Title: Hypotension During Vasopressor Infusion Occurs in Predictable Clusters: A Multicenter Analysis

Authors: Daisuke Horiguchi¹,², Sungtae Shin³*, Jeremy A. Pepino¹, Jeffrey T. Peterson†, Iain E. Kehoe¹, Joshua N. Goldstein¹, Mary E. McAuley⁴, Jarone Lee¹,⁵, Laura R. Lux⁶, Brian K. Kwon⁶, Jin-Oh Hahn³, Andrew T. Reisner¹*

Affiliations: ¹Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA; ²Nihon Kohden Innovation Center, Inc; Cambridge, MA, USA; ³Department of Mechanical Engineering, University of Maryland, College Park, MD, USA; ⁴Massachusetts General Hospital, Boston, MA, USA; ⁵Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA; ⁶Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, CA;

*Present affiliation: Department of Mechanical Engineering, Dong-A University; Busan, South Korea.

†Present affiliation: Buoy Health, Inc; 580 Harrison Ave., Boston, MA, 02118, USA.

Corresponding author: Andrew T. Reisner; 0 Emerson Pl, Suite 3B, Boston, MA 02114, USA; areisner@mgh.harvard.edu.

JOH and ATR conceptualized the study. DH, SS, JTP, JNG, JL, JOH, and ATR devised the methodology. The investigation was completed by JAP, JTP, IEK, MEM, JL, LRL, BKK, ATR.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
DH, JAP, IEK, and ATR visualized the data. Funding was acquired by JNG, JL, BKK, JOH, and ATR. ATR supervised the investigation. DH, JAP, IEK, and ATR wrote the original draft. SS, JTP, JNG, MEM, JL, LRL, BKK, and JOH reviewed and edited the manuscript. All authors have read and approved the manuscript.

Supported by the Massachusetts Department of Public Health Spinal Cord Injury Cure Research Program, Mass General Brigham Innovations, and the Nihon Kohden Innovation Center. There were no sponsor restrictions on study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the report for publication.

Running head: A Multi-Center Analysis of Hypotension Patterns

Topic: 4.6 ICU Management/Outcome

Word Count: 3426

Statement of Clinical Significance: This analysis found that hypotension was relatively common in the bottom quartiles in each of four ICU cohorts, occurring in temporal clusters that could usually be predicted by trend extrapolation. This implies that clinicians may be slow to identify incipient hypotension in ICU patients. In one cohort, hypotension prediction was performed in real-time, establishing a proof-of-principle for future clinical usability.
Abstract

Rationale: Published evidence indicates that mean arterial pressure (MAP) below a goal range (hypotension) is associated with worse outcomes, though MAP management failures are common.

Objectives: Characterize hypotension occurrences in ICUs and consider the implications for MAP management.

Methods: Observational study of three retrospective and one prospective cohorts of adult ICU patients during continuous vasopressor infusion. Three cohorts of general, mixed ICU patients; one cohort of acute spinal cord injury patients. Hypotension clusters were defined wherever ≥50% of MAP measurements were hypotensive with ≥10 minutes of total hypotension. Trend analysis was performed (predicting future MAP using 14 min of preceding MAP data) to understand which hypotension clusters could likely have been predicted by clinician awareness of MAP trends.

Measurements and Main Results: In cohorts of 155, 66, 16, and 10 subjects, respectively, hypotension occurred 12.9%, 5.5%, 21.5%, and 3.9% of the time. Hypotension occurred overwhelmingly within temporal clusters. MAP trend analysis predicted most substantial hypotension clusters (range: 66.6% to 80.0% sensitivity) prior to continuous hypotension occurring, usually before the occurrence of any hypotension at all. When MAP trend analysis predicted hypotension, positive predictive value ranged from 56% to 77% (probability of subsequent temporal cluster of hypotension or vasopressor up-titration).

Conclusions: Hypotension usually occurred in temporal clusters that can typically be predicted by extrapolation from trends. This implies that clinicians may be slow to identify incipient
hypotension. In Cohort 4, analysis was performed in real-time, establishing a proof-of-principle
for a computational tool with possible clinical utility.

Abstract Word Count: 245

Keywords: Hypotension; Vasoconstrictor Agents; Forecasting; Quality Assurance, Health Care;
Shock.
Background

Consensus guidelines advise maintenance of mean arterial pressure (MAP) at least above 65 mmHg (1, 2). These recommendations are based, in part, on laboratory studies that 65 mmHg is a minimal perfusion pressure for the brain (3, 4). In the ICU and operating room, excessive hypotension is associated with end-organ damage and mortality (5-9). After cardiac arrest, excessive hypotension is associated with inferior outcomes (10, 11), thought to be caused by a two-hit model of cerebral ischemia (12). After acute spinal cord injury (ASCI), MAP is kept above 85 mmHg to preserve perfusion to damaged-yet-recoverable spinal cord tissues (13), and worse functional recovery is associated with excessive hypotension (14-16). After traumatic brain injury, worse outcomes are likewise associated with hypotension (17).

Yet failures to meet critical care blood pressure (BP) targets have been described in multiple reports (6, 8, 16, 18). Both physiological and clinician factors likely explain these failures to meet BP goals. Yapps et al analyzed data from two independent hospitals’ ICUs and found that prolonged hypotension usually occurred without any documented pharmacologic administration or clinical event in the electronic medical record (EMR) to retrospectively explain the hypotension (18). Yapps et al also found that the episodes typically resolved just after the first documented vasopressor up-titration, which implied that the prolonged hypotension was not particularly challenging to manage. Rather, those findings were consistent with the widely recognized phenomenon of clinical inertia, in which health care providers are slow to initiate or intensify therapy according to current guidelines (19-21). Hawryluk’s finding that 42% of all BP measurements from a Neuro-ICU were below the MAP goal range for their study population (16) was also consistent with some clinical inertia.
The current report seeks to further characterize BP maintenance failures in the ICU and consider strategies for improved management. To this end, we characterized patterns of ICU hypotension, examining episodes that persisted long enough that they likely could have been prevented or shortened with appropriate clinical management. We further evaluated the proportion of hypotensive episodes that were \textit{predictable in advance} by classic trend forecasting, indicating how much hypotension might be avoided if clinicians had a tool that could notify them when MAP was likely to fall outside of its target level. Finally, we characterized hypotensive episodes that could not be predicted in advance by statistical analysis.

\section*{Methods}

\subsection*{Study design}

This is an observational study with retrospective and prospective cohorts, performed in accordance with STROBE guidelines for observational investigations. We analyzed four ICU datasets; all subjects were adult patients with vasopressor infusion doses documented in the nursing flowcharts (dopamine, epinephrine, norepinephrine, or phenylephrine) with concurrent MAP data sourced from indwelling arterial catheters and heart rate (HR) data from the electrocardiogram (EKG). \textbf{Cohort 1} was sourced from a publicly available clinical database for a mixture of ICUs from a single institution from 2001 to 2008 \cite{22}; we analyzed all subjects who met the aforementioned inclusion criteria. \textbf{Cohort 2} was a convenience sample prospectively collected from the surgical ICU in our institution between Dec 2014 and Mar 2016. \textbf{Cohort 3} was a secondary analysis of an ASCI patient cohort collected from a third institution from Jun 2012 through Oct 2015 \cite{23}. \textbf{Cohort 4} was a convenience sample prospectively collected from
mixed ICUs in our institution from Feb 2020 through Nov 2020. Data collection and analysis for Cohorts 2 and 4 were performed in accordance with relevant guidelines and regulations and approved by the Mass General Brigham IRB. Data for cohorts 1 and 3 were collected by outside investigators under their local IRB and de-identified before our team received the datasets.

Outcomes

In this report, “hypotension” refers to timepoints when MAP was below its goal range, i.e., < 65 mmHg (or < 85 mmHg for ASCI patients).

We defined substantial hypotension (HoTNsubstantial) as any interval when at least half of the MAP measurements were below the goal range, and with ≥10 minutes of cumulative hypotension; these are intervals in which the sum total of hypotension time was at least 10 min, which is long enough that they could be prevented -- or at least shortened -- with early identification and early intervention. Within HoTNsubstantial, we identified intervals of constant hypotension (HoTNconstant), which were ≥10 minutes of unbroken, continuous hypotension.

Examples of HoTNsubstantial and HoTNconstant are shown in Fig. 1.

Also, we evaluated hypotension that occurred sporadically, which might also be deleterious; see Discussion for more details about this conjecture. We defined sporadic hypotension (HoTNsporadic) as an interval that does not qualify as HoTNsubstantial but does contain ≥10 minutes of cumulative hypotension per 60 min. Examples of HoTNsporadic are shown in Fig. 1.

Further details about the data processing to identify these episodes are provided in the Online Data Supplement.

Data sources & pre-processing
For all cohorts, we analyzed minute-by-minute MAP data sourced directly from the subjects’ bedside vital-signs monitors, while vasopressor dose information was sourced from the nursing documentation. Additional information, such as documented indication for vasopressor infusion, was obtained by chart review of subjects’ medical records (Cohorts 1, 2, and 4) or from a pre-existing research database associated with each subject (Cohort 3). Further details about data collection, including the software used for electronically archiving the vital signs, are provided in the Online Data Supplement.

After data collection, we analyzed MAP data-points that were “physiological” (i.e., $10 \text{ mmHg} \leq \text{MAP} \leq 250 \text{ mmHg}$). We also required that any analyzed MAP data-point was followed by at least 11 min of physiological MAP in the subsequent 20 min (so as to have a basis for adjudicating whether the outcome, HoTN substantial, occurred in the subsequent 20 min).

MAP-trend statistical forecasting

For all analyzable MAP data, we performed MAP-trend statistical forecasting. This statistical model was previously trained using a distinct training dataset; the four cohorts in this current report are wholly independent of that preliminary training dataset. The MAP-trend statistical forecasting is based on the classic forecasting method of Holt (24). To estimate the median MAP for the upcoming 20 min, the algorithm computes a weighted moving average over the most recent 14 min of MAP, estimates the MAP slope, and extrapolates into the future. The algorithm also yields an estimate of uncertainty, and from this, it is possible to compute P_{HoTN}, which is the probability of hypotension in the subsequent 20 min. Further details about the MAP-trend statistical forecasting methodology are provided in the Online Data Supplement.
We defined notification events which were intervals beginning upon $P_{\text{HoTN}} > 35\%$, and subsequently terminating upon $P_{\text{HoTN}} \leq 35\%$. Also, notification events only commenced if a patient was not hypotensive. In other words, we were only studying the prediction of hypotension at times when patients were not already hypotensive. If a patient became hypotensive either before or at the exact same time as $P_{\text{HoTN}} > 35\%$, then the notification event could not officially begin until a subsequent non-hypotensive MAP occurred.

Each notification event was categorized as one of the following (see examples in Fig. 2):

- **“Contiguous events”** were notification events that overlapped with $\text{HoTN}_{\text{substantial}}$ or $\text{HoTN}_{\text{sporadic}}$.
- **“Sentinel events”** were notification events that were not contiguous, but had an onset < 60 min prior to $\text{HoTN}_{\text{substantial}}$, $\text{HoTN}_{\text{sporadic}}$, or to a vasopressor up-titration (“sentinel window”). We used 60 min as the time window for “sentinel notification events” because, in a prior analysis of Cohort 1 and Cohort 2 there was a statistically significant relationship between MAP data and hypotension occurring one hour later (18).
- **“False notifications”** were any other notification events.

Diagnostic test characteristics and other statistics

Intervals of $\text{HoTN}_{\text{substantial}}$ were considered successfully predicted if they had a contiguous notification event that started either prior to $\text{HoTN}_{\text{constant}}$ or prior to $\text{HoTN}_{\text{substantial}}$; both of these “successful prediction” criteria were evaluated. See examples in Fig. 2. We also examined episodes of $\text{HoTN}_{\text{substantial}}$ that were not predicted and, in a post hoc analysis, we identified three
prediction failure scenarios. The Online Data Supplement provides the quantitative criteria for each of the prediction failure scenarios, and visual examples of each.

The positive predictive value of the notification events was the number that were not false (i.e., were either contiguous events or sentinel events) divided by the total number of notification events. The specificity was the proportion of all datapoints outside of HoTN_{substantial}, HoTN_{sporadic}, and sentinel windows for which P_{HoTN} ≤ 35%.

Further details about the prediction failure analysis are provided in the Online Data Supplement.

Results

Characteristics of the study population

Characteristics of the cohorts’ populations are shown in Table 1. These four cohorts spanned a range of ages, genders, and indications for vasopressors. Cohorts 1, 2 and 4 had similar median MAP (73 mmHg, 73 mmHg, and 71 mmHg, respectively) and hourly standard deviations of MAP (median 5.1 mmHg, 5.2 mmHg, and 3.8 mmHg). Cohort 3, consisting of ASCI patients with higher MAP goals, of course had higher MAP values, while the hourly standard deviation of MAP (median 5.0 mmHg) was quite similar to the other cohorts.

Characteristics of blood pressure management

As shown in Table 2, successful maintenance of MAP varied across quartiles within each cohort. The top quartile in each cohort recorded strong adherence with MAP goals during vasopressor infusion. Yet the bottom quartile of each cohort recorded hypotension for >31.3%; >13.2%;
>29.9%; and >9.0% of the time, respectively. Of note, the vast majority of recorded hypotension occurred during either HoTN\textsubscript{substantial} or HoTN\textsubscript{sporadic}. In other words, the vast majority of hypotension occurred in temporal clusters.

MAP-trend statistical analysis

The accuracy of the MAP-trend statistical analysis was similar across cohorts. MAP-trend analysis predicted most hypotensive events (Table 3). Across all cohorts, episodes of HoTN\textsubscript{substantial} were usually (>50%) predicted before the onset of continuous hypotension, and these successful predictions were typically before the occurrence of any hypotension (except for in Cohort 3). Likewise, across all cohorts, the majority of HoTN\textsubscript{sporadic} was predicted by MAP-trend statistical analysis, typically at least 25 min before accumulating 10 min of total hypotension. Across all cohorts, the majority of vasopressor up-titrations were also predicted by MAP-trend statistical analysis.

The findings in Table 3 indicate that notification events had valid positive predictive value: across all cohorts, a majority of notification events were associated with hypotensive episodes (i.e., HoTN\textsubscript{substantial}, HoTN\textsubscript{sporadic}, or sentinel notifications), and only a minority were false notification events. False notification events were not excessively long-lived, with median durations of 4-6 min for all cohorts.

We characterized the minority of hypotensive events that could not be predicted in advance by MAP-trend analysis. “Sudden drops”, “major fluctuations”, and “riding the rail” explained the majority of these failed HoTN\textsubscript{substantial} predictions, in approximately even proportions.
Additional details about the prediction of hypotensive events and the prediction failures, including visual examples of prediction failures, are provided in the Online Data Supplement.
Discussion

There was substantial variability between patients in terms of how successfully MAP goals were met during vasopressor infusion. In the bottom quartiles in each of the four ICU cohorts, many MAP points were hypotensive: >31.3% (Cohort 1); >13.2% (Cohort 2); >29.9% (Cohort 3); and >9.0% (Cohort 4). These findings are consistent with other reports of failures to meet critical care BP targets (6, 8, 16, 18).

Of note, we identified that a majority of hypotension occurred in temporal clusters that we termed HoTNsubstantial and HoTNsporadic, which were typically predictable often before any hypotension occurred, using MAP trend analysis. The predictive performance of MAP trend statistical analysis was notably similar in all four cohorts:

- prediction error was similar ± 3-6 mmHg (s.d.);
- the majority of hypotensive episodes were predicted;
- the majority of vasopressor up-titrations were predicted;
- and the PPV of the notification events was > 50%.

The four cohorts spanned three hospitals; distinct MAP goals (≥65 mmHg versus ≥85 mmHg); and both retrospective and real-time analyses. The similarities across the four cohorts support the conclusion that the findings are generalizable. Considering that clinicians monitor these same MAP data in real-time, this implies that a meaningful proportion of ICU hypotension is likely tractable: vigilant assessment of patients’ MAP trends along with appropriate clinical responses could minimize hypotension.

The prediction methodology was based on established principles for time-series forecasting that were first formalized by Charles Holt in 1957 (24): extrapolating from weighted estimates of the MAP’s current level along with the calculated trend. The fact that future
hypotension can be forecast solely on the basis of analysis of the preceding MAP has been
demonstrated by other groups as well (25-27). What is notable about the current method is how
minimal were the data required (i.e., 14 min of MAP data) and how this forecasting was based on
data characteristics that should be apparent by eye to any attentive clinician (i.e., MAP level,
MAP trends, and overall MAP variability).

BP has proven challenging to precisely manage even in the context of well-resourced
clinical trials focused on the relationship between BP and outcome. Consider the ATACH study
(28) which evaluated different BP reduction goals in patients with acute cerebral hemorrhage. In
one cohort, 9-of-20 subjects simply failed to reach their target BP range using nicardipine. With
so many protocol failures, it was impossible to determine whether actually meeting the target BP
would have improved outcome. In another study, INTERACT2, a large trial of over 2,500
subjects, an aggressive BP management regime was compared versus routine care. Only 33.4%
of the patients in the aggressive management cohort achieved their BP goal after one hour (29).
Again, since there were protocol failures in a majority of the cases, it was hard to interpret the
results. Presumably, it will require new strategies that allow for precise BP management to
conduct the trials that define the actual effect of BP on clinical outcome.

Little has been previously reported that explains the cause of BP management failures
during critical care. Theoretical possibilities include both cardiovascular physiology (e.g., sudden
decompenatory events and/or labile BP that is hard to control) and clinician factors (e.g.,
clinical delays, ineffective clinical responses, or even iatrogenically-induced hypotension). In a
preceding analysis of Cohorts 1 and 2, not a single episode of major hypotension (<60 mmHg
persisting at least 15 min) was associated with any clinical event or pharmacologic
administration documented in the EMR to explain the HoTNsubstantial, and after a single up-
titration of vasopressors, the HoTN_{substantial} was >80% likely to resolve (18). The fact that there were no pathologic events implicated and that the events did resolve after a single routine clinician intervention suggested that “clinical inertia” was a major factor. Clinical inertia is the phenomenon in which clinicians fail to act when indicated, leading to suboptimal management in wide-ranging conditions including diabetes and chronic heart failure (19-21). Clinical inertia is thought to be the result of multiple factors including clinician psychology, knowledge gaps, and healthcare system deficiencies. *Our findings that most episodes of hypotension in each cohort were predictable by MAP-trend analysis further supports clinical inertia as a contributor to suboptimal BP management.*

This analysis involved novel outcome definitions (HoTN_{substantial} and HoTN_{sporadic}). This methodology evolved from prior analyses of ICU hypotension which had exclusively considered episodes of *continuous* hypotension (25-27). In our preceding work (18, 30), we observed that continuous hypotension was often preceded by, and punctuated by, MAP fluctuations, with dips below the goal range that often repeated. *Ignoring such fluctuations seemed problematic* because *i)* hypotension during those repeated dips could possibly be deleterious to patients and is worthy of study, and *ii)* the repeated dips that preceded continuous HoTN made the prediction of continuous HoTN relatively easy.

Accordingly, we decided to distinguish between different phases of these hypotension clusters: before any hypotension at all; during a fluctuating state; and after the onset of continuous HoTN. We contend that this schema provides a more comprehensive characterization of hypotension patterns. Using this schema, we found that the majority of episodes of HoTN_{substantial} were identified before any hypotension at all, and the overwhelming majority of
episodes of HoTNsporadic were identified long before 10 cumulative minutes of hypotension (see Table 3).

We selected 10 min of HoTN as a defining criterion for a significant hypotensive event because this duration of hypotension persists long enough that it might be harmful to end-organs, but at the same time, could also be mitigated with early clinical intervention. In other words, before 10 minutes have elapsed, attentive clinicians should have enough time to go to the bedside, provide intervention, have it take effect, and reduce the total duration of hypotension.

What duration of hypotension is actually deleterious to patients? Are frequent, sporadic excursions below the MAP goal range deleterious? There is no definitive understanding of the causal relationship between the depth, duration, or quantity of HoTN versus clinical outcomes. Consensus guidelines simply advise MAP above 65 mmHg (1, 2) based in part on laboratory studies (3, 4) and observational clinical data (5-11). During ischemic stroke, it has been estimated that the typical patient loses 1.9 million neurons each minute (31). There is little high-quality data from prospective trials to reveal the causal relationship between BP and clinical outcomes. Without valid data from a trial, it is not possible to establish the clinical efficacy of any BP management paradigm. As noted above, BP has proven challenging to precisely manage even in the context of well-resourced trials investigating the relationship between BP and outcome (28, 29). Yet the available evidence establishes a clear relationship between clinical recovery and maintaining BP goals, and together with consensus guidelines, it makes sense to adopt measures that help avoid episodes where BP falls below its target.

Based on this report, how might BP management be improved? Improving vigilance and reducing clinical inertia might likely improve BP management. Indeed, Kirkness et al. conducted a study in which they used a prominent digital display of patients’ cerebral perfusion pressures
(CPP), and this simple intervention was associated with improved management of CPP, likely because of increased clinician awareness (32). The same principle of enhanced digital display could be applied to MAP management. Of course, such enhanced digital display would need to be considered relative to the burden of false alarms and information overload.

Our team has implemented a real-time software system for MAP management which was used for data collection and MAP-trend statistical analysis in Cohort 4 (an overview of this software system is provided in the Online Data Supplement). We intend to undertake prospective trials to assess whether such software tools improve MAP management and ultimately, whether different management strategies improve outcomes. As well, new devices that automatically titrate vasopressors could allow for improved MAP management (33).

Of course, non-digital solutions are likely to be impactful, too: regular staff education; quality improvement projects including feedback on individual cases; and even making BP management a reportable quality metric (which typically spurs improved clinical practices) are plausible “low tech” strategies to improve MAP management.

In terms of limitations, the results were limited to three hospitals’ ICUs, but it is notable that most results were quantitatively consistent between the three independent facilities, suggesting generalizability. Secondly, some hypotension events may represent measurement artifacts (e.g., falsely low due to catheter occlusion or hydrostatic offset errors); thus, the observed incidence of hypotensive events may be biased. On the other hand, the finding that the majority of hypotensive events can be predicted by MAP-trend statistical analysis is likely valid, even if some hypotensive events were artifactual. Third, our analysis did not differentiate between episodes in which MAP was just below the goal range versus episodes in which MAP was substantially below the goal range. In prior analysis, we focused on the latter (18), while the
current analysis takes a broader examination of hypotension, including milder episodes. This broader examination is justified because the clinical effects of frequent low-level MAP deviations are simply unknown, and therefore worthy of investigation.

Conclusions

We have found that hypotension below the MAP goal occurs frequently in ICU patient populations during continuous vasopressor infusion. Most of this hypotension occurs in temporal clusters that can be characterized by the novel concepts of HoTN\textsubscript{substantial} and HoTN\textsubscript{sporadic}. The majority of these temporal clusters can be predicted in advance by MAP-trend statistical analysis applied to the most recent 14 min of MAP data. Such statistical analysis also predicts a majority of vasopressor dose up-titrations. The statistical analysis appears reasonably well-calibrated, in that when the probability of future hypotension rises above a threshold, it is usually followed by either an episode of HoTN\textsubscript{substantial}, an episode of HoTN\textsubscript{sporadic}, or vasopressor dose up-titration. All these findings were consistent across all four cohorts. A plausible explanation for many of these hypotensive episodes is clinical inertia. In Cohort 4, the statistical analysis was performed in real-time, providing a proof-of-principle for a clinical tool that might reduce hypotensive episodes during vasopressor infusion.

Availability of data and materials

Dataset for Cohort 1 is publicly available (https://physionet.org). The datasets for Cohort 2 and 4 are available from the corresponding author on reasonable request, subject to our institution’s policies and approvals. The dataset for Cohort 3 was received under a data use agreement with
the Vancouver General Hospital; the authors support sharing this dataset upon reasonable request, noting that additional permission from Vancouver General Hospital will be mandatory and additional restrictions may apply.

Competing Interests

The authors declare the following competing interests: Supported by and performed in collaboration with Nihon Kohden Corporation and the Nihon Kohden Innovation Center.
References

24. Holt CC. Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration; 1957.

Figure Legends

1. Fig. 1. Case examples illustrating episodes of substantial hypotension (HoTN_{substantial}), constant hypotension (HoTN_{constant}), and sporadic hypotension (HoTN_{sporadic}). In this report, we defined temporal patterns of clustered hypotension. “Substantial hypotension,” or HoTN_{substantial}, occurs when at least half of the MAP measurements in a time-interval are below the goal range, with ≥10 minutes of cumulative hypotension (i.e., the sum total of hypotension time is at least 10 min). HoTN_{substantial} is illustrated in three case examples (A to C). Within these episodes, there were often episodes of “constant hypotension” (HoTN_{constant}), defined as ≥10 minutes of continuous, unbroken hypotension). In these plots, onset of HoTN_{constant} is indicated by an arrow ↑ (A to C).

“Sporadic hypotension,” or HoTN_{sporadic}, is a time span that does not qualify as HoTN_{substantial} but does contain ≥10 minutes of cumulative hypotension. HoTN_{sporadic} is illustrated in three case examples (D to F).

Specific time points when the patients were actually hypotensive are indicated in each panel (A to F) by the thick horizontal lines.

2. Fig. 2. Case examples illustrating “contiguous notification events,” “sentinel notification events,” and “false notification events”. In this report, “notification events” are defined as
intervals when the calculated probability of hypotension (P_{HoTN}) was >35%. That threshold, 35%, was selected a priori from performance assessments in an independent training dataset, where it offered the optimal balance of sensitivity and positive predictive value. (A) and (B) illustrate notification events that were contiguous (i.e., overlapping with) episodes of hypotension, starting minutes before any hypotension. (C) illustrates a more complicated case: firstly, just before $t=1120$, there were major fluctuations in the recorded MAP, which led to an “InOp” state (light grey shading) during which MAP-trend statistical analysis was not performed; see the Online Data Supplement. Subsequently, after $t=1145$, there was an occurrence of $\text{HoTN}_{\text{sporadic}}$ (grey shaded rectangle) and after $t=1160$, an occurrence of $\text{HoTN}_{\text{substantial}}$ (darker grey shaded rectangle). There were five different notification events, each of which started when $P_{\text{HoTN}} >35$% and terminated when $P_{\text{HoTN}} \leq 35$%. These notification events were classified as two sentinel notifications (indicated by “☆”); one contiguous with $\text{HoTN}_{\text{sporadic}}$ (indicated by “⋆”), and two contiguous with $\text{HoTN}_{\text{substantial}}$ (indicated by “⋆”), respectively. NOTE: if a patient became hypotensive either before or at the exact same time as $\text{PHoTN} > 35$%, then the notification event did not officially begin until a subsequent non-hypotensive MAP occurred, because we were only studying the prediction of hypotension at times when patients were not already hypotensive. (D) and (E) illustrate notification events that were false notifications, i.e., not associated with any $\text{HoTN}_{\text{substantial}}$, $\text{HoTN}_{\text{sporadic}}$, or vasopressor up-titration. The onset of each false notification event is indicated by “x”. In (E), the patient did develop several minutes of hypotension just before $t=2020$ -- indicated by the thick, grey horizontal line -- but this hypotension did not meet our outcome definitions, and so the notification events in (E) were all categorized as “false.”
Table 1: Characteristics of ICU subjects and associated MAP records

<table>
<thead>
<tr>
<th>ICU Characteristics</th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital</td>
<td>Beth Israel Deaconess</td>
<td>Mass General</td>
<td>Vancouver General</td>
<td>Mass General</td>
</tr>
<tr>
<td>Type of ICU</td>
<td>Mixed</td>
<td>Surgical</td>
<td>Neuro</td>
<td>Mixed</td>
</tr>
<tr>
<td>Type of analysis</td>
<td>Retrospective</td>
<td>Retrospective</td>
<td>Retrospective</td>
<td>Real-time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Characteristics</th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of unique subjects</td>
<td>129</td>
<td>66</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Number of unique ICU stays</td>
<td>155</td>
<td>66</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Age, years, median (range)</td>
<td>73 (19–90)</td>
<td>67 (22–90)</td>
<td>29 (19–70)</td>
<td>61 (40–91)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Male</td>
<td>43.9</td>
<td>60.6</td>
<td>75.0</td>
<td>60.0</td>
</tr>
<tr>
<td>% Female</td>
<td>53.6</td>
<td>39.4</td>
<td>25.0</td>
<td>40.0</td>
</tr>
<tr>
<td>% Other / not reported</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Indication for vasopressors *(note: multiple indications in some ICU stays)*

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Sepsis / possible sepsis</td>
<td>49.7</td>
<td>50.0</td>
<td>0</td>
<td>58.8</td>
</tr>
<tr>
<td>% Cardiogenic / possible cardiogenic</td>
<td>51.6</td>
<td>43.9</td>
<td>0</td>
<td>11.7</td>
</tr>
<tr>
<td>% Post-operative care</td>
<td>17.4</td>
<td>65.2</td>
<td>100.0</td>
<td>11.7</td>
</tr>
<tr>
<td>% Acute spinal cord injury</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>% Other / unknown</td>
<td>31.6</td>
<td>22.7</td>
<td>0</td>
<td>17.6</td>
</tr>
<tr>
<td>Duration of MAP record, days, median (IQR)</td>
<td>0.7 (0.2–1.5)</td>
<td>1.6 (0.9–2.3)</td>
<td>3.1 (0.4–4.0)</td>
<td>0.2 (0.2–0.2)</td>
</tr>
<tr>
<td>Total duration of cohort data, days</td>
<td>190.9</td>
<td>109.2</td>
<td>55.8</td>
<td>1.8</td>
</tr>
<tr>
<td>MAP, mmHg, median per ICU stay (IQR)</td>
<td>73 (69–78)</td>
<td>73 (72–78)</td>
<td>90 (88–93)</td>
<td>71 (70–73)</td>
</tr>
<tr>
<td>MAP measurement sampling frequency, seconds</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>MAP std dev / hr, mmHg, median per ICU stay (IQR)</td>
<td>5.1 (3.7–7.6)</td>
<td>5.2 (4.2–6.3)</td>
<td>5.0 (3.9–6.3)</td>
<td>3.8 (3.1–4.3)</td>
</tr>
</tbody>
</table>

Median values are per unique intensive care unit (ICU) stays, not per subject. MAP = mean arterial pressure; std dev = standard deviation.
Table 2: Summary of investigational outcomes

<table>
<thead>
<tr>
<th>Characteristics of overall BP control</th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of time MAP < goal range, median (IQR)</td>
<td>12.9% (2.8 – 31.3)</td>
<td>5.5% (1.7 – 13.2)</td>
<td>21.5% (16.2 – 29.9)</td>
<td>3.9% (3.6 – 9.0)</td>
</tr>
<tr>
<td>...& during “Substantial Hypotensive Episodes” or “Sporadic Hypotension”</td>
<td>11.0%</td>
<td>3.9%</td>
<td>18.8%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Incidence of VP dose change /24hrs, median (IQR)</td>
<td>8.9 (3.5 – 14.7)</td>
<td>16.0 (12.5 – 19.2)</td>
<td>9.1 (2.1 – 12.9)</td>
<td>16.6 (12.1 – 20.6)</td>
</tr>
</tbody>
</table>

Characteristics of substantial hypotension (HoTN_{substantial})				
Episodes of HoTN_{substantial} / 24hrs, median (IQR)	3.3 (0.0 – 6.2)	2.0 (0.0 – 5.0)	7.1 (4.7 – 8.4)	0.0 (0.0 – 5.3)
Associated minutes of actual hypotension / 24hrs, median (IQR)	111.1 (0.0 – 321.4)	36.4 (0.0 – 134.4)	247.9 (140.1 – 353.4)	0.0 (0.0 – 66.5)

Characteristics of sporadic hypotension (HoTN_{sporadic})				
Episodes of HoTN_{sporadic} / 24hrs, median (IQR)	3.2 (0.0 – 4.8)	2.6 (0.6 – 4.5)	4.3 (2.9 – 5.0)	0.0 (0.0 – 4.7)
Associated minutes of actual hypotension / 24hrs, median (IQR)	16.8 (0.0 – 33.9)	14.9 (0.7 – 33.8)	63.1 (46.1 – 71.1)	0.0 (0.0 – 25.6)

Median values are per unique intensive care unit (ICU) stays.

BP = blood pressure; MAP = mean arterial pressure; VP = vasopressor.
Table 3: Characteristics of MAP-trend statistical analysis

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of statistical MAP forecasting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP prediction error, mmHg, mean (std dev)</td>
<td>0 (6.1)</td>
<td>0 (5.4)</td>
<td>0 (5.0)</td>
<td>0 (3.4)</td>
</tr>
<tr>
<td>Prediction of investigational outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediction of HoTN<sub>substantial</sub> *</td>
<td>68.4%</td>
<td>69.0%</td>
<td>66.6%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Prediction prior to any HoTN</td>
<td>56.8%</td>
<td>61.0%</td>
<td>48.8%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Prediction of HoTN<sub>sporadic</sub> †</td>
<td>92.4%</td>
<td>96.5%</td>
<td>98.2%</td>
<td>100%</td>
</tr>
<tr>
<td>Advance prediction prior to any HoTN</td>
<td>32.7%</td>
<td>38.3%</td>
<td>22.4%</td>
<td>66.7%</td>
</tr>
<tr>
<td>Prediction of vasopressor up-titrations ‡</td>
<td>83.0%</td>
<td>68.6%</td>
<td>85.9%</td>
<td>92.3%</td>
</tr>
<tr>
<td>Daily incidence of notification events (based on MAP-trend statistical analysis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiguous with HoTN<sub>substantial</sub> notifications / 24 hrs</td>
<td>3.7</td>
<td>2.5</td>
<td>6.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Contiguous with HoTN<sub>sporadic</sub> notifications / 24 hrs</td>
<td>3.0</td>
<td>3.0</td>
<td>8.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Sentinel notifications / 24 hrs</td>
<td>2.1</td>
<td>4.2</td>
<td>4.7</td>
<td>11.3</td>
</tr>
<tr>
<td>HoTN<sub>substantial</sub> Sentinel</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>HoTN<sub>sporadic</sub> sentinel §</td>
<td>0.6</td>
<td>0.7</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Vasopressor increase sentinel ¶</td>
<td>0.5</td>
<td>2.6</td>
<td>1.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Total true notification events / 24 hrs</td>
<td>8.7</td>
<td>9.8</td>
<td>19.7</td>
<td>19.8</td>
</tr>
<tr>
<td>Total false notification events / 24 hrs</td>
<td>5.7</td>
<td>7.5</td>
<td>6.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Additional diagnostic test characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive predictive value of notification events</td>
<td>61%</td>
<td>56%</td>
<td>77%</td>
<td>66%</td>
</tr>
<tr>
<td>Median duration of false notification, min</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Specificity of P<sub>HoTN</sub></td>
<td>92.9%</td>
<td>91.6%</td>
<td>87.2%</td>
<td>82.0%</td>
</tr>
</tbody>
</table>

BP = blood pressure; HoTN = hypotension (generally MAP <65 mmHg; MAP < 85 mmHg for acute spinal cord injury); HoTN_{substantial} = substantial hypotension (when median MAP < goal range with at least 10 cumulative min of HoTN); HoTN_{sporadic} = sporadic hypotension (at least 10 cumulative minutes where MAP < goal range over one hour); MAP = mean arterial pressure; P_{HoTN} = probability of hypotension developing within 20 min, according to MAP trend analysis.

* “Advance prediction” meaning prior to the onset of constant hypotension (HoTN_{constant}). See Online Data Supplement for additional results about timing of advance predictions.
"Advance prediction" meaning prior to 10 cumulative minutes of hypotension. See Online Data Supplement for additional results about timing of advance predictions.

We allowed a +20 min tolerance in the documented timing of vasopressor dose-changes (this is justified in the Online Data Supplement). Without this time-stamp tolerance, advance prediction of vasopressor up-titrations was 72.9%, 58.5%, 77.7%, and 61.5%, for Cohorts 1-4, respectively.

To avoid double-counting, the count of sentinel events for HoTNsporadic excludes sentinel events for HoTNsubstantial already counted in the preceding row.

To avoid double-counting, the count of sentinel events for vasopressor up-titrations excludes sentinel events for HoTNsubstantial and HoTNsporadic already counted in the preceding rows.
Figures

Figure 1:
Figure 2:

- MAP
- MAP Goal Range
- HoTN\textsubscript{substantial}
- HoTN\textsubscript{sporadic}
- HoTN\textsubscript{const} onset
- Sentinel notification event
- False notification event

(A) MAP (mmHg) vs. Index (%) vs. Time (min.)
(B) MAP (mmHg) vs. Index (%) vs. Time (min.)
(C) MAP (mmHg) vs. Index (%) vs. Time (min.)
(D) MAP (mmHg) vs. Index (%) vs. Time (min.)
(E) MAP (mmHg) vs. Index (%) vs. Time (min.)