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Supplemental Methods

Here, we describe mathematical details of the predictive and hypothesis testing methods in the isoTWAS
pipeline.

Predictive modeling

For a gene G with M isoforms across N samples, with expression measured across R inferential replicates,
we consider the following multivariate linear model:

Y∗
G = XGBG + EG, (1)

where

• Y∗
G is the N × M matrix of isoform expression for gene G,

• XG is the N × P matrix of genotype dosages (coded as 0,1, or 2 alternative alleles at a SNP) for
SNPs within a cis-window of the body G,

• BG is the P × M matrix of SNP effects on isoform expression, and

• EG is a matrix of random errors, such that vec(EG) ∼ NNM

(
0, Σ = Ω−1 ⊗ IN

)
. Here, Σ is the

variance-covariance matrix of the random errors, with Ω = Σ representing the precision matrix. The
columns of XG can be standardized to mean 0 and variance 1 to remove the intercept term from the
model.

We implement 6 different methods to estimate B̂G.

Univariate modeling

The simplest method implemented is univariate predictive modelling, as implemented in Gusev et al’s FU-
SION software1. We ignore the correlation structure between isoforms and train a univariate model. For the
mth isoform, we fit:

y∗
G,m = XGβG,m + ϵG,m (2)

We include three univariate methods:
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1. Elastic net regression with elastic net mixing parameter α = 0.52. This procedure finds the β̂G,m

that minimizes

L(βG,m) = 1
2N

N∑
i=1

(yG,m,i − xT
G,iβG,m)2 + λ[(1 − α)∥βG,m∥2

2/2 + α∥βG,m∥1].

We use the glmnet package in R for implementation with cross-validation.

2. Best linear unbiased predictor (BLUP) using a linear mixed model3,4. Here, we assume, in Equa-
tion 2, that βG,m are random SNP effects on the isoform m, such that βG,m ∼ N

(
0,

σ2
m

P IN

)
. Here, σ2

m

is a variance parameter for the SNP effects. We can calculate the BLUP of βG,m with the following
solution of the Henderson mixed-model3,4:

β̂G,m = σ̂2
m

M
XT

GV̂−1y∗
G,m,

where σ̂2
m and V = σ2

mXGXT
G/P + σ2

ϵ IN are estimated with restricted maximum likelihood estima-
tion and subsequent matrix multiplication. We implement an estimation to this model using ridge
regression with the rrBLUPpackage in R.

3. Sum of Single Effects (SuSiE) regression. Here, we assume that, in Equation 2, βG,m =∑L
i=1 βl,G,m, where βl,G,m has exactly one non-zero element. SuSiE estimates the variance compo-

nents using maximum likelihood prior to the estimating βG,m using an empirical Bayes approach. We
implement this procedure using the susieR package in R5.

Curds-and-whey (CW) procedure

We implement Brieman and Friedman’s curds-and-whey (CW) procedure, a method that takes advantage
of correlations between response variables to improve predictive accuracy6. The CW procedure follows
these steps:

1. The columns of Y∗
G and X∗

G are standardized.

2. Y∗
G is transformed to the canonical coordinate system, Y′

G = TY∗
G, using the transformation matrix

T.

3. Separate univariate elastic net regressions are performed of each of the columns of Y′
G, of the trans-

formed isoform expression response variables. This leads to a new variable of fitted values for the
response: Ŷ′

G.

4. Each column of Ŷ′
G, which we denote without bold face, is shrunk by the corresponding shrinkage

factors di = (1−r)(c2
i −r)

(1−r)2c2
i
+r2(1−c2

i
) to form Ȳ ∗

G, where ci is the ith canonical coordinate in T and r = p/n.

5. Then, the responses are transformed back to the original coordinate system: ȲG = T−1ȲG. We then
fit univariate elastic net models on each column of ȲG to generate the final predictive model.

Curds-and-whey can be thought of as multivariate proportional shrinkage, which addresses sources of
prediction error, namely the bias and variance in the model. Regularization tries to decrease the bias in
the model by pulling model parameters to 0. Proportional shrinkage introduces a little bias to save a lot of
variance by shrinking estimates and not sending them straight to 0. By decreasing variance in the model
(and subsequently the prediction), we can get lower prediction error with this biased (but lower variance)
model than with the unbiased model.
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Multivariate elastic net

Multivariate elastic net is an extension of elastic net regression for a multivariate response variable. The
optimization here, fit through coordinate descent, solves

argminBG

 1
2N

N∑
i=1

∥yi − BT
GxG,i∥2

F + λ

(1 − α)∥BG∥2
F /2 + α

P∑
j=1

∥βG,j∥2

 .

Here, βG,j is the jth row of the SNP effects matrix BG. There is a group-lasso penalty on each M -length
vector of isoform effects for a single SNP. This penalty works on the whole group of coefficients for each
response: either all coefficients are 0, or none are 0. All coefficients are shrunk by the λ penalty, optimally
selected through cross-validation. Intuitively, multivariate elastic net should be optimal in settings where
the causal isoQTLs are the same across different isoforms of the same gene. We fit this model using the
glmnet package in R7.

Multivariate Regression with LASSO with Covariance Estimation

From Equation 1, we jointly estimate BG and Ω by minimizing the following objective function:

(
B̂G, Ω̂

)
= argminBG,Ω

g(BG, Ω) + λ1
∑
j′ ̸=j

|ωj′,j | + λ2

p∑
j=1

q∑
k=1

|bjk|

 ,

where

g(BG, Ω) = tr
[
n−1(Y∗

G − XGBG)T (Y∗
G − XGBG)Ω

]
− log |Ω|.

This objective function can be iteratively minimized for both matrix parameters. In any given iteration, we
first solve of B̂G with a fixed Ω using coordinate descent. Then, we can solve for Ω̂ with the fixed B̂G at
the given iteration with graphical lasso. We iterate until the convergence tolerance parameter is met. Full
details are outlined in Rothman et al8.

Multivariate Sum of Single Effects

We employ a multivariate extension of Wang et al’s Sum of Single Effects (SuSiE) method to address shared
effects across isoforms of the same gene. Here, we assume that EG ∼ NN×M (0, S ⊗ IN ), where S is the
estimated residual covariance. The main assumption of SuSiE is that BG =

∑L
l=1 Bl,G, where Bl,G is a

single effect matrix of isoQTLs9. We assume that Bl,G = γlbT
l , where γ is the causal configuration of

isoQTLs for the lth single effect. We draw γl ∼ Mult(1, α) and bl ∼
∑

k πkNM (0, Uk). The fitting procedure
is as follows: first, the residual covariance matrix S is estimated. Then, all possible patterns of effect shared
(coded in Uk) are learned. These are used to estimate the mixture prior weights πk. Using a mash prior10,
the multivariate SuSiE model is fit. This procedure is repeated until convergence.

Fine-mapping and ordinary least squares with clustered standard errors

We first conduct a feature selection step by estimated a 90% credible set of causal isoQTLs using SuSiE11.
We restrict the number of isoQTLs in the 90% credible set to no more than 10% the sample size so as to
not over-determine the eventual linear regression fitted by ordinary least squares. Call this reduced design
matrix of estimated causal isoQTLs X∗

G. We then fit the following linear model using ordinary least squares:
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Y∗
G = X∗

GBG + EG,

where

B̂G = [(X∗
G)′X∗

G)]−1(X∗
G)′Y∗

G.

Accordingly, we can derive the classic sandwich estimator for the variance of B̂G, with sandwich parameter
W, i.e.

Var(B̂G) = (X ′X)−1X ′WX(X ′X)−1.

Instead of the classic OLS approach to set the estimated residuals ÊG = Y∗
G − X∗

GB̂G and letting Ŵ =
ÊGÊG

′
. This flexible estimator does not converge to the variance of the estimated effects matrix as sample

size goes to infinity. We employ a clustered standard error, where we assume W is block-diagonal according
to the clusters or replicates in the sample. We thus define each replicated to have design matrix X∗

c,G and
variance of estimated effects Wc. Thus, we can estimate the “meat” of the sandwich estimator as

X∗′

G WX∗
G =

∑
c

X∗′

c,GWcX∗
c,G.

The B̂G alone can be used as weights in traditional summary-statistics based disease mapping in isoTWAS,
but the variance in the estimated effects can give a prediction interval when using individual-level genotypes
in the external GWAS panel.

Association testing procedure

We employ a stage-wise testing procedure, similar to the stageR method12.

1. We impute genetically-regulated expression of each isoform and estimate associations between each
isoform using (1) the appropriate linear regression if we have access to individual-level genotypes in
the GWAS and (2) the weighted burden test if we only have access to GWAS summary statistics13.
We use an LD reference panel from the 1000 Genomes Project14 that appropriately matches the
ancestry of the GWAS sample and the eQTL sample the predictive models were trained with.

2. Given the Wald-type test statistics Z1, . . . , Zm for a given gene, we run an omnibus test to aggregate
the test statistics of isoforms of the same gene. We employ either (1) minimum P-value aggregation
(i.e. set the gene-level omnibus P-value to the minimum isoform-level P-value), (2) an aggregated
Cauchy association test (ACAT)15, or (3) Chi-square aggregation, where we define the gene-level test
statistic TG =

∑m
i=1 Z2

i and compare to the Chi-square distribution with m degrees of freedom. We
correct for multiple comparisons using the Benjamini-Hochberg correction@benjamini1995.

3. We then run an isoform-level multiple testing procedure using the Shaffer MSRB method to assess all
isoform-level associations16. This procedure controls the family-wide error rate when hypotheses are
correlated within the family (i.e. isoforms of the same gene).

Given any overlapping isoforms (i.e. isoforms within 0.5 Megabases of one another), we use gene-level
probabilistic fine-mapping17 to generate a 90% credible set of associated isoforms.
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Simulation framework and parameters

Here, we adopt techniques from Mancuso et al’s twas_sim package18 to simulate multivariate isoform
expression. We consider the following model

Y = XB + E,

where, for n total samples, Y is an n × m matrix of expression values for m isoforms, X is an n × p matrix
of p SNPs within 1 Megabase of the isoforms in Y, B is an p × m matrix of SNP-isoform effects, and E
represents the random error. We first simulate the SNPs in X by selecting 1,107 SNPs within 1 Megabase
of CACNA1E and XRN2, by using the linkage disequilibrium matrix from European samples of the 1000
Genomes Project and the framework outlined in twas_sim. We then simulate B by selecting pc proportion
of the SNPs in X as “causal” and generating a non-zero effect size for these SNPs. We allow for the
SNPs to be “shared” or “different” across different isoforms. For example, a “shared” B matrix will have pc

proportion of its rows set to non-zero values and the rest all 0. Conversely, a “different” B matrix will have
pc proportion SNPs randomly selected to be non-zero for each column of B. We then scale each column
of B to ensure that the genetically-determined portion of each column of Y equals the isoform expression
heritability parameter h2

g.

To ensure the correlation between columns of Y reflects correlation matrices determined in simulation
parameters, we match moments to generate a multivariate Normal random matrix for E.

Let C be the desired correlation matrix of Y. Let Yi and Yj be the vectors of expression for the ith and jth
isoforms. We find

Cov(Yi, Yj) = Cov(Xβi + ϵi, Xβj + ϵj)
= β′

iVar(X)βj + Cov(ϵi, ϵj)

For i ̸= j and cij the desired correlation between Yi and Yj , we have

Cov(Yi, Yj) = cijσiσj = β′
iVar(X)βj + Cov(ϵi, ϵj).

We can solve for Cov(ϵi, ϵj), as the other values are known, and use these values across i, j ∈ {1, . . . , t}
to simulate E. The ith diagonal entry for E (the variance of ϵi) can be taken from the equivalence σ2

i =
β2

i Var(X) + Var(ϵi). After scaling the genetic value and the error to ensure expression heritability is set of
h2

g, this gives us a simulated Y with a given correlation matrix. We conduct these simulations 10,000 times
across the following set of parameters:

• n ∈ {200, 500, 1000}

• pc ∈ {0.001, 0.01, 0.05}

• h2
g ∈ {0.05, 0.10, 0.25}

• SNP-isoform effect are either “shared” or “different”

• Correlation between isoforms is either “sparse” or “dense”

We generate “sparse” and “dense” correlation matrices using Joe’s 2006 C-vine method19, as implemented
in the clusterGeneration::genPositiveDefMat() function20 with η = 1000 for a sparse correlation
matrix and η = 1 for a dense correlation matrix.

For simulations involving traits, we use the same framework to estimate a multivariate isoform expression
matrix. We then estimate traits in 3 scenarios:
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1. Only gene-level expression has a non-zero effect on trait. Here, we sum the isoform expression
to generate a simulated gene expression. We randomly simulate the effect size and scale the error to
ensure trait heritability h2

t = 0.10.

2. Only 1 isoform has a non-zero effect on the trait. Here, we generate a multivariate isoform expres-
sion matrix with 2 isoforms and scale the total gene expression value such that one isoform (called the
effect isoform) makes up pg ∈ {0.10, 0.30, 0.50, 0.70, 0.90} proportion of total gene expression. We then
generate effect size for one of the isoforms and scale the error to ensure trait heritability h2

t = 0.10.

3. Two isoforms with different effects on traits. Here, we generate a multivariate isoform expression
matrix with 2 isoforms that make up equal portions of the total gene expression. We then generate an
effect size of α for one isoform and peα for the other isoform, such that pe ∈ {−1, −0.5, −0.2, 0.2, 0.5, 1}.
We then scale the error to ensure trait heritability h2

t = 0.10.
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