

(1), 𝑐𝑐1
(2))). For given measurements 𝒚𝒚 and corresponding posterior probability 𝜋𝜋 

the no-decision classifiers δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 can be derived by comparing expected costs of each classification 
outcome as follows (assuming 𝑐𝑐𝑁𝑁𝑁𝑁 ≠ (1 − 𝜋𝜋)𝑐𝑐2

(1)):  

δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �
1,   𝜋𝜋𝑐𝑐1

(2) < min(𝑐𝑐𝑁𝑁𝑁𝑁, (1 − 𝜋𝜋)𝑐𝑐2
(1)) 

𝑁𝑁𝑁𝑁, 𝑐𝑐𝑁𝑁𝑁𝑁 < min(𝜋𝜋𝑐𝑐1
(2), (1 − 𝜋𝜋)𝑐𝑐2

(1)) 
2,   (1 − 𝜋𝜋)𝑐𝑐2

(1) ≤ min(𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘,𝜋𝜋𝑐𝑐1
(2))

  

  
As for the forced-choice classifier in Equation (S2) also the δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 can be defined with a test-statistic 
𝑇𝑇(𝒚𝒚) while two decision boundaries 𝑏𝑏1 and 𝑏𝑏2 are needed to define the regions of classification 
outcome, i.e. 5:   

δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �
1, 𝑇𝑇(𝒚𝒚) ≤ 𝑏𝑏1
𝑁𝑁𝑁𝑁, 𝑏𝑏1 < 𝑇𝑇(𝒚𝒚) < 𝑏𝑏2
2, 𝑇𝑇(𝒚𝒚) ≥ 𝑏𝑏2

,       

 

(S8) 

  
 

 

 

If the posterior probability 𝜋𝜋 is chosen as test statistic, the decision boundaries are  (adapted by 1):  

𝑏𝑏1 =
𝑐𝑐𝑁𝑁𝑁𝑁
𝑐𝑐1

(2) , 𝑏𝑏2 =
𝑐𝑐2

(1) −  𝑐𝑐𝑁𝑁𝑁𝑁
𝑐𝑐2

(1)  (S9) 
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In case 𝑏𝑏1  < 𝑏𝑏2, the classifier δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 with 𝜋𝜋 and corresponding 𝑏𝑏1 and 𝑏𝑏2 in equation (S9) minimizes 
the expected costs, if not, we end up with the forced-choice classifier as minimum cost classifier 1. Since 

𝑐𝑐𝑁𝑁𝑁𝑁 = 𝑏𝑏1𝑐𝑐1
(2) and 𝑐𝑐𝑁𝑁𝑁𝑁 = (1 − 𝑏𝑏2)𝑐𝑐2

(1), one can see that δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 predict the label 𝑁𝑁𝑁𝑁 in case the expected 
misclassification costs when choosing one of the classes are higher than costs 𝑐𝑐𝑁𝑁𝑁𝑁 for not making a 
decision. Of note, equation (S9) is valid for arbitrary distributions of 𝒚𝒚.  

Expected cost reduction with optional measurements for prospective neutral zone classifier 
For the prospective neutral zone classifier, we differentiate between passed measurements (𝒚𝒚𝑘𝑘) and 
optional future measurements (𝒚𝒚𝑙𝑙). The whole vector of measurements 𝒚𝒚 is associated with 
measurement costs, whereas we denote the measurement costs of the future measurements 𝒚𝒚𝑙𝑙  with 
𝑐𝑐ℳ  and set in the following the measurement costs of 𝒚𝒚𝑘𝑘 to 0 since it has no influence on the 
classification outcome of the prospective neutral zone classifier. The expected misclassification costs 
for a forced choice classifier 𝛿𝛿𝐹𝐹𝐹𝐹,𝑘𝑘 based on the already assessed measurements 𝒚𝒚𝑘𝑘 are 𝐸𝐸𝐶𝐶𝑘𝑘 =

𝐸𝐸(𝐶𝐶𝑘𝑘(𝒚𝒚𝑘𝑘, z)|𝒚𝒚𝑘𝑘) = 𝑚𝑚𝑖𝑖𝑛𝑛(𝜋𝜋𝑘𝑘𝑐𝑐1
(2), (1 − 𝜋𝜋𝑘𝑘)𝑐𝑐2

(1)) where 𝜋𝜋𝑘𝑘 = 𝑃𝑃(𝑧𝑧 = 2|𝒚𝒚𝑘𝑘) is computed with equation (2) 
from the main text of the article (by plugging in 𝒚𝒚𝑘𝑘 and the corresponding densities of the two 
populations) and is called current evidence. Since 𝒚𝒚𝑘𝑘 is given, the expected misclassification rates (and 
consequently expected costs) based on the whole vector 𝒚𝒚 conditional on 𝒚𝒚𝑘𝑘 depend only on the 
parameters of the distribution of  𝑧𝑧|𝒚𝒚𝑘𝑘 (current evidence 𝜋𝜋𝑘𝑘) and the distribution of 𝒚𝒚𝑙𝑙|𝑧𝑧,𝒚𝒚𝑘𝑘  (given in 
equation (S1)).  The expected total costs (misclassification and measurement costs) of a forced choice 
classification based on all measurements 𝒚𝒚  conditioning on the already assessed 𝒚𝒚𝑘𝑘 are given by:  

𝐸𝐸(𝐶𝐶(𝒚𝒚, 𝑧𝑧)|𝑦𝑦𝑘𝑘) = 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘
= 𝑐𝑐ℳ + 𝐹𝐹𝑃𝑃�𝜋𝜋𝑘𝑘 ,𝝁𝝁𝑙𝑙.𝑘𝑘(1),𝝁𝝁𝑙𝑙.𝑘𝑘(2),𝜮𝜮𝑙𝑙.𝑘𝑘

(1),𝜮𝜮𝑙𝑙.𝑘𝑘
(2)� (1 − 𝜋𝜋𝑘𝑘)𝑐𝑐2

(1)

+ 𝐹𝐹𝑁𝑁�𝜋𝜋𝑘𝑘 ,𝝁𝝁𝑙𝑙.𝑘𝑘(1),𝝁𝝁𝑙𝑙.𝑘𝑘(2),𝜮𝜮𝑙𝑙.𝑘𝑘
(1),𝜮𝜮𝑙𝑙.𝑘𝑘

(2)�𝜋𝜋𝑘𝑘𝑐𝑐1
(2) 

(S10) 

 

Again, we derived closed form solutions for the expected misclassification rates for the homogeneous 
case and approximated them with Monte Carlo simulations for the heterogeneous case. Given the 
current evidence and both misclassification rates the costs 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 can be computed. By comparing the 
expected costs 𝐸𝐸𝐶𝐶𝑘𝑘 and 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 the prospective neutral zone classifier 𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘 can be derived. The 
classifier 𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘  assigns the label 𝑁𝑁𝑁𝑁 whenever the costs can be reduced with the inclusion of 𝒚𝒚𝑙𝑙 . From 
all possible classification outcomes {1;𝑁𝑁𝑁𝑁; 2} the prospective sequential neutral zone classifier 𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘 
choose the one with lowest expected costs (see Equation (6) in the main part of the article where only 
the homogeneous case is discussed but equation also applies to the heterogeneous case). When 
applying the non-prospective neutral zone classifier with boundaries as in equation (S9) with the 
current evidence 𝜋𝜋𝑘𝑘 , the label 𝑁𝑁𝑁𝑁 is predicted independently of the added value of the left-over 
observations 𝒚𝒚𝑙𝑙 . When applying equation (S9) directly for the sequential situation by setting 𝑐𝑐𝑁𝑁𝑁𝑁 =
𝑐𝑐ℳ , it is assumed that when choosing the label 𝑁𝑁𝑁𝑁 no misclassification costs follow afterwards, i.e., 
that the expected misclassification rates are 𝐹𝐹𝑃𝑃�𝜋𝜋𝑘𝑘 ,𝝁𝝁𝑙𝑙.𝑘𝑘(1),𝝁𝝁𝑙𝑙.𝑘𝑘(2),𝜮𝜮𝑙𝑙.𝑘𝑘

(1),𝜮𝜮𝑙𝑙.𝑘𝑘
(2)� =

𝐹𝐹𝑁𝑁�𝜋𝜋𝑘𝑘 ,𝝁𝝁𝑙𝑙.𝑘𝑘(1),𝝁𝝁𝑙𝑙.𝑘𝑘(2),𝜮𝜮𝑙𝑙.𝑘𝑘
(1),𝜮𝜮𝑙𝑙.𝑘𝑘

(2)� = 0. Furthermore, when plugging in the future expected costs 
𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 as neutral costs in equation (S9) (i.e., setting 𝑐𝑐𝑁𝑁𝑁𝑁 = 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 as random variable rather than a fixed 
scalar) the fixed points equations discussed later (equations (S16) and (S17)) follow (proof can be 
delivered if requested).  
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Minimum expected increase in accuracy as threshold for the prospective neutral zone classifier 

In this study we set in all analyses 𝑐𝑐1
(2) = 𝑐𝑐2

(1) = 100 such that the measurement costs 𝑐𝑐ℳ  of the 
prospective sequential classifier can be interpreted as the percentage of one misclassification i.e., that 

𝑥𝑥 measurements are equally costly as 𝑥𝑥∙𝑐𝑐
ℳ

100
 misclassification. We denote with 𝐴𝐴𝑘𝑘 the expected accuracy 

for a forced-choice classification based on the passed, completed measurements 𝒚𝒚𝑘𝑘 and with 𝐴𝐴𝑙𝑙.𝑘𝑘 the 
(prospective) expected accuracy of a forced-choice classifier based on (unknown) measurements 𝒚𝒚𝑙𝑙  
given passed measurements 𝒚𝒚𝑘𝑘. The expected accuracies and consequently increase in accuracy (𝑑𝑑𝐴𝐴𝑙𝑙.𝑘𝑘) 
are given by:  

𝐴𝐴𝑘𝑘 = 𝑚𝑚𝑉𝑉𝑥𝑥(𝜋𝜋𝑘𝑘 , 1 − 𝜋𝜋𝑘𝑘) 
𝐴𝐴𝑙𝑙.𝑘𝑘 = 1 − �𝐹𝐹𝑃𝑃�𝜋𝜋𝑘𝑘 ,𝝁𝝁𝑙𝑙.𝑘𝑘(1),𝝁𝝁𝑙𝑙.𝑘𝑘(2),𝚺𝚺𝑙𝑙.𝑘𝑘

(1),𝚺𝚺𝑙𝑙.𝑘𝑘
(2)� (1 − 𝜋𝜋𝑘𝑘)

+ 𝐹𝐹𝑁𝑁�𝜋𝜋𝑘𝑘 ,𝝁𝝁𝑙𝑙.𝑘𝑘(1),𝝁𝝁𝑙𝑙.𝑘𝑘(2),𝜮𝜮𝑙𝑙.𝑘𝑘
(1),𝜮𝜮𝑙𝑙.𝑘𝑘

(2)�𝜋𝜋𝑘𝑘� 
𝑑𝑑𝐴𝐴𝑙𝑙.𝑘𝑘 = 𝐴𝐴𝑙𝑙.𝑘𝑘 − 𝐴𝐴𝑘𝑘  

(S11) 

 

As described before, the prospective neutral zone classifier chooses the label NZ whenever  𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 <
𝐸𝐸𝐶𝐶𝑘𝑘 . For the situation where both misclassification costs are set to 100 these expected costs can be 
written as 𝐸𝐸𝐶𝐶𝑘𝑘 = 100 ∙ (1 − 𝐴𝐴𝑘𝑘) respectively 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 = 𝑐𝑐ℳ +  100 ∙ (1 − 𝐴𝐴𝑙𝑙.𝑘𝑘) such that the condition 
when the label NZ is chosen by a prospective neutral zone classifier can be re-formulated as (proof 
with elementary calculus):  

 

𝐴𝐴𝑙𝑙.𝑘𝑘 − 𝐴𝐴𝑘𝑘  >
𝑐𝑐ℳ

100
  

 
(S12) 

 

This means that the optional measurements 𝒚𝒚𝑙𝑙  are only considered for classification in case the 
accuracy increase expected by their inclusion is higher than 𝑐𝑐

ℳ

100
 (e.g., if 𝑐𝑐ℳ = 4 the measurements yl 

are only assessed when accuracy is expected to increase by at least 0.04).  

 

Prospective neutral zone classifier for the homogeneous case 

For the homogenous case we derived a closed form solutions for the expected misclassification rates 
using the following test statistic and decision boundary (minimizing the expected costs in equation 
(S10)):  

𝑠𝑠𝑙𝑙.𝑘𝑘 =
�𝒚𝒚𝑙𝑙 − 𝝁𝝁𝑙𝑙.𝑘𝑘

(1,2)�
𝑇𝑇
𝜮𝜮𝑙𝑙.𝑘𝑘−1�𝝁𝝁𝑙𝑙.𝑘𝑘

(1) − 𝝁𝝁𝑙𝑙.𝑘𝑘
(2)�

𝛥𝛥𝑙𝑙.𝑘𝑘
, 𝑠𝑠𝑙𝑙.𝑘𝑘|𝑧𝑧,𝒚𝒚𝑘𝑘~𝑁𝑁𝑚𝑚𝑙𝑙((−1)𝑧𝑧 ∙  

𝛥𝛥𝑙𝑙.𝑘𝑘
2

, 1) 

𝑏𝑏𝑙𝑙.𝑘𝑘 =
log �1 − 𝜋𝜋𝑘𝑘

𝜋𝜋𝑘𝑘
� + log�𝑐𝑐2

(1)

𝑐𝑐1
(2)�

 Δ𝑙𝑙.𝑘𝑘
 

(S13) 

where 𝝁𝝁𝑙𝑙.𝑘𝑘
(1,2) = 𝝁𝝁𝑙𝑙.𝑘𝑘

(1)−𝝁𝝁𝑙𝑙.𝑘𝑘
(2)

2
 and Δ𝑙𝑙.𝑘𝑘 = �𝝁𝝁𝑙𝑙.𝑘𝑘(2) − 𝝁𝝁𝑙𝑙.𝑘𝑘(1)�

𝜮𝜮𝑙𝑙.𝑘𝑘
= �(𝝁𝝁𝑙𝑙.𝑘𝑘(1) − 𝝁𝝁𝑙𝑙.𝑘𝑘(2))𝑇𝑇𝚺𝚺𝑙𝑙.𝑘𝑘−1(𝝁𝝁𝑙𝑙.𝑘𝑘(1) − 𝝁𝝁𝑙𝑙.𝑘𝑘(2)) 

(similarly as in the Equation (S4) -  (S6) for the derivation of the misclassification costs defined in 
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Equation (S3)). We call Δ𝑙𝑙.𝑘𝑘  the prospective discriminability which quantifies the added value of the 
measurements 𝒚𝒚𝑙𝑙  for classification (effect size of differences between sub-populations with given 
values 𝑦𝑦𝑘𝑘). As before in Equation (S7) but with the current evidence 𝜋𝜋𝑘𝑘  as “prevalence” and the 
distributions and decision boundary in Equation (S13) the expected misclassification rates can be 
computed. The expected misclassification rates are given (besides the prescribed misclassification 
costs) as a function of  𝜋𝜋𝑘𝑘  and Δ𝑙𝑙.𝑘𝑘   , i.e.:  

𝐹𝐹𝑃𝑃(𝜋𝜋𝑘𝑘 ,𝛥𝛥𝑙𝑙.𝑘𝑘) = 𝑃𝑃(𝑠𝑠𝑙𝑙.𝑘𝑘 ≥  𝑏𝑏𝑙𝑙.𝑘𝑘|𝑦𝑦𝑘𝑘 , 𝑧𝑧 = 1) = 1 −Φ

⎝

⎜
⎛
𝑙𝑙𝑙𝑙𝑔𝑔 �1 − 𝜋𝜋𝑘𝑘

𝜋𝜋𝑘𝑘
� + 𝑙𝑙𝑙𝑙𝑔𝑔 �𝑐𝑐2

(1)

𝑐𝑐1
(2)�

Δ𝑙𝑙.𝑘𝑘
+
Δ𝑙𝑙.𝑘𝑘

2

⎠

⎟
⎞

 

𝐹𝐹𝑁𝑁(𝜋𝜋𝑘𝑘,𝛥𝛥𝑙𝑙.𝑘𝑘) = 𝑃𝑃(𝑠𝑠𝑙𝑙.𝑘𝑘 <   𝑏𝑏𝑙𝑙.𝑘𝑘|𝑦𝑦𝑘𝑘 , 𝑧𝑧 = 2) = Φ

⎝

⎜
⎛
𝑙𝑙𝑙𝑙𝑔𝑔 �1 − 𝜋𝜋𝑘𝑘

𝜋𝜋𝑘𝑘
� + 𝑙𝑙𝑙𝑙𝑔𝑔 �𝑐𝑐2

(1)

𝑐𝑐1
(2)�

𝛥𝛥𝑙𝑙.𝑘𝑘
−
𝛥𝛥𝑙𝑙.𝑘𝑘

2

⎠

⎟
⎞

 

 

(S14) 

In our implementation we derived the prospective neutral zone classifier by directly comparing the 
expected costs of every classification outcome and choosing the option with lowest expected costs (see 
Equation (6) in the main text of the article). Hence, we did not use a test statistic and two decision 
boundaries to derive regions of different classification outcomes. For the homogenous case, the 
prospective neutral zone classifier in Equation (6) from the main text of the article can be written as :  

𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁,𝑘𝑘 = �
1,   𝜋𝜋𝑘𝑘 ≤ 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) 
𝑁𝑁𝑁𝑁, 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) < 𝜋𝜋𝑘𝑘 < 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘)
2,   𝜋𝜋𝑘𝑘 ≥ 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘)

 

where the equation only holds in case 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) < 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘) and the boundaries 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) and 𝑏𝑏2(𝛥𝛥𝑙𝑙.𝑘𝑘). For 
the prospective neutral zone classifier there exists no closed form solutions for boundaries of the 
current evidence 𝜋𝜋𝑘𝑘  (as shown and discussed in 6 for multi-stage classification)  We can think of 
boundaries 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) and 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘) that gives us the decision for a given level of (current) evidence 𝜋𝜋𝑘𝑘  as 
a function of the left-over diagnosis relevant information Δ𝑙𝑙.𝑘𝑘. In contrast to the non-prospective 
neutral zone classifier as in Equation (S9) with constant boundaries for 𝜋𝜋𝑘𝑘  that only depend on costs 
parameters, the prospective neutral zone classifier uses the information about the added value of 
future measurements to determine if a definite decision can be made with the current evidence or not 

(stay neutral). The lower boundary 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) fulfils that 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 = 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘)𝑐𝑐1
(2) and is the solution 𝑏𝑏�1 of the 

equation (derivation can be delivered on request):  

𝑏𝑏�1 =
𝑐𝑐ℳ + 𝑐𝑐2

(1)𝐹𝐹𝑃𝑃�𝑏𝑏�1,Δ𝑙𝑙.𝑘𝑘�

𝑐𝑐1
(2)𝑆𝑆𝐸𝐸�𝑏𝑏�1,Δ𝑙𝑙.𝑘𝑘� + 𝑐𝑐2

(1)𝐹𝐹𝑃𝑃�𝑏𝑏�1,Δ𝑙𝑙.𝑘𝑘�
 (S15) 
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while the upper bound 𝑏𝑏2(𝛥𝛥𝑙𝑙.𝑘𝑘) fulfils that 𝐸𝐸𝐶𝐶𝑙𝑙.𝑘𝑘 = (1 − 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘) )𝑐𝑐2
(1) and is the solution of the 

equation: 

𝑏𝑏�2 =
𝑐𝑐2

(1)𝑆𝑆𝑃𝑃�𝑏𝑏�2,Δ𝑙𝑙.𝑘𝑘� − 𝑐𝑐ℳ

𝑐𝑐2
(1)𝑆𝑆𝐸𝐸�𝑏𝑏�2,Δ𝑙𝑙.𝑘𝑘� + 𝑐𝑐1

(2)𝐹𝐹𝑁𝑁�𝑏𝑏�2,Δ𝑙𝑙.𝑘𝑘�
 (S16) 

Similar fix point forms as in the Equation (S15) and Equation (S16) for the boundaries of 𝜋𝜋𝑘𝑘  were 
derived within a multi-stage classification approach6. In case  𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) > 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘) the prospective 
neutral zone classifier acts as a forced choice classifier with the same misclassification costs. For Δ𝑙𝑙.𝑘𝑘 →
∞ (so that 𝐹𝐹𝑃𝑃(𝜋𝜋𝑘𝑘 ,Δ𝑙𝑙.𝑘𝑘) → 0 and 𝐹𝐹𝑁𝑁(𝜋𝜋𝑘𝑘 ,Δ𝑙𝑙.𝑘𝑘) → 0) the boundaries converge to the ones given by the 
descriptive neutral zone classifier in equation (S9). A visualization of the forced choice as well as the 
descriptive and prospective neutral zone can be found in Fig. S1.  
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Fig. S1: Visualization of the prospective neutral zone classifier (a) Situation in which already a MRI (𝑦𝑦1) and 𝐴𝐴𝛽𝛽1−42-CSF (𝑦𝑦2)  measure were assessed (𝒚𝒚𝑘𝑘 vector containing both 

measures) and the classification task consist of either choosing one of the possible classes (MCI-stable or MCI converter) in case there is enough evidence or postpone the decision 

and stay neutral (𝑁𝑁𝑁𝑁) to additionally assess the MMSE (𝑦𝑦𝑙𝑙) and then decide for one of the classes. The classification outcome depends on the misclassification costs 𝑐𝑐1
(2), 𝑐𝑐2

(1) and 

the measurement cost 𝑐𝑐𝑙𝑙  for 𝑦𝑦𝑙𝑙, the current evidence 𝜋𝜋𝑘𝑘  and the prospective discriminability Δ𝑙𝑙.𝑘𝑘 (given by the conditional distributions 𝑦𝑦𝑙𝑙|𝑧𝑧,𝒚𝒚𝑘𝑘). (b) Visualizations of decision 

regions for constant decision costs. In contrast to the forced-choice (FC, black line) and the non-prospective neutral zone classifier (NPNZ, purple lines) for the prospective neutral 

zone classifier (PNZ) the amount of leftover diagnosis-relevant information in 𝒚𝒚𝑙𝑙 (quantified by 𝛥𝛥𝑙𝑙.𝑘𝑘) determines the amount of evidence given by the assessment 𝒚𝒚𝑘𝑘 (quantified 

by 𝜋𝜋𝑘𝑘) that is needed to make a finite decision without assessing 𝑦𝑦𝑙𝑙 (𝜋𝜋𝑘𝑘 < 𝑏𝑏1(Δ𝑙𝑙.𝑘𝑘) or 𝜋𝜋𝑘𝑘 > 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘)). For the prospective neutral zone classifier, the prediction outcome for a 

given value of  𝛥𝛥𝑙𝑙.𝑘𝑘 is displayed by the coloured areas, the boundaries between the green and yellow area is 𝑏𝑏1(𝛥𝛥𝑙𝑙.𝑘𝑘) and the one between the yellow and red area is 𝑏𝑏2(Δ𝑙𝑙.𝑘𝑘) (c) 

For fixed misclassification costs 𝑐𝑐1
(2), 𝑐𝑐2

(1) and prospective discriminability Δ𝑙𝑙.𝑘𝑘 the decision boundaries for  the PNZ- and DNZ classifiers are displayed as a function of the 

measurement costs
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Supplementary Methods 3: More information about Linear mixed-effects models  
Linear mixed effects models for multi-variate, longitudinal data 

In this study we used an unbalanced longitudinal data set with a large range of age at study entry and 
follow-up time period as well as varying time intervals between observations. Under such conditions 
cross-sectional differences and longitudinal trends may be different and should be estimated 
simultaneously 7. A parametrization using baseline age (the age of the subject at the first visit) and the 
time since baseline (age at each visit minus baseline age) as predictors instead of directly using the age 
at each visit as model predictors was considered in this study (as in earlier studies to analyze 
longitudinal data, see  7,8.) We start with the derivation of a model with longitudinal measurements of 
one response variable in the LMM (univariate case). Let 𝑉𝑉𝑖𝑖  be the baseline age of subject 𝑖𝑖 and 
𝑡𝑡𝑖𝑖,𝑗𝑗(∀𝑖𝑖 ∈ {1,2, … ,𝑛𝑛}:∀𝑗𝑗 ∈ {1,2, … ,𝑚𝑚𝑖𝑖}) the time since baseline of subject 𝑖𝑖 at the visit 𝑗𝑗. We can model 
the measurement 𝑦𝑦𝑖𝑖,𝑗𝑗  using an overall fixed intercept (𝛽𝛽1), fixed effects for the baseline age (𝛽𝛽2) and 
time (𝛽𝛽2) and random effects per subject for the intercept (𝜁𝜁𝑖𝑖 ,1 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛}) and for time (𝜁𝜁𝑖𝑖,2 𝑖𝑖 ∈
{1,2, … ,𝑛𝑛}), i.e.:  

𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝛽𝛽1 + 𝛽𝛽2𝑉𝑉𝑖𝑖+𝛽𝛽3𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜁𝜁𝑖𝑖,1 + 𝜁𝜁𝑖𝑖,2𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗 = α𝑖𝑖 + λ𝑖𝑖𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗  (S17) 
 

For this model we assume independent and identically distributed residuals 𝜀𝜀𝑖𝑖,𝑗𝑗~𝑁𝑁(0,𝜌𝜌) and a random 

vector 𝜻𝜻𝑖𝑖 = �𝜁𝜁𝑖𝑖1𝜁𝜁𝑖𝑖2
�~𝑁𝑁2(0,𝚿𝚿) containing random subject-specific deviations 𝜁𝜁𝑖𝑖 ,1 of the intercept and 𝜁𝜁𝑖𝑖 ,2 

of the slope over time. The covariance matrix of the random effects 𝚿𝚿 = �ψ11 ψ12
ψ12 ψ22

� consists of the 

variance of random effects for the intercept (ψ11), the variance of the random effects for the slope in 
time (ψ22) and the covariance between the two random effects (ψ12). The mean 𝝁𝝁𝑖𝑖 = 𝐸𝐸(𝒚𝒚𝑖𝑖) of the 
vector 𝒚𝒚𝑖𝑖  containing all measurements of subject 𝑖𝑖 is given by the vector of fixed effects 𝜷𝜷 (since all 
random effects and residuals have a mean of 0) and the covariance matrix 𝑉𝑉𝑉𝑉𝑉𝑉(𝒚𝒚𝑖𝑖) by 𝚿𝚿 and 𝜌𝜌. We 
have subject specific random intercepts α𝑖𝑖 = 𝛽𝛽1 + 𝛽𝛽2𝑉𝑉𝑖𝑖 + 𝜁𝜁𝑖𝑖 ,1 consisting of a fixed average (population-
level) intercept 𝛽𝛽1 + 𝛽𝛽2𝑉𝑉𝑖𝑖  for subjects with baseline age 𝑉𝑉𝑖𝑖  and a random deviation 𝜁𝜁𝑖𝑖,1 and random 
slopes in time λ𝑖𝑖 = 𝛽𝛽3 + 𝜁𝜁𝑖𝑖 ,2 given by a fixed average slope 𝛽𝛽3 and a random deviation 𝜁𝜁𝑖𝑖,2.. The model 
parameters are the three fixed effects (𝛽𝛽1, 𝛽𝛽2 and 𝛽𝛽2), the two variances and the covariance of the 
random effects (ψ11,ψ22 and ψ21)and one residual variance 𝜌𝜌. 

Within the LMM framework it is also possible to model repeated measures of multiple response 
variables simultaneously (multivariate case) 8–10. Suppose we have 𝑉𝑉 different response variables 
whereas these responses ℎ ∈ {1; 2; … ; 𝑉𝑉}  are measured 𝑚𝑚ℎ,𝑖𝑖  times for subjects 𝑖𝑖 ∈ {1; 2; … ;𝑛𝑛} so that 
for subject 𝑖𝑖 we have overall 𝑚𝑚𝑖𝑖 = ∑ 𝑚𝑚ℎ,𝑖𝑖

𝑟𝑟
ℎ=1  observations. The number of observations 𝑚𝑚ℎ,𝑖𝑖  and the 

measurement time points can differ between the variables and subjects (19, 21, 25, 26). Let 𝒚𝒚𝑖𝑖  
respectively 𝒕𝒕𝑖𝑖  be the vectors containing all measurements respectively measurement time points of 
subject 𝑖𝑖 (of all responses). To model the measurement 𝑦𝑦𝑖𝑖,𝑗𝑗  (𝑗𝑗 ∈ {1; 2; … ;𝑚𝑚𝑖𝑖}) we additionally to the 
baseline age 𝑉𝑉𝑖𝑖  and measurement time (since baseline) 𝑡𝑡𝑖𝑖,𝑗𝑗  include 𝑉𝑉 different dummy variables 𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗 
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that are 1 if it is a measurement of the variable ℎ and 0 else as predictor variables. The model looks 
similar as the one in equation (S17) but for the multivariate case we consider individual fixed and 
random effects as well as intra-subject variances for every response variable ℎ ∈ {1; 2; … ; 𝑉𝑉}. To 
simplify notation, we use in the model equation of the multi-variate case (equation (S18) that follows 
below) scaled residuals 𝜖𝜖𝑖𝑖,𝑗𝑗  instead of the unscaled (raw) residuals 𝜀𝜀𝑖𝑖,𝑗𝑗  (as for the uni-variate case in 
equation (S17)). The extended model for the multivariate case is given by  (adapted from 10–12):  

 

𝑦𝑦𝑖𝑖,𝑗𝑗 = �𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗 �𝛽𝛽ℎ,1 + 𝛽𝛽ℎ,2𝑉𝑉𝑖𝑖 + 𝛽𝛽ℎ,3𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜁𝜁ℎ,𝑖𝑖,1 + 𝜁𝜁ℎ,𝑖𝑖,2𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜌𝜌ℎ𝜖𝜖𝑖𝑖,𝑗𝑗�
𝑉𝑉

ℎ=1

= �𝑣𝑣ℎ,𝑖𝑖.𝑗𝑗 �𝛼𝛼ℎ,𝑖𝑖 + 𝜆𝜆ℎ,𝑖𝑖𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜌𝜌ℎ𝜖𝜖𝑖𝑖,𝑗𝑗�
𝑉𝑉

ℎ=1

 

 

(S18) 

with random subject- and response variable specific intercepts αℎ,𝑖𝑖 = 𝛽𝛽ℎ,1 + 𝛽𝛽ℎ,2𝑉𝑉𝑖𝑖,1 + 𝜁𝜁ℎ,𝑖𝑖,1 and slopes 
in time λℎ,𝑖𝑖 = 𝛽𝛽ℎ,3 + 𝜁𝜁ℎ,𝑖𝑖,2 (given by the fixed and random effects) and scaled residuals 𝜖𝜖𝑖𝑖,𝑗𝑗 . As can be 
seen in equation (S18), all considered effects of predictors are interaction effects with the dummy 
variables 𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗 (ℎ ∈ {1; 2; … ; 𝑉𝑉}) such that there are no effects included that effect 𝑦𝑦𝑖𝑖,𝑗𝑗  in the same way 
for all considered response variables. To model the means 3𝑉𝑉 parameters i.e., the fixed effects 𝛽𝛽ℎ,1, 𝛽𝛽ℎ,2 
and 𝛽𝛽ℎ,3 for all response variables are needed. With 𝜷𝜷 the vector containing all these fixed effects is 
denoted. The variances are modelled by the distribution of the random effects 𝜁𝜁ℎ,𝑖𝑖,1 and 𝜁𝜁ℎ,𝑖𝑖,1 and the 
intra-subject variance components 𝜌𝜌ℎ(ℎ ∈ 𝐻𝐻), whereas the covariances between two different 
responses are given slowly by the distribution of the random effects. The scaled residuals 𝜖𝜖𝑖𝑖,𝑗𝑗  were 
assumed to be independent from each other and the random intercept and slopes and standard normal 
distributed i.e.,  𝜖𝜖𝑖𝑖,𝑗𝑗~𝑁𝑁(0,1). The distribution of the unscaled residuals 𝜀𝜀𝑖𝑖,𝑗𝑗  varies between response 

variables and is given as 𝜀𝜀𝑖𝑖,𝑗𝑗~𝑁𝑁(0,∑ 𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗𝜌𝜌ℎ𝑟𝑟
ℎ=1 ).With 𝝆𝝆 = �

𝜌𝜌1
𝜌𝜌2
⋮
𝜌𝜌𝑟𝑟
� we denote the vector containing all 

response specific variances 𝜌𝜌ℎ(ℎ ∈ 𝐻𝐻). The distribution of the vector of random effects 𝜻𝜻𝑖𝑖 =

⎝

⎜
⎜
⎜
⎜
⎛

𝜁𝜁1,𝑖𝑖,1
𝜁𝜁1,𝑖𝑖,2
𝜁𝜁2,𝑖𝑖,1
𝜁𝜁2,𝑖𝑖,2
⋮

𝜁𝜁𝑟𝑟,𝑖𝑖,1
𝜁𝜁𝑟𝑟,𝑖𝑖,2⎠

⎟
⎟
⎟
⎟
⎞

~𝑁𝑁2𝑟𝑟(0,𝚿𝚿) (random effects for intercept and time for all variables) is given by a mean of 0, 

individual variances of every random effect, covariances between random intercepts and slopes of the 
same or different variables as well as between random slopes of different variables. The parameters 
of the model in equation (S18) are all fixed effects in 𝜷𝜷, all variances and covariances in 𝚿𝚿 and all 
variances in 𝝆𝝆.  
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Modelling diagnosis specific progressions of multi-variate longitudinal measurements. In equation 
(S18) we considered a LMM for multivariate, longitudinal data whereas the subjects are assumed to 
only (systematically) differ in terms of baseline age at study entry (𝑉𝑉𝑖𝑖 , 𝑖𝑖 ∈ {1; 2; … ;𝑛𝑛}). In this study we 
were interested in modelling diagnosis specific progressions disease relevant markers i.e., that the 
measurements 𝑦𝑦𝑖𝑖,𝑗𝑗 are coming from populations with differing clinical diagnosis 𝑧𝑧 ∈ {1; 2}. Such LMMs 

can be used to train diagnosis-specific distributions based on labelled measurements denoted by 𝒚𝒚𝑖𝑖
(𝑧𝑧𝑖𝑖) 

(𝑧𝑧𝑖𝑖 ∈ {1; 2} known diagnosis of subject 𝑖𝑖) that can be used to classify future subjects for which we have 
access to the measurements but the diagnosis is unknown 9. To this end we extend the model in 

equation (S18) by including the diagnosis 𝑧𝑧𝑖𝑖  as a predictor to model the labelled response values 𝑦𝑦𝑖𝑖,𝑗𝑗
(𝑧𝑧𝑖𝑖). 

The considered model is given by:  

𝑦𝑦𝑖𝑖,𝑗𝑗
(𝑧𝑧𝑖𝑖) = �𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗 �𝛽𝛽ℎ,1

(𝑧𝑧𝑖𝑖) + 𝛽𝛽ℎ,2
(𝑧𝑧𝑖𝑖)𝑉𝑉𝑖𝑖 + 𝛽𝛽ℎ,3

(𝑧𝑧𝑖𝑖)𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜁𝜁ℎ,𝑖𝑖,1 + 𝜁𝜁ℎ,𝑖𝑖,2𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜌𝜌ℎ
(𝑧𝑧𝑖𝑖)𝜖𝜖𝑖𝑖,𝑗𝑗�

r

ℎ=1

=�𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗 �αℎ,𝑖𝑖
(𝑧𝑧𝑖𝑖) + λℎ,𝑖𝑖

(𝑧𝑧𝑖𝑖)𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝜖𝜖𝑖𝑖,𝑗𝑗
(𝑧𝑧𝑖𝑖)�

r

ℎ=1

 

(S19) 

As can be seen in equation (S19) we now have diagnosis specific fixed effects 𝛽𝛽ℎ1
(𝑧𝑧),𝛽𝛽ℎ2

(𝑧𝑧) and 𝛽𝛽ℎ3
(𝑧𝑧) 

(𝑧𝑧 ∈ {1; 2}) and assume that they are different for the two populations 𝑧𝑧 ∈ {1; 2}. With 𝜷𝜷(𝑧𝑧) we denote 
the vector containing all fixed effects of population 𝑧𝑧 (for all response variables). On the other hand, 
the random effects 𝜻𝜻𝑖𝑖  are assumed to come from the same distribution, i.e.,  𝜻𝜻𝑖𝑖~𝑁𝑁2𝑟𝑟(0,𝚿𝚿). The vector 
of random effects 𝜻𝜻𝑖𝑖  looks the same as before (model in Eq. S14) but now the variances and covariances 
represent variations only within the same population since the fixed effects account for differences 
that can be explained by the diagnosis of subjects. Fixed and random effects together give us the 

random subject specific intercept αℎ,𝑖𝑖
(𝑧𝑧𝑖𝑖) = 𝛽𝛽ℎ,1

(𝑧𝑧𝑖𝑖) + 𝛽𝛽ℎ,2
(𝑧𝑧𝑖𝑖)𝑉𝑉𝑖𝑖 + 𝜁𝜁ℎ,𝑖𝑖,1 and slopes λℎ,𝑖𝑖

(𝑧𝑧𝑖𝑖) = 𝛽𝛽ℎ,3
(𝑧𝑧𝑖𝑖) + 𝜁𝜁ℎ,𝑖𝑖,2 for all 

variables ℎ ∈ {1; 2; … ; 𝑉𝑉}. Now both the diagnosis and baseline age are used to explain between-subject 
differences in their intercepts. On the other hand, solely the diagnosis is incorporated to explain 
differences in slopes between subjects. Consequently, the random effects describe differences between 
average intercepts and slopes for the population the subject belongs to. The random subject-specific 

intercepts αℎ,𝑖𝑖
(𝑧𝑧𝑖𝑖) respectively slopes in time λℎ,𝑖𝑖

(𝑧𝑧𝑖𝑖) are shrinked to the intercept 𝛽𝛽ℎ,1
(𝑧𝑧𝑖𝑖) + 𝛽𝛽ℎ,2

(𝑧𝑧𝑖𝑖)𝑉𝑉𝑖𝑖  respectively 

slope 𝛽𝛽ℎ,3
(𝑧𝑧𝑖𝑖) + 𝜁𝜁ℎ,𝑖𝑖,2 of the population 𝑧𝑧𝑖𝑖 ∈ {1; 2} the subject 𝑖𝑖 belongs to. As before in equation (S18), 𝜖𝜖𝑖𝑖,𝑗𝑗  

are the scaled residuals with standard normal distribution but for the model in Eq. S15 the response 
variable specific intra-subject variances are allowed to differ for the two populations (i.e., differing 
uncertainty depending on the diagnosis). We implemented two different models assuming that 
populations with different clinical diagnoses 𝑧𝑧 either (a) only differ in the means (homogenous model) 
or (b) differ in the means as well as variances (heterogeneous model). For homogenous model, the 
intra-subject variance components are constrained to be equal between the populations i.e. 𝜌𝜌ℎ =

𝜌𝜌ℎ
(1) = 𝜌𝜌ℎ

(2) such that unscaled residual are distributed as 𝜀𝜀𝑖𝑖,𝑗𝑗~𝑁𝑁(0,∑ 𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗𝜌𝜌ℎ𝑟𝑟
ℎ=1 ) (the same model as 

the one in equation (8) in the main text). For the heterogeneous model it is assumed that 𝜌𝜌ℎ
(1) ≠ 𝜌𝜌ℎ

(2) 
such that the distribution of the unscaled residuals 𝜀𝜀𝑖𝑖,𝑗𝑗  (respectively their variance) depend on the 

diagnosis 𝑧𝑧𝑖𝑖  of the subject and is given by 𝜀𝜀𝑖𝑖,𝑗𝑗~𝑁𝑁(0,∑ 𝑣𝑣ℎ,𝑖𝑖,𝑗𝑗𝜌𝜌ℎ
(𝑧𝑧𝑖𝑖)𝑟𝑟

ℎ=1 ).  All results in the main text of the 
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article are based on homogenous models, whereas the Supplementary Material also cover results of 
models considering heterogeneous populations (see below).  

Supplementary Methods 4: A multi-variate quadratic, longitudinal discriminant 
models for non-sequential and sequential classification 
Generalization to quadratic discriminant model 

In the main text of this article, we only considered linear discriminant models (equation (6) given by 
the LMM in equation (7) from the main text of the article) but in this study, we also embedded mixed- 
effects modelling within a quadratic discriminant analysis approach (with the more general LMM as in 
Equation (S19)). In the heterogeneous case we assumed for a subject 𝑖𝑖 with unknown label 𝑧𝑧𝑖𝑖  that 

𝑧𝑧𝑖𝑖~𝐵𝐵𝐵𝐵𝑉𝑉𝑛𝑛𝑙𝑙𝐵𝐵𝑙𝑙𝑙𝑙𝑖𝑖�𝜋𝜋�𝑖𝑖,0� 

𝒚𝒚𝑖𝑖|𝑧𝑧~𝑁𝑁𝑚𝑚𝑖𝑖(𝝁𝝁�𝑖𝑖
(𝑧𝑧),𝚺𝚺�𝑖𝑖

(𝑧𝑧)) 
 

(S20) 

Whereas contrast to the linear discriminant approach described in the main article, we have now 

different covariance matrices 𝚺𝚺�𝑖𝑖
(1) ≠ 𝚺𝚺�𝑖𝑖

(2) (𝑖𝑖 ∈ {1; 2; … ;𝑛𝑛}). The estimated densities of the distributions 

𝑁𝑁𝑚𝑚𝑖𝑖�𝝁𝝁�𝑖𝑖
(𝑧𝑧),𝚺𝚺�𝑖𝑖

(𝑧𝑧)� are denoted by 𝜙𝜙�𝑖𝑖
(𝑧𝑧)

 (𝑧𝑧 ∈ {1; 2}). Besides discriminant models with constant prevalence 
for all participants i.e., assuming  𝜋𝜋𝑖𝑖,0 = 𝜋𝜋0(∀𝑖𝑖 ∈ {1, … ,𝑛𝑛}) we also considered the case of subject-
specific prevalence computed as a function of subject characteristics (that are constant for all 
observations of a subject). In case a constant prevalence 𝜋𝜋0  is assumed for all subjects, 𝜋𝜋0 was 
estimated with the relative frequency of participants with diagnosis 2 in the training data. To model 
subject-specific prevalences, we implemented a logistic regression (as in a previous study8 that 
implemented mixed-effects model based discriminant models) assuming that the true prevalence 𝜋𝜋𝑖𝑖,0 
is  

𝜋𝜋𝑖𝑖,0 = 𝑃𝑃(𝑧𝑧𝑖𝑖 = 2) =
1

1 + 𝐵𝐵−(𝛾𝛾0+𝛾𝛾1𝑎𝑎𝑖𝑖)
 (S21) 

 

Our implementation for discriminant models in Equation (S20) had the model parameters 𝜽𝜽 =
�𝜋𝜋0;𝜷𝜷(1);𝜷𝜷(2);𝚿𝚿;𝝆𝝆(1),𝝆𝝆(2)� (1 + 9𝑉𝑉 + 𝑉𝑉2 parameters for the heterogeneous and 1 + 8𝑉𝑉 + 𝑉𝑉2 for the 

homogenous model with 𝝆𝝆(1) = 𝝆𝝆(2)) respectively �𝛾𝛾0; 𝛾𝛾1;𝜷𝜷(1);𝜷𝜷(2);𝚿𝚿;𝝆𝝆(1),𝝆𝝆(2)� (2 + 9𝑉𝑉 + 𝑉𝑉2 
parameters for the heterogeneous and 2 + 8𝑉𝑉 + 𝑉𝑉2 for the homogenous model). . The parameters 𝛾𝛾0 
and 𝛾𝛾1 (see equation (S21)) are estimated by fitting (standard) logistic regression given in equation 
(S21) (one observation per subject, assuming independence between observations) and 𝜷𝜷(1), 𝜷𝜷(2), 𝚿𝚿, 
𝝆𝝆(1) and 𝝆𝝆(2) by fitting the  LMM given in equation (S19). 

 

All parameters in 𝜽𝜽  were estimated with training data with labelled observations using a 20-fold cross 
validation framework. We randomly split the sample into 20 subsamples (folds) and used for the 
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classification of a subject coming from a fold 𝑓𝑓 the parameters estimated with the combination of all 
remaining folds. Using the training data consisting of 19 folds, we estimated all parameters 
(prevalence and LMM parameters) denoted by 𝜽𝜽�−𝑓𝑓 . Given the parameter estimates 𝜽𝜽�−𝑓𝑓 for a subject 𝑖𝑖 

from fold 𝑓𝑓 we computed the estimators 𝝁𝝁�𝑖𝑖
(𝑧𝑧) and 𝚺𝚺�𝑖𝑖

(𝑧𝑧) from all 𝑚𝑚𝑖𝑖  observations of a subject 𝑖𝑖 (𝑖𝑖 ∈
{1; 2; … ;𝑛𝑛}). With the estimated mean vectors and covariance matrices we computed all previously 
derived quantities (posterior probabilities, expected miss-classification rates, expected costs and 

classifiers) by plugging in the estimates 𝜋𝜋�𝑖𝑖,0, 𝝁𝝁�𝑖𝑖
(𝑧𝑧) and 𝚺𝚺�𝑖𝑖

(𝑧𝑧) (or a subset of components thereof) of subject 
𝑖𝑖 for the true population values in the formula.  

Within our library POSEIDON (https://git.upd.unibe.ch/openscience/POSEIDON.git) the (linear and 
quadratic) discriminant model based on mixed-effects model estimation can be fitted with the function 
daLmeMulti. Based on a trained model and a data set of one subject containing all needed predictor 
values (i.e., in our study: dummy variables for marker identification, age at baseline of the subject and 

the time since baseline for every visit, see Equations (S19) and (S21)) the mean vectors 𝝁𝝁�𝑖𝑖
(𝑧𝑧) and 

covariance matrices 𝚺𝚺�𝑖𝑖
(𝑧𝑧) of the marker values can be predicted with the function predDistParamLme. 

More information about the software can be found in the main article or especially in the vignette 
“trainingInferenceClassificationLmm” that is included in the POSEIDON library.  

A sequential classification framework  

In this study we derived sequential classifiers that predicts for a subject 𝑖𝑖 at the step 𝑘𝑘 (1 ≤ 𝑘𝑘 < 𝑚𝑚𝑖𝑖) 
one of the possible diagnoses or stay in the neutral zone (forced-choice classification in case 𝑘𝑘 = 𝑚𝑚𝑖𝑖). 
Let 𝑀𝑀𝑖𝑖,𝑘𝑘 ⊂ {1; 2; … ;𝑚𝑚𝑖𝑖} be the set of all 𝑘𝑘 indices of the measurements that are already assessed, 𝒚𝒚𝑖𝑖,𝑘𝑘 =
�𝑦𝑦𝑖𝑖,𝑗𝑗�𝑗𝑗∈𝑀𝑀𝑖𝑖,𝑘𝑘

 the vector containing all passed observations and 𝜋𝜋�𝑖𝑖,𝑘𝑘 the estimated current evidence for 

subject 𝑖𝑖 at step 𝑘𝑘 (plugging in values 𝒚𝒚𝑖𝑖,𝑘𝑘  and estimated prevalence 𝜋𝜋�𝑖𝑖,0in equation (2) in main text of 
this article). We define 𝑀𝑀�𝑖𝑖,𝑘𝑘  as the set of indices of left-over observations i.e., of observations with 
indices not contained in 𝑀𝑀𝑖𝑖,𝑘𝑘 and assessed not before 𝑡𝑡𝑖𝑖,𝑘𝑘max with 𝑡𝑡𝑖𝑖,𝑘𝑘max = max

𝑗𝑗∈𝑀𝑀𝑖𝑖,𝑘𝑘
�𝑡𝑡𝑖𝑖,𝑗𝑗�. Using the estimated 

distributions of 𝑦𝑦𝑖𝑖,𝑙𝑙  (with 𝑙𝑙 ∈ 𝑀𝑀�𝑖𝑖,𝑘𝑘) conditional on 𝑧𝑧 and 𝒚𝒚𝑖𝑖,𝑘𝑘 (can be computed by plugging in the 
estimated mean and covariances in equation (S1)) we estimated the expected costs 𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘 by first 
estimating the expected false positive and false negative rates and then plug them in equation (S14). 
Of note, for the first application we only consider two measurements, for 𝑘𝑘 = 1 we apply a prospective 
neutral zone classifier as in equation (5) from the main text and for 𝑘𝑘 = 2 (second stage) we already 
choose one of the possible classes. Hence, for this application we have for 𝑘𝑘 = 1 one passed 
measurement 𝑦𝑦𝑖𝑖,𝑗𝑗1 ∈ ℝ as well as one leftover measurement 𝑦𝑦𝑖𝑖,𝑗𝑗2 ∈ ℝ. In the following we first describe 
the computation of estimators of the expected false positive and false negative rates for both the 
homogeneous and heterogeneous case (needed for the first and second application of this study) and 
then describe our novel algorithm to sequentially select longitudinal sequence of multiple markers 
(second application of this study).  

To get the estimated misclassification rates for a classification with a left-over measurement 𝑦𝑦𝑖𝑖,𝑙𝑙  (𝑙𝑙 ∈ 
𝑀𝑀�𝑖𝑖,𝑘𝑘) given the values of the already assess measurements  𝒚𝒚𝑖𝑖,𝑘𝑘 we computed in the homogeneous case 
(linear discriminant model) the estimated prospective discriminability Δ�𝑖𝑖,𝑙𝑙.𝑘𝑘 =

https://git.upd.unibe.ch/openscience/POSEIDON.git
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��𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘
(1) − 𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘

(2) �
𝑇𝑇
𝚺𝚺𝑖𝑖,𝑙𝑙.𝑘𝑘−1�𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘

(1) − 𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘
(2) � and plugged it in together with the estimated current evidence 

𝜋𝜋�𝑖𝑖,𝑘𝑘 in Equation (S14) to get estimates for the expected misclassification rates (with which we can 
compute the expected costs as in equation (S10)). The estimation of the expected misclassification 
rates of a measurement 𝑦𝑦𝑖𝑖,𝑙𝑙  (𝑙𝑙 ∈ 𝑀𝑀�𝑖𝑖,𝑘𝑘) given the already assessed measurements 𝒚𝒚𝑖𝑖,𝑘𝑘  in the 
heterogenous case (quadratic discriminant model) involved Monte Carlo simulations. To approximate 

the misclassification rates we considered the current evidence 𝜋𝜋�𝑖𝑖,𝑘𝑘 and the distributions 𝑁𝑁1��̂�𝜇𝑖𝑖,𝑙𝑙.𝑘𝑘
(𝑧𝑧) , Σ�𝑖𝑖,𝑙𝑙.𝑘𝑘

(𝑧𝑧) � 

(�̂�𝜇𝑖𝑖,𝑙𝑙.𝑘𝑘
(𝑧𝑧)  estimator for 𝐸𝐸�𝑦𝑦𝑖𝑖 ,𝑙𝑙�𝒚𝒚𝑖𝑖,𝑘𝑘 , 𝑧𝑧� and  Σ�𝑖𝑖,𝑙𝑙.𝑘𝑘

(𝑧𝑧)  for 𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦𝑖𝑖,𝑙𝑙�𝒚𝒚𝑖𝑖,𝑘𝑘, 𝑧𝑧�) with corresponding density function 

estimate 𝜙𝜙�𝑖𝑖,𝑙𝑙.𝑘𝑘
(𝑧𝑧)

. We denote with 𝑦𝑦𝑠𝑠,𝑙𝑙.𝑘𝑘
(𝑧𝑧)  the value of a simulation 𝑠𝑠 from the distribution 𝑁𝑁1��̂�𝜇𝑖𝑖,𝑙𝑙.𝑘𝑘

(𝑧𝑧) , Σ�𝑖𝑖,𝑙𝑙.𝑘𝑘
(𝑧𝑧) � 

(𝑧𝑧 ∈ {1; 2}). As test-statistic for classification we computed for every simulation   𝜋𝜋�𝑠𝑠,𝑙𝑙.𝑘𝑘
(𝑧𝑧)  by plugging in 

𝜙𝜙�𝑖𝑖,𝑙𝑙.𝑘𝑘
(1)
�𝑦𝑦𝑠𝑠,𝑙𝑙.𝑘𝑘

(𝑧𝑧) � respectively 𝜙𝜙�𝑖𝑖,𝑙𝑙.𝑘𝑘
(2)
�𝑦𝑦𝑠𝑠,𝑙𝑙.𝑘𝑘

(𝑧𝑧) � and the estimated current evidence 𝜋𝜋�𝑖𝑖,𝑘𝑘 (instead of the 
prevalence 𝜋𝜋0) in equation (2) from the main part of this article. Specifically, to compute the estimated 
misclassification rates we implemented the following procedure: (a) For 𝑧𝑧 ∈ {1; 2} we simulated 1000 

values 𝑦𝑦𝑠𝑠,𝑙𝑙.𝑘𝑘
(𝑧𝑧)  (𝑠𝑠 ∈ {1; 2; … ; 1000}) from 𝑁𝑁1��̂�𝜇𝑖𝑖,𝑙𝑙.𝑘𝑘

(𝑧𝑧) , Σ�𝑖𝑖,𝑙𝑙.𝑘𝑘
(𝑧𝑧) � and (b) computed for every simulation the test-

statistic 𝜋𝜋�𝑠𝑠,𝑙𝑙.𝑘𝑘
(𝑧𝑧) , (c) with the overall 2000 simulations we estimated the expected false positive 

respectively negative rate as 

𝐹𝐹𝑃𝑃�𝜋𝜋𝑘𝑘 ,𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘
(1) ,𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘

(2) ,𝜮𝜮�𝑖𝑖,𝑙𝑙.𝑘𝑘
(1) ,𝜮𝜮�𝑖𝑖,𝑙𝑙.𝑘𝑘

(2) � =
# �𝑠𝑠: 𝜋𝜋�𝑠𝑠,𝑙𝑙.𝑘𝑘

(1) ≥ 𝑐𝑐2
(1)

𝑐𝑐2
(1) + 𝑐𝑐1

(2)�

1000
 

𝐹𝐹𝑁𝑁�𝜋𝜋𝑘𝑘 ,𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘
(1) ,𝝁𝝁�𝑖𝑖,𝑙𝑙.𝑘𝑘

(2) ,𝜮𝜮�𝑖𝑖,𝑙𝑙.𝑘𝑘
(1) ,𝜮𝜮�𝑖𝑖,𝑙𝑙.𝑘𝑘

(2) � =
# �𝑠𝑠: 𝜋𝜋�𝑠𝑠,𝑙𝑙.𝑘𝑘

(2) < 𝑐𝑐2
(1)

𝑐𝑐2
(1) + 𝑐𝑐1

(2)�

1000
 

(S22) 

 
 

For sequential classification with longitudinal sequences we computed for every left-over observation 
𝑙𝑙 ∈ 𝑀𝑀�𝑖𝑖,𝑘𝑘 of subject 𝑖𝑖 at the step 𝑘𝑘 the measurements costs 𝑐𝑐𝑖𝑖,𝑙𝑙ℳ = 𝑐𝑐𝑡𝑡�𝑡𝑡𝑖𝑖,𝑙𝑙 − 𝑡𝑡𝑖𝑖,𝑘𝑘max� + ∑ 𝑐𝑐ℎ𝑣𝑣ℎ,𝑖𝑖,𝑙𝑙ℎ∈𝐻𝐻  and the 
estimators for the misclassification rates (as described above). By plugging in the estimated current 
evidence 𝜋𝜋�𝑖𝑖,𝑘𝑘, false positive and false negative rates and measurement costs 𝑐𝑐𝑖𝑖,𝑙𝑙ℳ  in equation (S10) we 
got the estimated expected costs by the inclusion of observation 𝑙𝑙 given the already assessed 
observations in 𝑀𝑀𝑖𝑖𝑘𝑘  denoted by 𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘(𝑙𝑙 ∈ 𝑀𝑀�𝑖𝑖,𝑘𝑘). Given the expected costs 𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘 (𝑙𝑙 ∈ 𝑀𝑀�𝑖𝑖,𝑘𝑘) of all leftover 
observations 𝑙𝑙 ∈ 𝑀𝑀�𝑖𝑖,𝑘𝑘  we formulated decision and selection rules to derive the sequential algorithm. 
We constructed the sequential classifier �̂�𝛿𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑘𝑘  that assigns at a step 𝑘𝑘 the outcome labels as follows 

(assuming �1 − 𝜋𝜋�𝑖𝑖,𝑘𝑘�𝑐𝑐2
(1) ≠ min

𝑙𝑙∈𝑀𝑀�𝑖𝑖,𝑘𝑘
�𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘�):  
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�̂�𝛿𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧ 1,   𝜋𝜋�𝑖𝑖,𝑘𝑘𝑐𝑐1

(2) ≤ min �min
𝑙𝑙∈𝑀𝑀�𝑖𝑖,𝑘𝑘

�𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘� , �1 − 𝜋𝜋�𝑖𝑖,𝑘𝑘�𝑐𝑐2
(1)�

𝑁𝑁𝑁𝑁, 𝑚𝑚𝑖𝑖𝑛𝑛𝑙𝑙∈𝑀𝑀�𝑖𝑖,𝑘𝑘�𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘� < min�𝜋𝜋�𝑖𝑖,𝑘𝑘𝑐𝑐1
(2), �1 − 𝜋𝜋�𝑖𝑖,𝑘𝑘�𝑐𝑐2

(1)�

2,   �1 − 𝜋𝜋�𝑖𝑖,𝑘𝑘�𝑐𝑐2
(1) < min �min

𝑙𝑙∈𝑀𝑀�𝑖𝑖,𝑘𝑘
�𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘� ,𝜋𝜋�𝑖𝑖,𝑘𝑘𝑐𝑐1

(2)�

 
(S23) 

 

Note, for the sequential classifier we can think of applying the prospective neutral zone classifier in 
equation (5) from the main text of the article for every left-over observation separately and assigning 
the label 𝑁𝑁𝑁𝑁 if at least for one observation the prospective neutral zone classifier reveals the label 𝑁𝑁𝑁𝑁 
as outcome. The sequential classification algorithms stops if �̂�𝛿𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑘𝑘 ∈ {1; 2}, whereas in case �̂�𝛿𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑘𝑘 =
𝑁𝑁𝑁𝑁 a selection rule is applied to choose which (single) observation 𝑙𝑙∗ is included next for the prediction. 
Let 𝐸𝐸𝐶𝐶�𝑖𝑖,𝑘𝑘  be the expected cost for a classification with the current evidence 𝜋𝜋�𝑖𝑖,𝑘𝑘 such that 𝐸𝐸𝐶𝐶�𝑖𝑖,𝑘𝑘 − 𝐸𝐸𝐶𝐶�𝑖𝑖,𝑙𝑙.𝑘𝑘 
is the expected cost reduction by including observation 𝑙𝑙. We used two different selection rules i.e., the 
greedy rule where the earliest observation with expected cost reduction or the exhaustive rule where 
the observations with highest expected cost reduction is chosen as the next observation 𝑙𝑙∗. In case of 
multiple observations with expected cost reductions at the earliest possible time, the greedy rule chose 
the observations with highest expected cost reduction. Within the exhaustive rule, the earlier 
observation is chosen if there are multiple observations with expected cost reduction that are equal to 
the highest possible reduction. Afterwards the sequential algorithm continues by setting 𝑀𝑀𝑖𝑖,𝑘𝑘+1 =
𝑀𝑀𝑖𝑖,𝑘𝑘 ∪ {𝑙𝑙∗} until it stops at a step 𝐾𝐾𝑖𝑖 ≤ 𝑚𝑚𝑖𝑖  when no observation with expected cost reduction or no left-
over observation are available such that �̂�𝛿𝑆𝑆𝑁𝑁𝑁𝑁,𝑖𝑖,𝐾𝐾𝑖𝑖 ∈ {1; 2}. 

In our library POSEIDON (https://git.upd.unibe.ch/openscience/POSEIDON.git) algorithms for 
prospective sequential diagnosis with neutral zones are implemented. The library allows to apply two-
stage classifiers (function “twoStageClass”) as well as sequential classifiers to include longitudinal 
sequences for prediction (function “seqLongClass”) for given distributions estimates (given by the 
function predDistParamLme of POSEIDON). More information about the statistical implementation of 
sequential classifiers can be found in the main article of this study or especially in the vignette 
“trainingInferenceClassificationLmm”  (included in the library POSEIDON.).  

Supplementary Methods 5: Time-to-event analyses to analyse conversion times 
In this study we also performed time to event analyses using the time until clinical manifestation of AD 
(conversion time) considering MCI-stables as right censored data. We compared positive and negative 
predicted cases that were labelled either as easy or initially uncertain with a prospective sequential 
(two-stage) classifier based on a cross-sectional MRI measurement (see main manuscript of this study 
for more information). We estimated both survival curves (assessing the fraction of not converted 
participant as a function of time) and hazard ratios for the conversion times. All time-to-event analyses 
were performed with the R library survival 13 using the functions survfit, survdiff and coxph.  

The survival curves were estimated using the Kaplan-Meier technique and Independent groups were 
compared with log-rank (Mantel-Haenzel) significance tests considering a significance level of 0.05. 
Moreover, hazard ratios were estimated with Cox proportional hazards regression models). Models 

https://git.upd.unibe.ch/openscience/POSEIDON.git
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with the factors subsample (easy or uncertain cases with MRI) and classification (positive or negative 
predicted cases) were fitted considering effects for both factors and their interaction. We implemented 
two models with this structure and for both models the classification of a positive or negative label 
were based on MRI only for all easy case but for one model the classifications of uncertain cases were 
performed with MRI only and for the other model with both MRI and  𝐴𝐴𝛽𝛽1−42 measurements. We used 
the Wald’s method to implement significance tests with a significance level of 0.05 and 95% confidence 
intervals for hazard ratios. The 95% Wald confidence intervals were computed as described in 14. From 
model output of the function coxph we directly had access to logarithmic hazard ratios (�̂�𝜂′𝑠𝑠), their 
standard error (𝑠𝑠𝐵𝐵�(�̂�𝜂)′𝑠𝑠) and p-values of the Wald test statistic. We computed the 95% confidence 
intervals for the hazard ratios as:  

�𝐵𝐵γ�−1.96∙𝑠𝑠𝑠𝑠�(γ�), 𝐵𝐵γ�+1.96∙𝑠𝑠𝑠𝑠�(γ�)� (S24) 

 

Supplementary Material 1: Sample selection 
In this study we considered subjects with label mild cognitive impairment (MCI), i.e., patients at risk 
to develop Alzheimer’s disease (AD), and we were interested in separating the ones that stay stable 
with the MCI label from the one that convert to manifest AD. In the supplementary Fig. S2 you can find 
more information about the process of the data set selection. All measurements before the first MCI 
label were excluded from the analyses. To have a sample of MCI subjects that can be considered as 
stable we only included subjects that after the first time labelled as MCI stay with this label until the 
end of the observations period. From these subjects we also excluded the ones that were observed for 
less than 2.75 years follow-up. On the other hand, we built a sample with subjects that were diagnosed 
as MCI at a visit and then with the label AD at a later visit, whereas after the first MCI label they have 
to consistently be labelled as MCI until the first AD diagnosis and then stay with the AD diagnosis until 
the end of the observation period. Moreover, we only included the subjects that convert to AD within 
3.25 years in our sample of MCI converters.  

For the training of the models, we only considered subjects with at least eight measurements of either 
the MMSE, RAVLT, SPARE-AD score or A𝛽𝛽1−42 (number of observations from all markers together was 
relevant). Overall, a sample of 612 subjects was used for model training.. Moreover, the decision 
processes of either the first or second application were compared using the same sample (see main 
text for the description of the used decision processes). Overall 410 subjects were included for the 
evaluation of the first application according to the criteria: at least one MRI and A𝛽𝛽1−43 within three 
months from the first observations, while at least one A𝛽𝛽1−43 was not observed before the first MRI 
measure. For the second application most constraints for inclusion are given by the so called 
multivariate cross-sectional strategy, since subjects need to have at least one observation of all four 
markers, whereas all markers have to be assessed within three months after one of these markers was 
observed for the first time for a subject. Consequently, we used a sample of 403 subjects for the 
evaluation of the second application.  There was one subject that was included in the evaluation but 
not training set. For this subject we randomly chose one out of the 20 models.  
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Fig. S2: Flow-chart covering the selection of the samples used either for training of model parameters or the 

evaluation of out-of-sample predictions of different decision processes. We used sequential and fixed (non-sequential) 

decision strategies to choose the which observations are used for prediction covering two different applications (see 

main article for more information). We compared the decision processes of either the first or the second application 

always using the same sample for evaluation. We only considered subjects for evaluation that were also included in 

training, whereas the training of the models also covered the data of subject that were not included for evaluation (203 

in the first and 210 subject from training in the second application were excluded for evaluation).  

Supplementary Results 1: Additional results for two stage classifier 
In this section all results covering the first application (two-stage classification) that were not shown 
in the main text are included, i.e., examination of falsely classified MCI-stables and time-to event 
analyses (with the model structure used for all results in the main text),   
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Examine the raw data of falsely classified MCI-stables  

 

Fig. S3: Baseline A/T/N and longitudinal cognitive profiles of false positive cases. The cases got first falsely classified 

as MCI-converter based on cross-sectional MRI and Amyloid measurement and then also with the cross-sectional MRI 

and Amyloid and all longitudinal cognitive (MMSE and RAVLT) measurements (see main text of this article for more 

information). The cases are order according to the predicted probability (out-of-sample via 20-fold cross-validation) of 

belonging to the population of MCI-converters based on the trained discriminant model used in the main text of the 

article. Straight lines are the expected average progressions of MCI-stables by the discriminant model (one-fold chosen 

for the computation), while dashed line are the expected average progression of MCI-converters.  

Time to event analyses with conversion time  

Furthermore, we analysed the time from study entry to onset of manifest AD (right censored) using 
survival curves (Kaplan-Meier estimates) and hazard ratios (estimated with Cox regressions, see 
Supplementary Methods 5). As shown in Fig. 5B-C in the main text of this article, predictions based on 
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MRI only led to more distinct survival curves respectively higher differences in the hazard rates when 
fitted on easy cases than when fitted on uncertain cases given by: (a) a steeper survival curve 
respectively higher hazard rate for easy cases predicted as MCI-converters (non-significant difference 
p=0.066 respectively p=0.066) but (b) a flatter curve respectively lower hazard rate for easy cases 
predicted as MCI-stables (significance difference: p<0.001 respectively p<0.001). When additionally, 
also the A𝛽𝛽1-42- CSF measure is included for uncertain cases the survival curves respectively hazard 
rates of the ones predicted as MCI-converter and the ones predicted as MCI-stables become more like 
the ones predicted for easy cases based on MRI only (still significant differences for the ones predicted 
as MCI-stables:  p<.001 respectively p<.001; non-significant differences for the ones predicted as MCI-
converters: p=.499 respectively p=.504).  For both easy and uncertain cases the survival curves were 
steeper when they were classified as MCI-converters (see Fig. 5B). There was no significant difference 
between the ssurvival curves fitted on uncertain cases classified as MCI-converters with MRI and the 
ones fitted on uncertain cases classified as MCI-stables with MRI (p=.136), whereas the difference 
between the survival curves was highly significant for classifications of easy cases with MRI or 
classifications of uncertain cases with MRI and A𝛽𝛽1-42 –CSF.  As visualized in Fig. 5D (with 95% 
confidence intervals), the ratios of hazard rates of cases predicted as MCI-converters divided by the 
one of cases predicted as MCI-stable were not significantly different form one for classifications of 
uncertain cases with MRI (p=.0.148) but significantly above one for classifications of easy cases with 
MRI or uncertain cases with MRI and A𝛽𝛽1-42- CSF (p<.001 for both). The hazard ratio in the group of 
easy cases classified with MRI only was 8.5 times higher than the hazard ratio in the group of uncertain 
cases classified with MRI only (p<.001) and 3.5 times higher than the hazard ratio in the group of 
uncertain cases classified with MRI and A𝛽𝛽1-42- CSF (p<.001) (see Fig. 5D).  

 

Supplementary Results 2: Sequential selection of longitudinal sequences 
In this section we present on results for non-sequential and sequential classification strategies for a 
wide range of cost parameters either based on the same model structure considered in the main text 
or other model structures. All results are included in the Excel file “tabS1.xlsx”, here in the 
Supplementary text only the caption is included.  
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Tab. S1: Multi-objective evaluation of non-sequential and sequential decision strategies for varying 
cost parameters (see main text for more information). The left part of the table specifies the marker 
specific costs of acquisition and cost per year of waiting. The first cost parameters are the default costs 
and for the following parameters deviations from the default costs are highlighted in grey. All objective 
metrics are based on out-of-sample predictions via 20-fold cross validation. We considered the 
following metrics (in braces are the column names in the table).  

Summary metric: mean total costs (tot costs) 

Performance metrics: Log-loss score (log-loss), accuracy (Acc), Specificity (Spec), Sensitivity (Sens) 

Resource metrics (marker independent): mean measurement costs (meas cost), mean number of 
observations (nr. obs), fraction of participants with at least two observations (fraction mind. 2 obs), 
mean follow-up time (time) 

Marker-specific metrics (𝑥𝑥 Name of marker, 𝑥𝑥 ∈  {MMSE, RAVLT, SPARE − AD, Amyloid}): mean 
number of measurements of marker x (nr x), fraction of participants with at least one measurement of 
marker x (fraction min. 1 x), mean time of first measurement of marker x (min time x), mean time of 
the last measurement of marker x (max time x). 

The table consists of different sheet. Every sheet contains the results based on another model 
structure. 

(a): (sheet name "a_LDA_predPerv") linear discriminant model with marker model as in Equation (7) 
in the main text and prevalence model as in the Supplementary Equation (S21) 

(b): (sheet name "b_LDA_relFreq") linear discriminant model with marker model as in Equation (7) in 
the main text and the relative frequency as estimate for the prevalence (constant for all subjects) 

(c): (sheet name "c_QDA_predPerv") quadratic discriminant model based on marker model as in the 
Supplementary Equation (S19) and prevalence model as in the Supplementary Equation (S21) 
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