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Abstract1

Individuals of admixed ancestries (e.g., African Americans) inherit a mosaic of ancestry segments2

(local ancestry) originating from multiple continental ancestral populations. Their genomic diversity3

offers the unique opportunity of investigating genetic effects on disease across multiple ancestries4

within the same population. Quantifying the similarity in causal effects across local ancestries is5

paramount to studying genetic basis of diseases in admixed individuals. Such similarity can be6

defined as the genetic correlation of causal effects (Aadmix) across African and European local ancestry7

backgrounds. Existing studies investigating causal effects variability across ancestries focused on cross-8

continental comparisons; however, such differences could be due to heterogeneities in the definition9

of environment/phenotype across continental ancestries. Studying genetic effects within admixed10

individuals avoids these confounding factors, because the genetic effects are compared across local11

ancestries within the same individuals. Here, we introduce a new method that models polygenic12

architecture of complex traits to quantify Aadmix across local ancestries. We model genome-wide causal13

effects that are allowed to vary by ancestry and estimate Aadmix by inferring variance components14

of local ancestry-aware genetic relationship matrices. Our method is accurate and robust across a15

range of simulations. We analyze 38 complex traits in individuals of African and European admixed16

ancestries (N = 53K) from: Population Architecture using Genomics and Epidemiology (PAGE), UK17

Biobank (UKBB) and All of Us (AoU). We observe a high similarity in causal effects by ancestry18

in meta-analyses across traits, with estimated Aadmix=0.95 (95% credible interval [0.93, 0.97]), much19

higher than correlation in causal effects across continental ancestries. High estimated Aadmix is also20

observed consistently for each individual trait. We replicate the high correlation in causal effects using21

regression-based methods from marginal GWAS summary statistics. We also report realistic scenarios22

where regression-based methods yield inflated estimates of heterogeneity-by-ancestry due to local23

ancestry-specific tagging of causal variants, and/or polygenicity. Among regression-based methods,24

only Deming regression is robust enough for estimation of correlation in causal effects by ancestry.25

In summary, causal effects on complex traits are highly similar across local ancestries and motivate26

genetic analyses that assume minimal heterogeneity in causal effects by ancestry.27

Introduction28

Large-scale genotype-phenotype studies are increasingly analyzing diverse sets of individuals of various continental29

and sub-continental ancestries1–4. A fundamental open question in these studies is to what extent the genetic basis30

of common human diseases and traits are shared/distinct across different ancestry populations5–9. Understanding31

the role of ancestry in variability of causal effect sizes has tremendous implications for understanding the genetic32

basis of disease and portability of genetic risk scores in personalized and equitable genomic medicine1,10–13.33

The standard approach to estimating similarity in causal effects across ancestry groups has focused on cross-34

population analyses (typically at continental level) in which effect sizes measured by large-scale genome-wide35

association studies (GWAS) are compared across continental-level ancestry groups5–8,14,15. Such studies have36

found significant differences, albeit with modest magnitude, in causal effects in cross-continental comparisons.37

A main drawback of such studies is the inherent differences in definition of environment/phenotype across such38

broad units of ancestry that can reduce the observed similarity in causal effects by ancestry; for example, the low39

estimated similarity in genetic causal effects for Major Depressive Disorder across Europeans and East Asians may40

be attributed to confounding of different diagnostic criteria in the two populations8,16.41

As an alternative to studying populations across different continents, causal effect similarity by ancestry can42

also be studied within recently admixed populations. Recently admixed individuals have the unique feature of43

having their genomes as mosaic of ancestry segments (local ancestry) originating from the ancestral populations44

within the past few dozen generations; for example, African American genomes are comprised of genomic segments45

of African and European ancestries within the past 5-15 generations17. Unfortunately admixed populations are46
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vastly under-represented in genomic studies18, partly because of the lack of understanding of how the genetic47

causal effects vary across ancestries13,17,17,19–22. For example, heterogeneity of marginal effects for a few traits and48

loci has been reported23–26, however it remains unknown whether this reflects true difference in genetic effects or49

confounding due to different allele frequencies and/or linkage disequilibrium (LD) by ancestry. Recent works15 have50

reported evidence of causal effect heterogeneity for SNPs in regions of European ancestries shared across European51

American and admixed African American individuals; however, they did not compare effects difference across52

ancestries within admixed populations. Estimating the magnitude of similarity in causal effects across ancestries53

is important for all genotype-phenotype studies in admixed populations from mapping to polygenic prediction,54

particularly within methods that allow for effects to vary across local ancestry segments19–22.55

In this work, we quantify the similarity in the causal effects (i.e. change in phenotype per allele substitution)56

across local ancestries within admixed populations; such similarity can be defined as the genetic correlation57

Aadmix = Cor[Vafr, Veur] of causal effects across African (Vafr) and European (Veur) local ancestry backgrounds. We58

quantify Aadmix using a new genetic correlation method that leverages the polygenic architecture of complex traits to59

include all variants (GWAS-significant and non-significant) in the model; this new approach is robust and accurate60

in estimating causal effects consistency across a wide range of realistic simulated genetic architectures. In addition,61

we also investigate regression-based approaches that use marginal effects of SNPs prioritized in GWAS risk regions.62

Through simulation studies, we find regression-basedmethods can yield deflated estimates of similarity (i.e. inflated63

heterogeneity) especially for highly polygenic traits and/or for studies with large differences in sample sizes across64

ancestries.65

We analyze complex traits in African-European admixed individuals in PAGE1 (24 traits, average # = 9K),66

UKBB2 (26 traits, average # = 4K), and AoU3 (10 traits, average # = 20K); there are 38 unique traits in total. We67

find causal effects are largely consistent across local ancestries within admixed individuals (through meta-analysis68

across 38 traits, estimated correlation of Aadmix = 0.95, 95% credible interval [0.93, 0.97]). In addition, we find69

the heterogeneity in marginal effects exhibited at several trait-locus pairs can be explained by multiple nearby70

causal variants within a region, consistent with our simulation studies. Taken together, our results suggest that71

the causal effects are largely consistent across local ancestries within African-European admixed individuals, and72

this motivates future genetic analysis and method development in admixed populations that assume similar effects73

across ancestries for improved power.74

Results75
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Final Figure 1. Overview of study
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Figure 1: Concepts of estimating similarity in the causal effects across local ancestries. (a) For a given trait, with
phased genotype (paternal haplotype at the top and maternal haplotype at the bottom) and inferred local ancestry
(denoted by color), we investigate whether VB,afr ≈ VB,eur across each causal SNP B. (b)We focus on estimating the
genome-wide correlation of genetic effects across ancestries Aadmix = Cor[Vafr, Veur], which is the regression slope
(orange line) of ancestry-specific causal effects. For reference, the grey dashed line corresponds Vafr = Veur.
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Overview76

We start by describing the statistical model we use to relate genotype to phenotypes in two-way admixed individuals;77

we focus on two-wayAfrican-European admixture because their local ancestries can be accurately inferred (Methods;78

see Discussion for extension to other admixed populations). For a given individual, at each SNP B, we denote number79

of minor alleles from maternal and paternal haplotypes as GB,M, GB,P ∈ {0, 1} and the respective local ancestries as80

WB,M, WB,P ∈ {afr, eur}. Denoting I(·) as the indicator function, we define the local ancestry dosage as allele counts81

from each of the ancestries; e.g., ℓB = I(WB,M = afr) + I(WB,P = afr) for African (similarly for European ancestry).82

Conditional on genotype and local ancestry, we define ancestry-specific genotypes 6B,afr as the allele counts specific83

to the each local ancestries: 6B,afr := GB,MI(WB,M = afr) + GB,PI(WB,P = afr) (similarly for European ancestry, 6B,eur).84

The phenotype of a given admixed individual is then modeled as function of allelic effect sizes that are allowed to85

vary across ancestries as:86

H =

(∑
B=1

(
6B,afrVB,afr + 6B,eurVB,eur

)
+ c>" + n, (1)

where VB,afr, VB,eur are the causal effects at SNP B, ( is the total number of causal SNPs in the genome, c," denote87

other covariates (e.g., age, sex, genome-wide ancestries) and their corresponding effects, and n is the environmental88

noise. VB,afr, VB,eur are usually referred as allelic effects: change in phenotype with each additional allele. This is89

in contrast with standardized effects defined as change in phenotype per standard deviation increase of genotype90

which are usually obtained by standardizing genotype at each SNP B to have variance 1; i.e. 6B√
2 5B (1− 5B)

where 6B is91

the allele counts from all local ancestries and 5B is the allele frequency of SNP B in the population5,27. We refrain92

from using standardized effects in this work due to the extra complexities arising from different ancestries yielding93

different ancestry-specific frequencies for the same SNP B 5.94

Our goal is to estimate the similarity in the causal effects across local ancestries in admixed populations95

(Figure 1); the similarity can be evaluated across all genome-wide causal SNPs in a form of cross-ancestry genetic96

correlation5,8: VB,afr, VB,eur aremodeled as randomvariable following a bi-variateGaussian distribution parametrized97

by f26 , d6, which denote the variance and covariance of the effects, respectively:98 [
VB,afr
VB,eur

]
∼ N

( [
0
0

]
, g2B ·

[
f26/( d6/(
d6/( f26/(

] )
, B = 1, . . . , (, (2)

where gB are variant-specific parameters determined by the genetic architecture assumption (Methods). Under this99

model, the genome-wide causal effects correlation is defined as Aadmix :=
d6

f26
; Aadmix = 1 indicates same causal100

effects across local ancestries, while Aadmix < 1 indicates differences across ancestries. We use a polygenic method101

to estimate Aadmix and test the null hypothesis �0 : Aadmix = 1. Specifically, given the genotype and phenotype data102

for a trait, we calculate the profile likelihood curve of Aadmix, obtained bymaximizing the likelihood of model defined103

by Equations (1) and (2) with regard to parameters f26 and environmental variance for each fixed Aadmix ∈ [0, 1] (we104

assume Aadmix > 0 a priori both because that causal effects will unlikely be negatively correlated across ancestries105

and to reduce Aadmix search space for reducing computational cost). Then we obtain the the point estimate, credible106

interval and perform hypothesis testing �0 : Aadmix = 1 either for each individual trait using the trait-specific profile107

likelihood curve, or for meta-analysis across multiple traits using the multiplication of the likelihood curves across108

multiple traits (analogous to inverse variance weights meta-analysis; Methods).109

We organize next sections as follows. First, we show that our proposed approach provides accurate estimation of110

Aadmix in extensive simulations. Second, we show Aadmix is very close to 1 in real data of African-European admixed111

individuals from PAGE, UKBB and AoU. Third, we replicate our findings using methods that use GWAS summary112

data (i.e., marginal SNP effects at GWAS significant loci). Finally, we investigate pitfalls of methods4,14,15,28 that113

use marginal SNP effects showing inflated heterogeneity; we find that Deming regression is the only approach114

robust enough to quantify Aadmix from marginal GWAS effects in admixed individuals.115
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Genome-wide polygenic approach to estimate genetic correlation by local ancestry is accurate in116

simulations117

We performed simulations to evaluate our proposed polygenic method in terms of parameter estimation and118

hypothesis testing using real genome-wide genotypes. We simulated the phenotypes using genotypes and inferred119

local ancestries with #=17K individuals and (=6.9M SNPs with MAF > 0.5% in both ancestries in PAGE data120

set (we used these SNPs to reduce estimation variance; Methods). Phenotypes were simulated under a range of121

genetic architectures with a frequency dependent effects distribution for causal variants29,30, varying proportion of122

causal variants ?causal, heritability ℎ26, and true correlation Aadmix (Methods). We used ?causal = 0.1% in our main123

simulation (which is close to the estimated polygenicity of a typical complex trait31). When estimating Aadmix, we124

either used all SNPs in the imputed genotypes that were used to simulate phenotypes, or restricted to HapMap3125

(HM3) SNPs32 to simulate scenarios where causal variants are not perfectly typed in the data (Methods).126

Our method produced accurate point estimates and well-calibrated credible intervals of Aadmix across a wide127

range of realistic simulation settings (Figure 2 and tables S1 and S2). When using the imputed SNPs for estimation,128

results were approximately unbiased (average and maximal relative biases across simulation settings were -0.42%,129

-1.8% respectively). Credible intervals of Aadmix meta-analyzed across simulations approximately cover true Aadmix:130

for the most biased setting (ℎ26 = 0.1, ?causal = 0.1%, Aadmix = 0.95), 95% credible interval = [0.915, 0.948]. When131

using the HM3 SNPs for estimation, there was a consistent but small downward bias (Figure 2; average and maximal132

relative biases were -1.0%, -2.0% respectively); correspondingly, 95% credible interval = [0.915, 0.946] for the133

most biased setting (ℎ26 = 0.1, ?causal = 0.1%, Aadmix = 0.95). This small downward bias was due to imperfect134

tagging that some of the causal SNPs were not included in the HM3 SNPs. Nonetheless, the magnitude of bias from135

results using either imputed or HM3 SNPs was small, indicating our method was accurate and robust to imperfect136

tagging. We further determined our method remained accurate at other simulated ?causal (Table S2; ?causal ranging137

from 0.001% to 1%). Finally, in null simulations (Aadmix = 1), we determined the false positive rate of our hypothesis138

test �0 : Aadmix = 1 was properly controlled for most simulation settings, and was only slightly inflated when HM3139

SNPs were used in estimation, and/or extremely low ?causal was simulated; in simulations with Aadmix < 1, power140

to detect Aadmix < 1 increased with increasing ℎ26 and decreasing Aadmix (Tables S1 and S2). In addition, we found141

heritability can be accurately estimated in these simulations (Tables S3 and S4; Methods). In summary, our method142

can be reliably used to evaluate genome-wide genetic correlation across local ancestries (Aadmix).143
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Figure 2: Results of genetic correlation Aadmix estimation in genome-wide simulations. Simulations were based
on 17K PAGE individuals and 6.9M genome-wide variants with MAF > 0.5% in both ancestries. We fixed the
proportion of causal variants ?causal as 0.1%, varied genome-wide heritability ℎ26 = 0.1, 0.25, 0.5, genetic correlation
Aadmix = 0.90, 0.95, 1.0. For each simulated genetic architecture, we plot the mode and 95% credible interval based
on the meta analysis across 100 simulations (Methods). Numerical results are reported in Table S1. Numerical
results for other ?causal are reported in Table S2.

Causal effects are very similar across local ancestries in empirical data of admixed populations144

We applied our polygenic method to estimate Aadmix within African-European admixed individuals in PAGE1 (24145

traits, average # = 9296, average fraction of African ancestries = 78%), UKBB2 (26 traits, average # = 3808,146

average fraction of African ancestries = 59%), and AoU3 (10 traits, average # = 20496, average fraction of African147

ancestries = 74%) (see Methods). Meta-analyzing across 38 traits from PAGE, UKBB, AoU (60 study-trait pairs),148

we observed a high similarity in causal effects across ancestries (̂Aadmix = 0.95, 95% credible interval=[0.93, 0.97]).149

Results were highly consistent across data sets (PAGE: Âadmix = 0.90 [0.85, 0.94], UKBB: Âadmix = 0.98 [0.91, 1],150

AoU: Âadmix = 0.97 [0.94, 1]) as well as traits ( Figure 3a, Table 1, Table S5). Height was the only trait that had151

significant Âadmix < 1 (after Bonferroni correction; nominal ? = 4.3 × 10−4 < 0.05/38 meta-analyzed across three152

studies; Table 1) albeit with high estimated Âadmix = 0.936 [0.89, 0.97]. Estimates of the same traits across studies153

were only weakly correlated (Figure S1), suggesting similar causal effects by ancestry consistently across traits (true154

Aadmix ≈ 1 for all traits). Our results were robust to different assumed effects distribution (Figure S2 and table S6),155

consistent with previous work on genetic correlation estimation33. Results were also robust to the SNP set used in156

the estimation (Figure S2 and table S6).157

Next, we contrasted Aadmix to trans-continental genetic correlations (between Europeans and East Asians)8.158

We found a larger similarity across local ancestries within admixed populations as opposed to trans-continental159

correlations: Âadmix = 0.95, 95% credible interval [0.93, 0.97] vs. 0.85, 95% confidence interval [0.83, 0.87]8.160

Although the traits considered in these studies only partially overlap, our results are consistent with differences in161

phenotyping/environment across continents reducing the observed genetic correlations in trans-continental studies.162
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Figure 3: Similarity of causal effects and marginal effects across local ancestries meta-analyzed across PAGE,
UKBB, AoU. (a) We plot the trait-specific estimated Aadmix for 16 traits. For each trait, dots denote the estimation
modes; bold lines and thin lines denote 50% / 95% highest density credible intervals, respectively. Traits are
ordered according to total number of individuals included in the estimation (shown in parentheses). These traits are
selected to be displayed either because they have the largest total sample sizes, or because the associated SNPs of
these traits exhibit heterogeneity in marginal effects (see the panel on the right). We also display the meta-analysis
results across all 38 traits (60 study-trait pairs). (b) We plot the ancestry-specific marginal effects for 217 GWAS
significant clumped trait-SNP pairs across 60 study-trait pairs. Trait-SNP pairs with significant heterogeneity in
marginal effects by ancestry (?HET < 0.05/217 via HET test) are denoted in color (non-significant trait-SNP pairs
denoted as black dots). Numerical results are reported in Table S7. Deming regression slopes of V̂ (<)eur ∼ V̂

(<)
afr

are provided either for all 217 SNPs, or for 193 SNPs after excluding 24 MCH-associated SNPs. MCH, mean
corpuscular hemoglobin. RBC, red blood cell. CRP, C-reactive protein. LDL, low density lipoprotein cholesterol.
HDL, high density lipoprotein cholesterol. TC, total cholesterol. BMI, body mass index. WHR, waist to hip ratio.
Numerical results are provided in Tables 1 and S7.

We sought to replicate high Aadmix using regression-based methods that leverage estimated ancestry-specific163

marginal effects at GWAS loci (Methods). Specifically, we use the following marginal regression equation164

(restricting Equation (1) to each GWAS-clumped SNP B): H = 6B,eurV (<)B,eur + 6B,afrV (<)B,afr + c>" + n (we distinguish165

marginal effects V (<) from causal effects V; Methods). Across 60 study-trait pairs, we detected a total of 217166

GWAS significant clumped trait-SNP pairs and we estimated the ancestry-specific marginal effects for each of167

these SNPs (Figure 3b, Table S7). We determined the estimated marginal effects are largely consistent by local168

ancestry at these GWAS clumped SNPs via Deming regression slope34 of 0.82 (SE 0.06) (applied to �
V
(<)
B,eur ∼

�
V
(<)
B,afr;169

Methods). Mean corpuscular hemoglobin (MCH)-associated SNPs at 16p13.3 drove the most of the differences by170

ancestry: Deming regression slope was 0.93 (SE 0.04) on the rest of 193 SNPs after excluding 24 MCH-associated171

SNPs; MCH-associated SNPs also have the strongest heterogeneity in marginal effects by ancestry (using HET172

test, an 1-degree of freedom test for allelic effects heterogeneity at each SNP35; Table S7; Methods). We found173

there are multiple conditionally independent association signals at MCH-associated loci (Figure S3) and other loci174

(Figures S4 and S5) that had heterogeneity by ancestry by performing statistical fine-mapping analysis (Methods;175

Supplementary Notes). In fact, the MCH-associated loci locate at a region harboring alpha-globin gene cluster176

(HBZ-HBM-HBA2-HBA1-HBQ1) known to harbor multiple causal variants36. These results suggest that, similar177

to causal effects, marginal effects at GWAS loci are also largely consistent by local ancestry, except that loci with178

multiple causal variants can drive some extent of heterogeneity by ancestry in marginal effects.179
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Trait # Âadmix mode 95% credible interval(s) ?-value ℎ̂26

BMD 1668 0.000 [0.00, 0.78] 0.012 0.34 ± 0.16
Neuroticism 3044 1.000 [0.36, 1.00] 1 0.36 ± 0.11
Education years 3324 0.000 [0.00, 0.94] 0.4 0.055 ± 0.075
MCHC 3650 0.228 [0.00, 0.87] 0.061 0.21 ± 0.092
Type 1 diabetes 3767 0.381 [0.00, 0.95] 0.77 −0.033 ± 0.016
HLR count 3852 1.000 [0.07, 1.00] 1 0.12 ± 0.086
RBC distribution width 3925 1.000 [0.27, 1.00] 1 0.28 ± 0.087
Lymphocyte count 3935 1.000 [0.00, 0.60] [0.66, 1.00] 1 0.13 ± 0.086
Monocyte count 3935 0.972 [0.26, 1.00] 0.82 0.3 ± 0.087
MCH 3948 0.829 [0.07, 1.00] 0.36 0.2 ± 0.076
RBC count 3948 1.000 [0.37, 1.00] 1 0.31 ± 0.09
Hypothyroidism 4063 1.000 [0.05, 1.00] 1 0.046 ± 0.07
PR interval 4071 0.844 [0.08, 1.00] 0.36 0.22 ± 0.084
QRS interval 4078 1.000 [0.07, 1.00] 1 0.12 ± 0.082
Asthma 4079 1.000 [0.15, 1.00] 1 0.21 ± 0.087
Ever smoked 4083 0.764 [0.04, 0.98] 0.31 0.17 ± 0.082
QT interval 4089 0.920 [0.07, 1.00] 0.69 0.16 ± 0.083
HbA1c 5353 0.954 [0.08, 1.00] 0.77 0.19 ± 0.078
Cigarettes per day 6995 0.999 [0.08, 1.00] 1 0.097 ± 0.047
Fasting insulin 7753 1.000 [0.21, 1.00] 1 0.13 ± 0.044
eGFR 7978 0.805 [0.16, 1.00] 0.09 0.19 ± 0.046
C-reactive protein 8321 0.995 [0.82, 1.00] 0.94 0.28 ± 0.046
Fasting glucose 9646 0.695 [0.00, 0.93] 0.27 0.064 ± 0.035
Coffee consumption 11587 0.982 [0.10, 1.00] 0.9 0.074 ± 0.03
Platelet count 12545 0.783 [0.20, 0.98] 0.025 0.19 ± 0.038
White blood cell count 12755 0.931 [0.70, 1.00] 0.26 0.23 ± 0.036
Type 2 diabetes 18630 0.897 [0.49, 1.00] 0.23 0.12 ± 0.024
Hypertension 20744 0.929 [0.30, 1.00] 0.45 0.08 ± 0.027
LDL 21979 0.958 [0.70, 1.00] 0.55 0.14 ± 0.046
HDL 22039 0.961 [0.82, 1.00] 0.46 0.22 ± 0.057
Triglycerides 22494 0.843 [0.54, 0.98] 0.012 0.18 ± 0.027
Total cholesterol 22555 0.818 [0.50, 0.97] 0.007 0.18 ± 0.039
Heart rate 28764 0.980 [0.82, 1.00] 0.74 0.099 ± 0.015
WHR 36756 0.973 [0.86, 1.00] 0.55 0.12 ± 0.015
Diastolic blood pressure 43787 1.000 [0.90, 1.00] 1 0.077 ± 0.024
Systolic blood pressure 43788 1.000 [0.88, 1.00] 1 0.071 ± 0.013
BMI 49521 0.974 [0.92, 1.00] 0.33 0.22 ± 0.02
Height 49605 0.936 [0.89, 0.97] 0.00043 0.4 ± 0.014
Meta analysis 0.947 [0.93, 0.97] 8.7 × 10−7

Table 1: Genome-wide genetic correlation across 38 complex traits for African-European admixed individuals
in PAGE, UKBB, AoU. For each trait, we report number of individuals, posterior mode and 95% credible interval(s)
for estimated Aadmix, ?-value for rejecting the null hypothesis of �0 : Aadmix = 1, and estimated heritability and
standard error. Meta analysis results performed across 38 traits are shown in the last row. Traits are ordered
according to number of individuals. For each trait, we perform meta-analysis across studies if the trait is in multuple
studies (Methods). Lymphocyte count has two credible intervals because of the non-concave profile likelihood
curve, as a result of small sample size. BMD, bone mineral density. HLR, high light scattering reticulocytes.
MCHC, mean corpuscular hemoglobin concentration.

8



Pitfalls of using marginal effects at GWAS significant variants to estimate heterogeneity in causal180

effects181

Next, we focused on thoroughly evaluating methods that use marginal effects at GWAS significant variants to182

estimate genetic correlation. Marginal effects are frequently used to compare effect sizes across populations or183

across studies4,14,15,28 and enjoy great popularity for their simplicity and requirement of only GWAS summary184

statistics (estimated effect sizes and standard errors).185

We first note that the heterogeneities in marginal effects can be induced due to different LD patterns across186

ancestries even when the underlying causal effects are identical, especially when multiple causal variants are nearby187

in the same LD block (Figure 4). We investigate the extent of heterogeneity by ancestry that can be induced in188

simulations with identical causal effects across ancestries, due to (1) local ancestry adjustment; (2) unknown causal189

variants coupled with ancestry specific LD patterns; (3) highly polygenic trait architectures with multiple causal190

SNPs within the same LD block; (4) differential GWAS sample sizes across ancestries. Our following simulations191

were based on real imputed genotypes from African-European individuals in PAGE data (17K individuals, average192

fraction of African ancestries = 78%).193

Final Figure 4: induced heterogeneity
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Figure 4: Induced heterogeneities in marginal effects across local ancestries. (a) Illustrations that different LD
patterns across local ancestries can induce differential tagging between a causal SNP and a tag SNP in (b) or another
causal SNP in (c). LD strengths between the two SNPs are indicated both in the thickness of arrows and in the color
shades of ‘*’ elements in LD matrices. (b) Example of single causal SNP with no heterogeneity. Causal effects
are the same across local ancestries, and the estimated marginal effects at causal SNP will be also very similar
with sufficient sample size. However, because of differential tagging across local ancestries, the estimated marginal
effects evaluated at the tag SNP are different. (c) Example of multiple causal SNPs with no heterogeneity. Causal
effects for both SNPs are the same across local ancestries. In this example, the correlation between the 2 causal
variants is higher for genotypes in African local ancestries than those in European local ancestries. Therefore,
African ancestry-specific genotypes tag more effects, creating different marginal ancestry-specific effects at each
causal SNP.

Adjusting for local ancestry can deflate the observed similarity in causal effects across ancestries. We first194

discuss the use of local ancestry in the heterogeneity estimation, which is a unique and important component195

to consider when studying admixed populations. We used simulations to investigate the role of local ancestry196

adjustment in heterogeneity estimation using three main approaches: (1) ignoring local ancestry altogether (“w/o”);197

(2) including local ancestry as covariate in the model (“lanc-included”) ; (3) regressing out the local ancestry198

from phenotype followed by heterogeneity estimation on residuals (“lanc-regressed”) (Methods). First, in null199

simulations where causal effects are similar across ancestries (i.e. ratio of Veur to Vafr = 1), we observed that200

strategies of ignoring local ancestry altogether or including a covariate for local ancestry in the model yielded201

well-calibrated HET tests; in contrast, the approach of regressing out the local ancestry effect prior to assessing202
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heterogeneity induced inflated HET test statistics (Figure 5 and table S8). Next, we used power simulations where203

we varied the amount of heterogeneity (defined as ratio of Veur : Vafr): as expected, including local ancestry in the204

covariate significantly reduced the power of HET test of up to 50% at high magnitude of heterogeneity (Figure 5205

and table S8) (detailed explanation of these observations can be found in Supplementary Notes). Thus, with respect206

to local ancestry, we recommend either not using it or including it as a covariate in the model and not regressing207

out its effect prior to heterogeneity estimation as that will bias heterogeneity estimation.208
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Figure 5: Pitfalls of including local ancestry in estimating heterogeneity. In each simulation, we selected a single
causal variant and simulated quantitative phenotypes where these causal variants explain heritability ℎ26 = 0.6%; we
also varied ratios of effects across ancestries Veur : Vafr. (a) False positive rate in null simulation Veur : Vafr = 1.0.
(b) Power to detect Veur ≠ Vafr in power simulations with Veur : Vafr > 1. 95% confidence intervals are calculated
based on 100 random sub-samplings with each sample consisting of 500 SNPs (Methods). Numerical results are
reported in Table S8.

Having investigated the role of local ancestry adjustment, we next turn to heterogeneity estimation for GWAS209

clumped SNPs. We investigated properties of HET test and Deming regression in simulations with Aadmix = 1.210

Since the true causal variants are unknown and need to be inferred, we investigated each method either at the true211

simulated causal variants or at the clumped variants from LD clumping (Methods).212

Unknown causal variants can deflate the observed similarity in effects by ancestry. We first performed213

simulations with single causal variant: in each simulation, we randomly selected 1 SNP as causal. Evaluated at214

the simulated causal SNPs (Methods), we found that HET test and Deming slope were well-calibrated (Figure 6215

and table S9). However, evaluated at the clumped variants, as a more realistic setting (because causal variants216

need to be inferred), we found HET test became increasingly mis-calibrated with increased ℎ26, while Deming217

slope remained relatively robust (with an upward trend although not statistically significant with increasing ℎ26)218

(Figure 6ab).219

High polygenicity can deflate the observed similarity in effects by ancestry. Next, we turn to simulations where220

multiple causal variants are likely to occur within the same LD block (typical for complex polygenic traits37,38;221

Methods). In this scenario, marginal GWAS effects could tag multiple causal effects thus potentially deflating the222

observed heterogeneity (Figure 4c). In simulations, we varied the number of causal SNPs from 0.25 to 4.0 per223

Mb to span most polygenic architectures. In contrast to the scenario of a single causal variant, both HET test and224

Deming slope were biased in the presence of multiple causals within the same LD region; the mis-calibration/bias225

increased with number of causals per region (Figure 6cd). LD clumping did not alleviate the mis-calibration/bias226
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(Figure 6cd). Such mis-calibrations occurred irrespective of sample size (Figure S7), or simulated heritability ℎ26227

(Table S10).228

In summary, we find that methods for heterogeneity-by-ancestry estimation based on marginal GWAS SNP229

effects are susceptible to inflated estimates of heterogeneity. HET test is susceptible to false positives when causal230

variants are unknown. Deming regression was robust in scenarios with low polygenicity, however, was susceptible231

to inflated estimates of heterogeneity for simulated highly polygenic traits; the inflated estimates can be explained232

by differential tagging by ancestry of causal effects across ancestries among causal SNPs. We also investigated233

other regression-based methods, including ordinary least squares (OLS) slope and Pearson’s correlation. Compared234

to Deming regression slope, we determined they are even more biased due to their ignorance of the errors in the235

estimated effects, especially in the presence of differential GWAS sample sizes across local ancestries. We provide236

detailed discussions in Methods and Supplementary Notes.237
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Figure 6: Mis-calibration of HET test and Deming regression slope in simulations with Aadmix = 1. (a-b)
Simulations with single causal variant. Each causal variant had the same causal effects across local ancestries and
each causal variant explained a fixed amount of heritability (0.2%, 0.6%, 1.0%). (a) False positive rate (FPR)
of HET test. (b) Deming regression slope of V̂ (<)eur ∼ V̂

(<)
afr . Numerical results are reported in Table S9. (c-d)

Simulation with multiple causal variants. We simulated different level of polygenicity, such that on average there
were approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal variants per Mb. Causal variants had same causal effects across
local ancestries. The heritability explained by all causal variants was fixed at ℎ26 = 10%. (c) FPR of HET test. (d)

Deming regression slope of V̂ (<)eur ∼ V̂ (<)afr . 95% confidence intervals were based on 100 random sub-samplings with
each sample consists of 1,000 SNPs (Methods). Results for other number of SNPs used for sub-sampling are shown
in Figure S7. Numerical results are reported in Table S10.

11



Discussion238

In this work, we developed a new polygenic method that model genome-wide causal effects to complex traits of239

admixed individuals and applied our method to 53KAfrican-European admixed individuals across 38 complex traits240

in PAGE, UKBB, AoU. We determined causal effects are largely consistent across local ancestries. In addition to241

causal effects, we also replicated such consistency-by-ancestry for marginal effects at GWAS loci. We highlighted242

realistic simulation scenarios where regression-based methods using marginal effects can report false heterogeneity243

when causal effects are identical across ancestries.244

Our study has several implications for future genetic study of admixed populations. First, reduced accuracy245

of polygenic score has been observed in African-European admixed populations with increasing proportion of246

non-European ancestries, and it was previously unknown on the relative contribution of causal effects difference247

to this reduced accuracy, among other factors such as MAF and LD difference across ancestries21. Our results248

suggest the causal effects difference has limited contribution to this reduced accuracy. Second, there have been249

recent work on incorporating local ancestry in statistical modeling of admixed populations, e.g. in association250

testing19, polygenic score21,22, based on the hypothesis that effects may differ across ancestries. Our results indicate251

the largely consistent causal effects across local ancestries (and also marginal effects at most GWAS loci). The252

robustness of our results to imperfect tagging (in simulation and real data analyses using HM3 SNPs) also suggests253

that imperfect tagging induce limited effects heterogeneity across local ancestries, once SNPs are properly modeled254

in a polygenic model. Therefore, our results suggest future genetic analysis within admixed individuals should255

prioritize statistical models assuming same causal effects across local ancestries for improved statistical power.256

Our results add to the existing literature to further delineate sources of causal effects differences. Previous works257

demonstrated moderate causal effects differences across trans-ethnic populations5,6,8. Similarly, a recent work15
258

concluded differences between causal effects in European local ancestries within African American admixed259

individuals and that in European American individuals. Our results indicate more similar causal effects across local260

ancestries than across trans-continental populations, which is likely explained by the absence of gene-environment261

interaction differences across local ancestries. On the other hand, the small differences across local ancestries, if262

exist, may be attributed to the local genetic interaction.263

We note several limitations and future directions of our work. First, we have analyzed SNPs with MAF > 0.5%264

in both ancestries. We excluded population-specific SNPs (with MAF ≤ 0.5% in one of the ancestries) because they265

provide little information for estimating the consistency of causal effects, since the effects are estimated with large266

noises for these SNPs. We hypothesize that, if any, the exclusion of these population-specific SNPs can produce267

a downward bias of estimated genetic correlation, similar to the bias in our simulation with HapMap3 SNPs.268

Therefore, the estimated genetic correlation here are likely a lower bound of the true genetic correlation. Second,269

we have considered two-way African-European admixed individuals. Several practical considerations remain before270

applying this method to other admixed populations such as three-way admixture of Latino American populations:271

local ancestries are typically inferred with larger errors39 and should be accounted for in statistical modeling,272

and additional parameters need to be estimated (e.g., three pairwise correlation parameters across ancestries for273

three-way admixture populations). In addition, for Latino American populations, given the large noises in estimated274

African local ancestries because of their small proportion40, it may be desired to alternatively estimate genetic275

correlation of Native American ancestries vs. other ancestries (including both European and African ancestries).276

In this case, the estimated genetic correlation can be interpreted as differences of causal effects in Native American277

local ancestries versus the average causal effects of European and African local ancestries. We leave extension278

to other admixed populations for future work. Third, we have focused on estimating a single global parameter279

Aadmix which summarizes the overall genome-wide genetic correlation. Our modeling framework can be extended to280

stratified analyses of SNPs in different annotation categories (e.g., MAF bins or functional annotations41) to estimate281

the genetic correlation within each category. To obtain estimates with sufficient precision for each SNP category,282

such stratified analyses would require larger sample sizes compared to the overall analyses we performed here. We283

leave such stratified analyses for future work with access to larger sample sizes of admixed individuals. Fourth, our284

polygenic method requires individual-level genotype and phenotype; if not available, we found Deming regression285
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may be applied to evaluate heterogeneity with caution: in our simulation, Deming regression was the only method286

robust to most scenarios except for high polygenicity. Fifth, although we have meta-analyzed three publicly available287

studies with large cohort of African-European admixed individuals, our estimate for each individual trait was still288

associated with large standard errors and can be further improved by analyzing more individuals. Sixth, methods289

described here can be readily applied to gene expression data of admixed individuals to investigate heterogeneity290

for gene expression; we leave this to future work because such data with large sample size is currently unavailable291

to us.292

Despite these limitations, our study has shown that causal effects to complex traits are highly similar across local293

ancestries within European-African admixed populations and this knowledge can be used to guide future genetic294

studies of admixed populations.295
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Methods296

Statistical model of phenotype for admixed individuals297

For each individual 8 = 1, . . . , # and SNP B = 1, . . . , (, we denote G8,B,M, G8,B,P as number ofminor alleles atmaternal298

haplotype and paternal haplotype, respectively. We assume the corresponding local ancestries W8,B,M, W8,B,P ∈ {1, 2}299

are inferred accurately (we focus on 2-way admixed populations in this work). For example, for African-European300

admixed individuals, ‘1’ corresponds to African ancestries, ‘2’ corresponds to European ancestries. For each301

individual 8 and SNP B, we define ancestry-specific genotypes, 68,B,1 for ancestry 1 and 68,B,2 for ancestry 2, as the302

allele counts that are specific to each local ancestry:303

68,B,1 := G8,B,MI(W8,B,M = 1) + G8,B,PI(W8,B,P = 1); 68,B,2 := G8,B,MI(W8,B,M = 2) + G8,B,PI(W8,B,P = 2),

where I(·) denotes the indicator function. Denoting the causal allelic effects as #1, #2 ∈ R( for the two ancestries,304

we model the phenotype of each individual H8 as305

H8 = c>8 " +
(∑
B=1

(
68,B,1VB,1 + 68,B,2VB,2

)
+ n8 , 8 = 1, . . . , #

where c8 ∈ R� ," ∈ R� are the � individual-specific covariates (including the all ‘1’ intercepts) and the306

corresponding effects. n8 is the i.i.d. environmental factors for each individual 8. If we further denote the307

ancestry-specific genotype matrix as G1 ∈ {0, 1, 2}#×( and G2 ∈ {0, 1, 2}#×( for ancestry 1 and 2, and C ∈ R#×�308

as the covariates matrix, we can write Equation (1) as309

y = C" +G1#1 +G2#2 + & (3)

We pose the following distribution assumptions on the effect sizes and environmental noises310 [
VB,1
VB,2

]
∼ N

( [
0
0

]
, g2B ·

[
f26/( d6/(
d6/( f26/(

] )
, B = 1, . . . , ( n8 ∼ N(0, f24 ), 8 = 1, . . . , # (4)

where f26 is the variance of effect sizes for the two populations, d6 is the covariance parameter measuring the311

similarity of effect sizes from the two populations, and f24 is the variance parameter for the environmental factors.312

gB are SNP-specific parameters (estimated and fixed a priori) for specifying the effect sizes distribution (see313

“Specifying gB under different heritability models” below). We define the genome-wide genetic correlation as314

Aadmix =
d6

f26
: Aadmix = 1 indicates VB,1 = VB,2 for all variants B = 1, . . . , (, i.e., causal allelic effects sizes are the315

same across ancestries; Aadmix < 1 indicates some level of differences in causal allelic effect sizes across ancestries.316

Calculating and filtering by local ancestry-specific allele frequencies. For each SNP B, we calculated the317

minor allele frequency with 5B :=
∑#

8=1 (68,B,1+68,B,2)
2# . We also calculated the ancestry-specific allele frequency318

as
∑#

8=1 68,B,1∑#
8=1 [I(W8,B,M=1)+I(W8,B,P=1)]

for ancestry 1, and similarly
∑#

8=1 68,B,2∑#
8=1 [I(W8,B,M=2)+I(W8,B,P=2)]

for ancestry 2. For a SNP B319

with zero frequency (or very low frequency) for either of the ancestry, the corresponding effect size VB will be320

unidentifiable (or estimated with very large noise). Therefore, we filtered for SNPs with MAF > 0.5% for both321

ancestries throughout in analyses.322

Defining heritability. Under the above assumptions, the heritability ℎ26 can be derived as a function of f26 , d6, f24323

as general form of ℎ26 :=
Var[G1#1+G2#2 ]

Var[G1#1+G2#2 ]+f24
. Suppose Aadmix = 1, or equivalently d6 = f26 , since #1 and #2 is324

now perfectly correlated, we denote # = #1 = #2 as the per-SNP effect sizes. Defining G = G1 + G2, ℎ26 can be325
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written as ℎ26 =
Var[G# ]

Var[G# ]+f24
. Assuming genotype matrix G is centered for each SNP, Var[G#] = E[ #

>G>G#
#
] =326

E[tr[ #
>G>G#
#
]] = tr[E[##>]G>G

#
]. Noting that E[##>] is a diagonal matrix with B-th element being g2Bf

2
6

(
and B-th327

element of G>G
#

diagonal being SNP variance 2 5B (1 − 5B), Var[G#] can be calculated with328

Var[G#] =
f26

(

[
(∑
B=1
2 5B (1 − 5B)g2B

]
.

We have made the assumption of Aadmix = 1 when deriving the heritability formula, and we have shown through329

simulations that this formula leads to accurate estimates of heritability in simulation even when this assumption330

is violated (with Aadmix = 0.9, 0.95, 1.0; Tables S3 and S4). Given the simplicity of this formula and that our real331

data analysis results indicate Aadmix > 0.9 (Table 1), we used this formula throughout in this work. In our real data332

analysis, each trait can have heritability estimates from multiple studies. To obtain a single estimate of heritability333

for each trait, we performed random-effects meta-analysis using point estimates and standard error of the heritability334

obtained in each study (i.e. heritability estimates in Table 1 are per-trait meta-analysis results from heritability335

estimates in Table S5).336

Specifying gB under different heritability models. gB can be used to specify the coupling of SNP effects variance337

with MAF, local LD or other functional annotations. Commonly used heritability models include338

• GCTA model42: g2B ∝ [ 5B (1 − 5B)]−1, where 5B is the MAF of the SNP B.339

• Frequency-dependent model29,30: g2B ∝ [ 5B (1 − 5B)]U, where U specifies the coupling between per-allele340

effect sizes and MAF of SNP B. We note that when U = −1, this becomes the GCTA model.341

• LDAK33: g2B ∝ [ 5B (1 − 5B)]UFB, where FB are the SNP-specific LDAK weights, as a function of the inverse342

of the local LD of SNP B. The parameter U controls the coupling between SNP effects and SNP frequency.343

• S-LDSC43: g2B ∝
∑
0∈� g00(B), where each 0 ∈ � corresponds to a set of binary or continuous annotations344

representing MAF, local LD or other functional annotations. 0(B) is the value of the annotation 0 for SNP B,345

and g0 corresponds to the expected increase of g2B with each additional unit of annotation 0.346

Choice of heritability model has shown to be important to study heritability and functional enrichment of347

heritability33,44,45. However, genetic correlation estimation, the main focus of this study, has shown to be robust to348

different heritability model33. In this work, we mainly used the frequency-dependent model with U = −0.38 (from349

a previous meta-analysis across 25 UK Biobank complex traits30) for both simulation and estimation. For real350

data analysis, we additionally used GCTA model for estimation and found results are robust to heritability models351

(Figure S2), consistent with previous study33.352

Evaluation of genome-wide genetic effects consistency353

We discuss parameter estimation and hypothesis testing in Equations (3) and (4). First, we note that, marginalizing354

over random effects #1 and #2 in Equation (3), the distribution of y is355

y ∼ N(C", f26
G1TG>1 +G2TG>2

(
+ d6

G1TG>2 +G2TG>1
(

+ f24 I),

where T is a diagonal matrix with (T )BB = g2B . We note that G1TG>1
(

,
G2TG>2
(

can be thought as local ancestry-specific356

genetic relationship matrices. Denoting that K1 =
G1TG>1 +G2TG>2

(
, K2 =

G1TG>2 +G2TG>1
(

, and d6 = f26 · Aadmix, the357

distribution of y can be simplified as358

y ∼ N(C", f26 (K1 + AadmixK2) + f24 I). (5)
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The maximum likelihood estimate of (", f26 , Aadmix, f
2
4 ) can be found by directly maximizing the corresponding359

likelihood function ! (", f26 , Aadmix, f
2
4 ). However, by definition of correlation, Aadmix should satisfy the constraint360

of Aadmix ≤ 1. And it is not straightforward to put this constraint into optimization. Therefore, we use the profile361

likelihood !? (Aadmix) = max(",f26 ,f24) ! (", f
2
6 , Aadmix, f

2
4 ) and perform grid search of Aadmix to maximize this profile362

likelihood (similar to ref.30): for each candidate Aadmix, we compute K1 + AadmixK2, and solve (", f26 , f24 ) for the363

single variance component model as defined in Equation (5) using AI-REML implemented in GCTA software27.364

In practice, we calculate profile likelihood !? (Aadmix) for a predefined set of Aadmix = 0.00, 0.05, . . . , 1.00 (we365

note that Aadmix ∈ [0, 1] is a reasonable prior assumption in our work; this predefined set can be extended to other366

range), and use natural cubic spline to interpolate pairs of (Aadmix, !? (Aadmix)) to get a likelihood curve of Aadmix.367

Then we obtain the estimated Âadmix using the value that maximize the likelihood curve, and credible interval by368

combining the likelihood curve with a uniform prior of Aadmix ∼ Uniform[0, 1] and calculating the highest posterior369

density interval. To perform the meta-analysis across independent estimates, we first obtain the joint likelihood by370

calculating the product of likelihood curves across estimates (or equivalently, the sum of log-likelihood curves),371

and then calculate the estimate and credible interval same as described above.372

Evaluation of genetic effects consistency at individual variant with marginal effects373

Parameter estimation and hypothesis testing. We construct a model between individual variant B and phenotype374

by restricting Equation (1) to the specific SNP of interest B, as375

H8 = c>8 " +
(
68,B,1V

(<)
B,1 + 68,B,2V

(<)
B,2

)
+ n8 , 8 = 1, . . . , #,

or in vector form,376

y = C" + gB,1V (<)B,1 + gB,2V (<)B,2 + & (6)

where C, gB,1, gB,2, & contain c8 , 68,B,1, 68,B,2, n8 for all individuals 8 = 1, . . . , # , respectively. We distinguish the377

marginal effects V (<)
B,1 , V

(<)
B,2 in Equation (6) from causal effects VB,1, VB,2 in Equation (1): marginal effects at378

the GWAS-clumped SNP tag effects from nearby causal SNPs with taggability as a function of ancestry-specific379

correlation between the GWAS-clumped SNP and nearby causal SNPs, and therefore, heterogeneity in marginal380

effects by local ancestry can be induced even if causal effects are the same (see extensive simulation studies above).381

We estimate effect sizes for two ancestries V (<)
B,1 , V

(<)
B,2 using least squares (jointly for V (<)

B,1 , V
(<)
B,2 ) and perform382

hypothesis testing of �0 : V (<)B,1 = V
(<)
B,2 with a likelihood ratio test by comparing Equation (6) to a restricted model383

where the allelic effects are the same V (<)B = V
(<)
B,1 = V

(<)
B,2 :384

y = C" + (gB,1 + gB,2)V (<)B + & . (7)

Twice the difference of log-likelihood follows a chi-square distribution with degree of freedom 1. We note that this385

procedure is similar to ref.19 but we do not include local ancestry in the model.386

Induced marginal effects heterogeneity due to tagging. We describe the induced heterogeneity of estimated387

marginal effects at tagging variants, even when causal variant effects are the same across ancestries. We consider388

two variants B, C, with variant B as the causal variant and variant C as the tagging variant. For simplicity, we ignore389

the covariates and assume y, gB,1, gB,2 have been centered (equivalent to including the all ‘1’ covariate in the model);390

similar results can be derived for scenarios with covariates, by projecting y, gB,1, gB,2 out of the covariate space.391

We first assume B as the only causal variant, therefore, phenotype can be modeled as y = gB,1VB,1 + gB,2VB,2 + & ,392

or for notation convenience, as393

y = GB#B + & ,
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where we denote GB :=
[
| |

gB,1 gB,2
| |

]
∈ R#×2, and #B =

[
VB,1
VB,2

]
∈ R2×1 (similar for GC , #C ). We can estimate the effect394

sizes of the tagging variant C,395 �
# (<)C = (G>C GC )−1G>C y

using the model y = GC #C + & , and the expectation and variance of the estimated effects at variant C are396

E[�# (<)C ] = (G>C GC )−1G>C GB#B, V[ #̂C ] = f2n (G>C GC )−1.
The derivation can be extended tomultiple causal variants by replacing (G>C GC )−1G>C GB#B with (G>C GC )−1G>C

(∑
B GB#B

)
,397

where the summation of B is over all causal variants.398

To simplify the discussion, we further assume effects are the same across ancestries at causal variant B,399

VB,1 = VB,2 = V, and gB := gB,1 + gB,2. Therefore,400

E[�# (<)C ] = (G>C GC )−1G>C gBV, V[�# (<)C ] = f2n (G>C GC )−1.
(G>C GC )−1G>C gB determines the expectation of the estimated effects at tagging variant C, and the differences in401

ancestry-specific taggability. Of note, (G>C GC )−1G>C gB is exactly the solution of least squares when regressing gB402

against GC ; and if C = B, (G>B GB)−1G>B gB =
[ 1
1
]
(which can be verified by noting gB,1 + gB,2 = gB).403

Marginal effects-based methods for estimating heterogeneity. We describe details of marginal effects-based404

methodsweused to estimate heterogeneitywith input froma set of estimated effect sizes V̂ (<)
B,1 , V̂

(<)
B,2 and corresponding405

estimated standard errors �se(V (<)
B,1 ),

�se(V (<)
B,2 ) for a set of SNPs.406

• Pearson correlation: obtained by calculating the Pearson correlation of V̂ (<)
B,1 , V̂

(<)
B,2 across SNPs. Pearson407

correlation does not model errors in estimated effects, therefore is expected be smaller than 1 and decreases408

with increasing magnitude of errors.409

• OLS regression slope: obtained with OLS regression either by regressing V̂ (<)
B,1 ∼ V̂

(<)
B,2 (V̂ (<)

B,1 as the dependent410

variable, V̂ (<)
B,2 as the independent variable) or V̂ (<)

B,2 ∼ V̂
(<)
B,1 . Similar to Pearson correlation, it does not model411

error terms in the independent variable. Moreover, it assumes homogeneous error terms in the dependent variable412

across observations. OLS regression slopes are susceptible to these errors and notably the results would vary413

when one exchange the regression orders (V̂ (<)
B,1 ∼ V̂

(<)
B,2 vs. V̂ (<)

B,2 ∼ V̂
(<)
B,1 ) when V̂

(<)
B,1 and V̂ (<)

B,2 are associated with414

different standard errors46 (as in the case for estimated effects in an admixed population with differential GWAS415

sample sizes).416

• Deming regression slope: obtained with Deming regression34 of V̂ (<)
B,1 , V̂

(<)
B,2 , together with the estimated standard417

errors �se(V (<)
B,1 ),

�se(V (<)
B,2 ). Deming regression models heterogeneous error terms in both the independent and418

dependent variables, therefore is more robust than Pearson correlation and OLS regression. Specifically, given419

a set of data and estimated standard errors (G8 , H8 , fG,8 , fH,8), 8 = 1, . . . , = (we use a different set of notations for420

simplicity), Deming regression optimizes the following objective function to obtain estimated intercept U and421

slope V:422

min
U,V

X1,..., X=
n1,..., n=

=∑
8=1

[
n2
8

f2
H,8

+
X2
8

f2
G,8

]
,

subject to: H8 + n8 = U + V(G8 + X8), 8 = 1, . . . , =.
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Standard errors of U, V can be obtained with bootstrapping. Of note, Deming regression slope will produce423

symmetric results with different regression orders (the obtained slope Vwill be reciprocal to each other). However,424

Deming regression is known to produce biased results when the standard errors fG,8, fH,8 are mis-specified46.425

• False positive rate of the HET test, as described above in “Parameter estimation and hypothesis testing”. It is426

expected to be well calibrated under the null, because its derivation as a likelihood ratio test. Similar to Deming427

regression, HET test properly models heterogeneous standard errors.428

Genotype data processing429

PAGE genotype. We restricted our analysis within 17,299 genotyped individuals self-identified as African430

American in PAGE study1. These individuals were from 3 studies: Women’s Health Initiative (WHI) (==6,820),431

Multiethnic Cohort (MEC) (==5,325) and the Icahn School of Medicine at Mount Sinai BioMe biobank in New432

York City (BioMe) (==5,154). These individuals were genotyped on the Multi-Ethnic Genotyping Array (MEGA)433

which are designed to capture global genetic variation. More details on PAGE study can be found in previous434

publication1. The genotype were imputed to the TOPMed reference panel and we performed standard quality435

control with imputation '2 > 0.8 and MAF > 0.5% to retain well-imputed variants. We calculated ancestry-436

specific (i.e. European and African ancestry-specific) allele frequencies within admixed individuals (see above)437

and further retained variants with MAF > 0.5% in both ancestries. This resulted in ∼6.9M variants and 17,299438

individuals in our analysis.439

UK Biobank genotype. We restricted our analysis within individuals with African-European admixed ancestries440

in UK Biobank. We first inferred the proportion of ancestries for each individual in UK Biobank using SCOPE47
441

supervised using 1000 Genomes Phase 3 allele frequencies (AFR, EUR, EAS, SAS). We then selected African-442

European admixed individuals based on the inferred ancestry proportions. We retained 4,327 individuals with more443

than 5% of both AFR and EUR ancestries, and with less than 5% of both EAS and SAS ancestries. We filtered444

SNPs with imputation '2 > 0.8 and MAF > 0.5% to retain well-imputed variants. We retained variants with MAF445

> 0.5% in both ancestries. This resulted in ∼6.6M variants and 4,327 individuals in our analysis.446

AoU genotype. We restricted our analysis within individuals with African-European admixed ancestries in AoU.447

First, we performed a principal component analysis of all 165,208 individuals in AoU microarray data (release v5)448

joint with 1,000 Genomes Phase 3 reference panel. Then we identified 31,375 individuals with African-European449

admixed ancestries (with at least both 10% European ancestries and 10% African ancestries, and who was within450

2 × normalized distance from the line connecting individuals of European ancestries and African ancestries in451

1,000 Genomes reference panel) (Supplementary Notes). We performed basic quality control on genotypes of the452

identified individuals with African-European ancestries using PLINK2 with --geno 0.05 --max-alleles453

2 --maf 0.001, and performed statistical phasing using Eagle248 (v2.4.1) with default settings. We retained454

variants with MAF > 0.5% in both ancestries. This resulted in ∼0.65M variants and 31,375 individuals in our455

analysis. For AoU, we chose to use microarray data instead of whole genome sequencing data because microarray456

data of AoU contained more individuals and analyzing microarray data reduced the computational cost.457

Local ancestry inference. We performed local ancestry inference using RFmix49 (https://github.com/458

slowkoni/rfmix) with default parameters (8 generations since admixture). We used 99 CEU individuals and459

108 YRI individuals from the 2,504 unrelated individuals in 1,000 Genome Project Phase 350 as our reference460

populations. We used HapMap3 SNPs32 when performing the local ancestry inference, and then interpolated the461

inferred local ancestry results to other variants in both PAGE and UK Biobank data sets. The accuracy of RFmix462

for local ancestry inference has been validated for African-European admixed individuals19 (e.g., 98% accuracy463

for simulations with a realistic demographic model for African American individuals). We used the inferred local464

ancestry for both simulation study and real data analysis described below.465
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Simulation study466

We describe methods for simulation study that corresponds to each section of the results.467

Pitfalls of including local ancestry in estimating heterogeneity. We first describe strategies of including local468

ancestry in estimating heterogeneity.469

• For “lanc included”, we follow common practices17,19,51,52 to use a term for local ancestry in Equation (1) ℓB470

(allele counts in African ancestries; defined above) as follows (restricting to SNP B):471

H = ℓBV
(<)
B,lanc + 6B,1V

(<)
B,1 + 6B,2V

(<)
B,2 + c>" + n,

where V (<)
B,lanc denotes the effect of local ancestry.472

• For “lanc regressed”, we start with the equation H = ℓBV
(<)
B,lanc + 6B,1V

(<)
B,1 + 6B,2V

(<)
B,2 + c>" + n and we first473

estimate �
V
(<)
B,lanc in the regression of H ∼ ℓBV (<)B,lanc, and then estimate V̂ (<)

B,1 , V̂
(<)
B,2 in regression of (H − ℓB

�
V
(<)
B,lanc) ∼474

6B,1V
(<)
B,1 + 6B,2V

(<)
B,2 .475

To assess the impact of including local ancestry term when applying HET test to V̂B,1, V̂B,2, we randomly selected476

1,000 SNPs on chromosome 1 in genotype with 17,299 PAGE individuals. We simulated traits with single causal477

variant. For each SNP, we simulated quantitative trait with the given SNP as the single causal variant with varying478

Veur : Vafr = 1.0, 1.05, 1.1, 1.15, 1.2. We scaled Veur, Vafr such that the causal SNP explained the given amount of ℎ26.479

For each SNP, simulations of Veur, Vafr and environmental noises were repeated 30 times. We then applied different480

strategies of including local ancestry to these simulations and obtained ?-value of HET testing �0 : Veur = Vafr. We481

additionally included the top principal component as a covariate throughout. We evaluated the distribution of false482

positive rate (FPR) or power of HET test by sub-sampling without replacement: we drew 100 random samples, each483

sample consisted of 500 SNPs, randomly drawn from the pool of 1,000 SNPs and 30 simulations; such sampling484

accounts for the randomness from both the environmental noises and SNP MAF. We calculated FPR or power for485

each sample of 500 SNPs, obtained empirical distributions of FPR or power (100 points each), and then calculated486

the mean and SE (using empirical standard deviation) from the empirical distribution.487

Simulations with single causal variant. We performed simulations with single causal variant to assess the488

properties of methods based on estimated marginal effects. We randomly selected 100 regions each spanning 20489

Mb on chromosome 1 (120K SNPs per region on average, SD 6K). For each region, the causal variant located490

at the middle of the region; it had same causal effects across local ancestries and was expected to explain a491

fixed amount of heritability (0.2%, 0.6%, 1.0%); the sign of the causal effect and environmental noises were492

randomly drawn 100 times. We evaluated the 4 metrics at both causal variants and clumped variants; clumped493

variants were obtained with regular LD clumping (index ? < 5 × 10−8; A2 = 0.1, window size = 10 Mb) using494

PLINK: --clump function with parameters --clump-p1 5e-8 --clump-p2 1e-4 --clump-r2 0.1495

--clump-kb 10000. We used a 10Mb clumping window to account for the larger LD window within admixed496

individuals; other parameters were adopted from ref.53. We found that when the simulated ℎ26 (of the single causal497

variant) was large, LD clumping can result in multiple SNPs because the secondary SNPs can reach ? < 5 × 10−8498

when we applied a commonly-used A2 = 0.1 threshold. Therefore, for each region, we either retained only the SNP499

with strongest association (matching the simulation setup of a single simulated causal variant), or retained all the500

SNPs from clumping results. Similar as above, we evaluated the distribution of 4 metrics by sub-sampling without501

replacement: we drew 100 random samples, each sample consisted of 500 regions (each region has 1 causal SNP),502

randomly drawn from the pool of 100 regions and 100 simulations; such sampling accounted for the randomness503

from both the environmental noises and SNP MAF. We then calculated the mean and SE from the 100 random504

samples.505
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Simulation with multiple causal variants. We performed simulations with multiple causal variants. We506

simulated multiple causal variants randomly distributed on chromosome 1 (515,087 SNPs). We drew =causal =507

62, 125, 250, 500, 1000 causal variants to simulate different level of polygenicity, such that on average there were508

approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal variants per Mb. We fixed the heritability explained by all variants509

on chromosome 1 as ℎ26 = 2.5%, 5%, 10%, 20%. We performed sub-sampling without replacement to estimate the510

average and standard errors of the 4 metrics (each sample consisted of 1,000 SNPs, randomly drawn from SNPs511

across 500 simulations). We found that when the simulated ℎ26 was small (ℎ26 = 2.5%, 5%), because the limited512

sample size in our data (= = 17, 299) for PAGE data, very few SNPs reach ? < 5 × 10−8 in these simulations and513

consequently standard errors are very large and results can not be reliably reported. Therefore, we chose to report514

results only from ℎ26 = 10%, 20% in Table S10.515

Genome-wide simulation for evaluating our polygenic method. We performed simulations to evaluate our516

polygenic method in terms of parameter estimation of Aadmix and hypothesis testing �0 : Aadmix = 1 using real517

genome-wide genotypes. We simulated quantitative phenotypes using genotypes and inferred local ancestries518

with #=17,299 individuals and (=6,887,424 SNPs with MAF > 0.5% in both ancestries using the PAGE data519

set. The phenotypes were simulated under a wide range of genetic architectures varying proportion of causal520

variants ?causal, heritability ℎ26, and true correlation Aadmix, and a frequency dependent effects distribution for521

causal variants: in each simulation, we first randomly drew ?causal proportion of causal variants. Given the set of522

causal variants, we simulated quantitative phenotypes based on Equations (3) and (4); g2B ∝ [ 5B (1 − 5B)]−0.38 in523

Equation (4) where U = −0.38 obtained from a previous meta-analysis across 25 UK Biobank complex traits30. The524

effect sizes were multiplied by a normalizing constant such that the variance explained by the genetic component525

(
∑(
B=1 68,B,1VB,1 + 68,B,2VB,2) was equal to the desired heritability ℎ26. When estimating the genetic correlation, we526

either used all SNPs used in the simulation, or restricted to HapMap3 SNPs32 to simulate scenarios where causal527

variants were not typed in the data. We applied our estimator as described in “Evaluation of genome-wide genetic528

effects consistency” using the same frequency dependent effects distribution used for phenotype simulation.529

Real data analysis530

PAGE phenotype. We analyzed 24 heritable traits from PAGE study. The set of traits and diseases were the same531

set as analyzed in Extended Data Table 1 in ref.1, except we did not separately analyze waist hip ratio for men and532

women. The only binary trait, type 2 diabetes, was modeled as a quantitative trait for convenience. We quantile533

normalized each trait, and included age, sex, age*sex, study center and top 10 in-sample principal components as534

covariates in the model. We also quantile normalized each covariate and used the average of each covariate to535

impute missing values in covariates.536

UK Biobank phenotype. We analyzed 26 heritable traits from UKBB study. To select the set of traits to analyze,537

we first overlapped the UKBB traits we have access to with the set of traits analyzed in a previous paper54 (that were538

selected based on heritability and proportion of individuals with non-missing phenotype values). Furthermore, we539

retained traits that have non-missing phenotype values for more than 1,000 individuals. After obtaining the 26540

traits, for each trait, we quantile normalized phenotype values, and included age, sex, age*sex, and top 10 in-sample541

principal components as covariates in the model. We also quantile normalized each covariate and used the average542

of each covariate to imputed missing values in covariates.543

AoU phenotype. We analyzed 10 heritable traits fromAoU. The 10 traits included physical measurement and lipid544

phenotypes, which are straightforward to phenotype and have large sample sizes. Physical measurement phenotypes545

were extracted from Participant Provided Information in AoU dataset. Lipid phenotypes (including LDL, HDL,546

TC, TG) were extracted following github.com/all-of-us/ukb-cross-analysis-demo-project/tree/547

main/aou_workbench_siloed_analyses, including procedures of extracting most recent measurements per548
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person, and correcting value with statin usage. After obtaining the 10 traits, for each trait, we quantile normalized549

phenotype values, and included age, sex, age*sex, and top 10 in-sample principal components as covariates in the550

model. We also quantile normalized each covariate and used the average of each covariate to imputed missing551

values in covariates.552

Genome-wide genetic correlation estimation. We calculated K1,K2 matrices in Equation (5) using either553

imputed SNPs and HapMap3 SNPs (for PAGE and UKBB), or microarray SNPs (for AoU), and using either554

frequency-dependent or GCTA heritability models by specifying g2B . K1,K2 matrices were separately calculated555

for individuals within PAGE, UKBB, AoU studies. For each given Aadmix, we used GCTA software27 to fit a single556

variance componentmodelwith the calculatedK1+AadmixK2 usinggcta64 --reml --reml-no-constrain.557

We included age, sex, age*sex, top 10 in-sample principal components as covariates in analyzing all traits. We558

additionally included the causal signals at Duffy SNP (rs2814778) in 1q23.2 as covariates for analysis of white559

blood cell count and C-reactive protein because of the known strong admixture peak55,56. Specifically, we used560

the local ancestries of SNP closest to Duffy SNP in our data as proxies for Duffy SNP (Duffy SNP itself is not561

typed or imputed in our data). The local ancestries are valid proxies of Duffy SNP because Duffy SNP is known562

to be highly differentiated across ancestries (alternate allele frequency is 0.006 v.s. 0.964 in50) and therefore local563

ancestries are highly correlated with the Duffy SNP. We excluded closely related individuals in the analysis (<564

third-degree relatives; using ref.57 with plink2 --king-cutoff 0.0884). In our main analyses, we used565

SNPs with MAF more than 0.5% in both ancestries (∼7M well-imputed SNPs for PAGE and UKBB; ∼0.65M array566

SNPs for AoU), and we assumed a frequency dependent effects distribution for causal variants. For PAGE and567

UKBB, we also performed secondary analyses with a smaller set of HM3 SNPs, and using other assumptions of568

effects distribution. We note that our meta-analysis credible interval across traits can be anti-conservative (i.e. the569

actual coverage probability is less than the nominal coverage probability) because we did not account for the genetic570

correlation across traits. We included the same covariates for the individual trait-SNP and statistical fine-mapping571

analyses described below.572

Individual trait-SNP analysis. We performed evaluation of genetic effects consistency at individual variants that573

were significantly associated with each trait. First, we performed GWAS for each study-trait pair with PLINK258
574

plink2 --linear --pheno-quantile-normalize --covar-quantile-normalize. Second,575

we performed LD clumping with plink --clump <assoc-file> --clump-p1 5e-8 -clump-p2576

1e-4 -clump-r2 0.1 -clump-kb 10000. For each clumped trait-SNP pair, we then obtained ancestry-577

specific estimated effect sizes and the corresponding standard errors.578

Statistical fine-mapping analysis. We performed fine-mapping analysis to each of the trait-SNP pair with579

significant heterogeneity by ancestry using SuSiE59 (for PAGE and UKBB, for which we used genotype data580

with high SNP density). For each trait-SNP, we included all imputed SNPs in 3Mb window (1.5Mb upstream581

and downstream of the index SNP). We ran SuSiE with individual-level genotype and phenotype (covariates were582

regressed out of genotype and phenotype). We used default settings when running SuSiE: maximum number of583

10 non-zero effects (L = 10 in SuSiE parameter settings). And we obtained posterior inclusion probability and584

credible sets from the SuSiE output.585

Data availability586

PAGE individual-level genotype and phenotype data are available through dbGaP https://www.ncbi.nlm.587

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v2.p1. UKBiobank individual-588

level genotype and phenotype data are available through application athttp://www.ukbiobank.ac.uk. AoU589

individual-level genotype and phenotype are available through application athttps://www.researchallofus.590

org.591
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Code availability592

Software implementing genome-wide genetic correlation estimationmethod: https://github.com/kangchenghou/593

admix-kit. Code for replicating analyses: https://github.com/kangchenghou/admix-genet-cor.594
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Supplementary Information
Causal effects on complex traits are similar across segments of different
continental ancestries within admixed individuals

A Supplementary Notes

A.1 Heterogeneity by local ancestry in marginal effects in real data

Across 60 study-trait pairs, we detected a total of 217 GWAS significant clumped trait-SNP pairs and we estimated
the ancestry-specific marginal effects for each of these SNPs at GWAS loci. 41 out of 217 trait-SNP pairs had
significant heterogeneity in marginal effects by ancestry (HET test ?HET < 0.05/217). 16 out of 41 SNPs with
significant heterogeneity were from UKBB data and PAGE data: 14 MCH-associated SNPs at 16p13.3 in UKBB
data had strongest heterogeneity with average − log10(?HET) = 13.0. By performing statistical fine-mapping
analyses (Methods), we determined there were multiple conditionally independent association signals (Figure S3;
also reported in ref.36). Similarly, we determined there were multiple conditionally independent trait-associated
variants nearby 1 RBC count-associated SNP at 16p13.3 in UKBB data (Figure S4; − log10(?HET) = 5.5) and 1
CRP-associated SNPs at 1q23.2 in PAGEdata (Figure S5; − log10(?HET) = 4.1; also reported in ref.56) that exhibited
heterogeneity in marginal effects. The rest 25 out of 41 SNPs with significant heterogeneity were fromAoU data: 22
height-associated SNPs with − log10(?HET) = 6.8, 2 total cholesterol-associated SNPs with − log10(?HET) = 5.8,
1 LDL-associated SNPs with average − log10(?HET) = 6.8. We did not perform statistical fine-mapping on AoU
microarray data, because we were concerned that imperfect tagging of relatively low density of microarray SNPs
may lead to error-prone inference for existence of multiple causal variants. We leave fine-mapping analysis on high
density SNPs (such as whole genome sequencing or densely-imputed) of AoU data for future work. Overall, we
detected abundant evidence of multiple causal SNPs for loci that exhibit heterogeneity in marginal effects (especially
for MCH-associated SNPs with the strongest heterogeneity), which was consistent to our simulation study with
Aadmix = 1 (see Results).

A.2 Local ancestry adjustment in heterogeneity estimation

We discuss the use of local ancestry in the heterogeneity estimation. Recall that our main equation is

H = ℓBV
(<)
B,lanc + 6B,eurV

(<)
B,eur + 6B,afrV (<)B,afr + c>" + n,

and we evaluated three approaches: (1) ignoring local ancestry altogether (“w/o”); (2) including local ancestry as a
covariate in the model (“lanc-included”) ; (3) regressing out the local ancestry from phenotype (“lanc-regressed”)
followed by heterogeneity estimation on residuals. In null simulations, we have observed the inflation of HET
test using “lanc-regressed”. In power simulations, we have observed the reduced power of HET test using “lanc-
included”.

These results are explained by the induced correlation between the local ancestry and ancestry-specific genotypes
ℓB, 6B,eur, 6B,afr. Intuitively, each additional local ancestry from African ancestries ℓB, indicates an expected increase
of risk allele counts from African ancestries 6B,afr, and an expected decrease of risk allele counts from European
ancestries 6B,eur. Consequently, ℓB will be positively correlated with 6B,afr and negatively correlated with 6B,eur.
Indeed, the average correlation in a set of randomly sampled SNPs in PAGE data is 0.36 for ℓB ∼ 6B,afr and −0.55
for ℓB ∼ 6B,eur (Table S12). Consequently, regressing out the local ancestry only from the phenotype is equivalent
to adding a positive effect to 6B,eur and a negative effect to 6B,afr; “lanc-regressed” leads to drastically inflated HET
test (Figure 5a). On the other hand, a joint inference of VB,lanc, VB,eur, VB,afr in the presence of correlations among
ℓB, 6B,eur, 6B,afr would lead to increased variance in the estimated effects, therefore a power loss in “lanc-included”
(Figure 5b).
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A.3 Pitfalls of using marginal effects at GWAS significant variants to estimate heterogeneity

We investigated 4 methods that use marginal effects as input: (1) HET test; (2) Deming regression slopes of the
marginal effects across SNPs (Deming slope); (3) Ordinary least squares regression slopes of estimated ancestry-
specific marginal effects across SNPs (OLS slope); (4) Pearson correlation of the marginal effects across SNPs
(Pearson correlation). Except for HET test which can compare effects difference for each individual SNP, the other 3
methods evaluate the aggregated effects difference across multiple SNPs. We have performed simulations both with
single causal variant and multiple causal variants. In the following, we describe more details on the performance
of HET test and Deming slope (in addition to those in Results section). And we also describe the performance of
OLS slope and Pearson correlation.

Simulation with single causal variant

When evaluated at causal variants, in contrast to HET test and Deming slope, Pearson correlation and OLS slope
were severely mis-calibrated (Figure S6 and table S9). For example, when the simulated ℎ26 = 0.6%, the false
positive rate of HET test was 0.051 (SE 0.01), consistent with the expected level of 0.05 (Figure S6a); the average
Deming regression slope was 1.005 (SE 0.01) when regressing Veur against Vafr (Veur ∼ Vafr) and 0.996 (SE 0.01) for
Vafr ∼ Veur, consistent with the expected slope of 1 (Figure S6bc). Pearson correlation significantly deviated from
the expected level of 1: 0.964 (SE 0.005) (Figure S6); OLS slope was consistently smaller than 1 for Vafr ∼ Veur
(0.943 (SE 0.017)) and for Veur ∼ Vafr (0.985 (SE 0.017)) (Figure S6ef). Interestingly, OLS slope’s downward bias
varied with the regression order (Vafr ∼ Veur v.s. Veur ∼ Vafr). This is because the bias of OLS slope is a function of
noise level in the independent variable, and estimated marginal effects in European ancestries and African ancestries
were associated with different levels of standard errors (larger standard errors for Veur because of smaller European
ancestries proportion in PAGE African American individuals). Deming slope produced accurate results regardless
of regression order as the differential standard errors are taken into consideration (Methods). Overall our results
are consistent with mis-calibrations of Pearson correlation and OLS slopes due to their ignorance of the errors in
the estimated effects46.

When the causal SNPs were unknown and clumped SNP were used, as shown in Results section, HET test was
increasingly mis-calibrated with larger ℎ26 while Deming slope remained relatively robust (Figure 6). Similar to
HET test, Pearson correlation and OLS slope were less calibrated for clumped SNPs, likely due to increased standard
errors of estimated effects (Figure S6d-f). The mis-calibration induced by clumping arises from the inclusion of
multiple SNPs in the clumped set (even though only 1 causal variant was simulated); the clumped SNPs included
both index SNPs with the strongest associations, and secondary SNPs with weaker associations. These secondary
SNPs were less correlated with the causal SNPs (average A2 = 0.072) and were physically more distant from the
causal SNPs (average distance 432.5kb) compared to those strongest associated SNPs in each region (average A2 =
0.973, average distance 2.4kb) (in simulation with ℎ26 = 1.0%), and therefore can induce heterogeneity by ancestry
as indicated in Figure 1c. After restricting to SNPs with the strongest association after clumping (thus matching the
simulation setup of a single simulated causal variant), both HET test and Deming slope resumed well-calibration
(Table S9). This indicates the efficiency of LD clumping in capturing causal variant (e.g., 63% of clumped variants
were causal when the simulated ℎ26 = 1.0%; Table S11). However, we note OLS slope and Pearson correlation
remained not calibrated (Table S9).

Simulation with multiple causal variants

In contrast to simulationwith a single causal variant, even evaluated at the causal variants, both HET test andDeming
slope were biased in the presence of multiple causals within the same LD region; the mis-calibration/bias increased
with polygenicity (Figure 6 and table S10). For example, in simulation with 2 causal SNPs per Mb (=causal = 500
on chromosome 1) and ℎ26 = 10%, HET had inflated false positive rate (0.249 (SE 0.012) at the nominal 0.05 rate);
average Deming slope of Veur ∼ Vafr was 1.085 (SE 0.016). This is likely due to tagging among multiple causal
variants whereby a causal SNP also tags effect of nearby causal SNPs in an ancestry-specific way (Methods). LD

29



clumping did not alleviate the mis-calibration/bias (Figure 6 and table S10); for example, the average FPR was
0.279 (SE 0.008) and the average Deming slope was 1.083 (SE 0.018) in simulations with 4 causal variants per
Mb (=causal = 1, 000 on chromosome 1). Such mis-calibrations occurred irrespective of sample size (Figure S7),
or simulated heritability ℎ26 (Table S10). For completeness, we also evaluated OLS regression slope and Pearson
correlation showing mis-calibrations with a large magnitude (Table S10). Finally, we note the upward/downward
biases of Deming slope for Veur ∼ Vafr / Vafr ∼ Veur, which were likely due to imbalanced ancestry proportions
(∼80% African and ∼20% European ancestries) of admixed genotypes in PAGE data (Figure S8 and table S13).

A.4 Identifying individualswith admixedAfricanandEuropeanancestrieswithprincipal component
analysis

We seek to identify individuals with African-European admixed ancestries from a diverse population of genotyped
individuals (sample data, e.g., AoU) together with a reference panel (reference data, e.g., 1,000 Genomes) using
principal component analysis. First, we perform a principal component analysis jointly on the sample and reference
data and obtain top principal components (PCs) w8 for each individual 8. We calculate the averaged PCs for
individuals with European and African continental ancestries in 1,000 Genomes:

wafr =

∑
8∈afr w8
|afr| , weur =

∑
8∈eur w8
|eur| .

(In our analysis, for African continental ancestries in 1,000 Genomes, we did not include individuals with sup-
population “ASW” (African Ancestry in Southwest US) or “ACB” (African Caribbean in Barbados), because some
individuals in these sub-populations had admixed ancestries.) Second, we calculate the projected length and distance
of each individualw8 to the line (wafr,weur). We first definewΔ = wafr−weur, and calculate the normalized projected
length C8 and distance 38 as:

C8 =
(w8 − weur)>wΔ

‖wΔ‖22
, n8 = (w8 − weur) − C8 · wΔ, 38 = ‖n8 ‖2 .

Roughly speaking, C8 ∈ [0, 1] if individual 8 locates in the PC space between European and African ancestries, and
has the interpretation of global ancestry proportion: the closer C8 is to 1, the more African ancestries individual 8
has, and vice versa. Finally, we define the normalized distance 3̃8 with

3̃8 =
38

C ·max8∈afr{38} + (1 − C) ·max8∈eur{38}

to account for the different spread (in PC space) for individuals with European and African continental ancestries. In
our analysis, we used the first two PCs when calculating these quantities, and the set of selected admixed individuals
was robust to the number of PCs used. We selected individuals with admixed ancestries with at least both 10%
European ancestries and 10% African ancestries (C8 ∈ [0.1, 0.9]), and who was within 2 × normalized distance
(3̃8 < 2) from the line connecting individuals of European ancestries and African ancestries in 1,000 Genomes
reference panel.
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Figure S1: Consistency of Aadmix across shared traits across studies. We compared estimated Aadmix for shared
traits across studies. We compared both Âadmix and − log10(?) (for testing genetic correlation �0 : Aadmix = 1).
Three traits (Height, Triglycerides, Total cholesterol) with the most significant ?-values for �0 : Aadmix = 1 were
annotated. Number of common traits shared across studies (=common) and Spearman correlation ?-value were shown
in the title for each panel. Overall, there were weak consistency of estimated Âadmix for shared traits across studies
(although ?-values for �0 : Aadmix = 1 were consistent significantly). Numerical results are reported in Table S5.
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Figure S2: Genetic correlation estimation are robust to genetic architecture and SNP set. We performed
Aadmix estimation under the assumption of alternative genetic architecture and SNP set on real trait analysis across
PAGE and UKBB. We compared ?-values (for testing genetic correlation �0 : Aadmix = 1) of our default setting
(using frequency-dependent genetic architecture and imputed SNPs; Table 1) to those obtained using GCTA genetic
architecture and imputed SNPs (a), and to those obtained using frequency-dependent genetic architecture and HM3
SNPs (b). Numerical results are reported in Table S6.

Figure S3: Association ?-values and fine-mapping PIP ofMCH at 16p13.3 for UKBiobank European-African
admixed individuals. Upper panel corresponds to the association ?-values and lower panel corresponds to the
fine-mapping PIP. Different colors in the PIP plot corresponds to different credible sets.
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Figure S4: Association ?-values and fine-mapping PIP of RBC at 16p13.3 for UK Biobank European-African
admixed individuals. Upper panel corresponds to the association ?-values and lower panel corresponds to the
fine-mapping PIP. Different colors in the PIP plot corresponds to different credible sets.

Figure S5: Association ?-values and fine-mapping PIP of CRP at 1q23.2 for PAGEEuropean-African admixed
individuals. Upper panel corresponds to the association ?-values and lower panel corresponds to the fine-mapping
PIP. Different colors in the PIP plot corresponds to different credible sets.
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Figure S6: Simulations with single causal variant. Simulation were based on 100 regions each spanning 20 Mb
on chromosome 1 and 17,299 PAGE individuals. In each simulation, we randomly selected single causal variant and
simulated quantitative phenotypes where these causal variants had same causal effects across ancestries and each
causal variant was expected to explain a fixed amount of heritability (0.2%, 0.6%, 1.0%). Each panel corresponds to
one metric for both causal and clumped variants. (a) False positive rate (FPR) of HET test. (b) Deming regression
slope with Vafr ∼ Veur. (c) Deming regression slope with Veur ∼ Vafr. (d) Pearson correlation. (e) OLS regression
slope with Vafr ∼ Veur. (f) OLS regression slope with Veur ∼ Vafr. 95% confidence intervals were based on 100
random sub-samplings with each sample consisted of 500 SNPs (Methods). Numerical results are reported in
Table S9.
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Figure S7: Simulation with multiple causal variants at other sample sizes (Figure 6cd). Simulation were based
on chromosome 1 (515,087 SNPs) and 17,299 PAGE individuals. We drew 62, 125, 250, 500, 1000 causal variants
to simulate different level of polygenicity, such that on average there were approximately 0.25, 0.5, 1.0, 2.0, 4.0
causal variants per Mb. The heritability explained by all causal variants was fixed at ℎ26 = 10%. (a-c) False
positive rate of HET test for the causal variants and clumped variants. (d-f) Deming regression slope of estimated
ancestry-specific effects (V (<)eur ∼ V

(<)
afr ) for the causal variants and clumped variants. 95% confidence intervals

were based on 100 random sub-samplings with each sub-sample consisted of = = 50, 100, 500 SNPs (instead of
= = 1, 000 SNPs in Figure 6cd) (Methods).
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Figure S8: Simulation results in PAGE data set and simulated genotype data sets with varying ancestry
proportion. We evaluated the bias of Deming slope (V (<)eur ∼ V (<)afr ) observed in Figure 6 by performing simulations
on 3 genotype data sets: (a) PAGE data set of 17,299 individuals with ∼20% European and ∼80% African ancestry
proportions. (b) simulated genotype data set of 20000 individuals with 20% European and 80% African ancestry
proportions. (c) simulated genotype data set of 20,000 individuals with 80% European and 20% African ancestry
proportions. Simulated genotype data was generated as follows: first, we simulated the local ancestries for each
SNP and individual using a Poisson process parametrized by the recombination rate and genetic distance; second,
we used the phased genotype segment from a random individual in 1,000 Genomes with the corresponding ancestry
(European / African) as the genotype for each simulated local ancestry segment. Such simulation method preserves
the realistic local ancestry segment length distribution, MAF and LD structure for the generated genotypes. To
simulate the phenotype, we randomly selected 100 regions each spanning 20 Mb on chromosome 1. For each
region, we either simulated =causal = 1 causal variant at the middle of the region, or simulated =causal = 41 equally
spaced across 20 Mb (on average 2 causal variant per Mb); these causal variants had same causal effects across
local ancestries and each causal variant was expected to explain a fixed amount of heritability (0.6%) (we simulated
a large heritability to better simulate the bias due to different ancestry proportions). 95% confidence intervals were
based on 100 random sub-samplings with each sample consisted of 500 SNPs. We determined that biases from
PAGE and simulated genotype data with 20% European / 80% African ancestries were both upward and biases from
simulated genotype data with 80% European / 20% African ancestries were downward. Therefore, we determined
the biases were due to imbalanced ancestry proportions (∼20% European and ∼80% African ancestries) in PAGE
data. Numerical results are reported in Table S13.
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C Supplementary Tables

A6 ℎ26 SNP set Mode 95% credible interval Pr[reject ‘A6 = 1′]

0.90 0.10 hm3 0.900 [0.882, 0.916] 0.36
0.90 0.10 imputed 0.904 [0.885, 0.92] 0.31
0.90 0.25 hm3 0.890 [0.881, 0.899] 0.76
0.90 0.25 imputed 0.892 [0.883, 0.902] 0.67
0.90 0.50 hm3 0.888 [0.882, 0.894] 0.99
0.90 0.50 imputed 0.893 [0.887, 0.899] 0.94
0.95 0.10 hm3 0.931 [0.915, 0.946] 0.15
0.95 0.10 imputed 0.932 [0.915, 0.948] 0.13
0.95 0.25 hm3 0.938 [0.931, 0.945] 0.42
0.95 0.25 imputed 0.943 [0.935, 0.951] 0.28
0.95 0.50 hm3 0.943 [0.939, 0.948] 0.59
0.95 0.50 imputed 0.951 [0.946, 0.956] 0.43
1.00 0.10 hm3 0.994 [0.983, 1] 0.01
1.00 0.10 imputed 1.000 [0.989, 1] 0.01
1.00 0.25 hm3 0.991 [0.985, 0.998] 0.07
1.00 0.25 imputed 1.000 [0.996, 1] 0.06
1.00 0.50 hm3 0.989 [0.985, 0.994] 0.09
1.00 0.50 imputed 1.000 [0.998, 1] 0.03

Table S1: Numeric results of genetic correlation Aadmix estimation in genome-wide simulations (with fixed
?causal = 0.1%; Figure 2). We fixed the proportion of causal variants ?causal = 0.1%, and we varied genome-wide
heritability ℎ26 = 0.1, 0.25, 0.5, genetic correlation Aadmix = 0.90, 0.95, 1.0, and SNP set used in the estimation. For
each simulated genetic architecture, we performed a meta-analysis of estimation across 100 simulations. We report
the mode and 95% credible interval from the meta-analysis. We also report the empirical probability of rejecting
the null hypothesis of Aadmix = 1.
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A6 ?causal SNP set Mode 95% credible interval Pr[reject ‘A6 = 1′]
0.90 0.001% hm3 0.909 [0.9, 0.917] 0.61
0.90 0.001% imputed 0.911 [0.901, 0.919] 0.57
0.90 0.01% hm3 0.900 [0.891, 0.909] 0.74
0.90 0.01% imputed 0.903 [0.893, 0.912] 0.59
0.90 0.1% hm3 0.890 [0.881, 0.899] 0.76
0.90 0.1% imputed 0.892 [0.883, 0.902] 0.67
0.90 1% hm3 0.902 [0.893, 0.911] 0.66
0.90 1% imputed 0.904 [0.894, 0.913] 0.59
0.95 0.001% hm3 0.923 [0.915, 0.931] 0.52
0.95 0.001% imputed 0.930 [0.921, 0.938] 0.43
0.95 0.01% hm3 0.944 [0.937, 0.951] 0.34
0.95 0.01% imputed 0.952 [0.944, 0.959] 0.31
0.95 0.1% hm3 0.938 [0.931, 0.945] 0.42
0.95 0.1% imputed 0.943 [0.935, 0.951] 0.28
0.95 1% hm3 0.939 [0.932, 0.946] 0.38
0.95 1% imputed 0.946 [0.938, 0.954] 0.28
1.00 0.001% hm3 0.994 [0.988, 0.999] 0.16
1.00 0.001% imputed 1.000 [0.996, 1] 0.10
1.00 0.01% hm3 0.988 [0.982, 0.995] 0.06
1.00 0.01% imputed 1.000 [0.994, 1] 0.03
1.00 0.1% hm3 0.991 [0.985, 0.998] 0.07
1.00 0.1% imputed 1.000 [0.996, 1] 0.06
1.00 1% hm3 0.994 [0.989, 1] 0.04
1.00 1% imputed 1.000 [0.996, 1] 0.02

Table S2: Numeric results of genetic correlation Aadmix estimation in genome-wide simulations (with fixed
ℎ26 = 0.25). We fixed genome-wide heritability ℎ26 = 0.25, and we varied the proportion of causal variants
?causal = 0.001%, 0.01%, 0.1%, 1%, genetic correlation Aadmix = 0.90, 0.95, 1.0, and SNP set used in the estimation.
For each simulated genetic architecture, we performed a meta-analysis of estimation across 100 simulations, we
report the mode and 95% credible interval from the meta-analysis. We also report the empirical probability of
rejecting the null hypothesis of Aadmix = 1.
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ℎ26 A6 SNP set Mean SEM

0.10 0.90 hm3 0.104 0.00218
0.10 0.90 imputed 0.11 0.0021
0.10 0.95 hm3 0.0962 0.00203
0.10 0.95 imputed 0.101 0.00196
0.10 1.00 hm3 0.0918 0.00204
0.10 1.00 imputed 0.0972 0.00197
0.25 0.90 hm3 0.243 0.0025
0.25 0.90 imputed 0.259 0.0025
0.25 0.95 hm3 0.239 0.00211
0.25 0.95 imputed 0.255 0.00219
0.25 1.00 hm3 0.229 0.00199
0.25 1.00 imputed 0.247 0.00208
0.50 0.90 hm3 0.468 0.0023
0.50 0.90 imputed 0.502 0.00223
0.50 0.95 hm3 0.462 0.00221
0.50 0.95 imputed 0.498 0.00226
0.50 1.00 hm3 0.46 0.0024
0.50 1.00 imputed 0.498 0.0024

Table S3: Numeric results of ℎ26 estimation in genome-wide simulations (with fixed ?causal = 0.1%). We fixed
the proportion of causal variants ?causal = 0.1%, and we varied genome-wide heritability ℎ26 = 0.1, 0.25, 0.5, genetic
correlation Aadmix = 0.90, 0.95, 1.0, and SNP set used in the estimation. For each simulated genetic architecture, we
report the mean and SEM of the estimates across 100 simulations.
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?causal A6 SNP set Mean SEM

0.001% 0.90 hm3 0.24 0.0035
0.001% 0.90 imputed 0.256 0.00377
0.001% 0.95 hm3 0.234 0.00374
0.001% 0.95 imputed 0.252 0.00446
0.001% 1.00 hm3 0.235 0.00386
0.001% 1.00 imputed 0.252 0.00448
0.01% 0.90 hm3 0.244 0.00219
0.01% 0.90 imputed 0.261 0.00229
0.01% 0.95 hm3 0.239 0.00251
0.01% 0.95 imputed 0.256 0.00252
0.01% 1.00 hm3 0.231 0.00246
0.01% 1.00 imputed 0.249 0.00259
0.1% 0.90 hm3 0.243 0.0025
0.1% 0.90 imputed 0.259 0.0025
0.1% 0.95 hm3 0.239 0.00211
0.1% 0.95 imputed 0.255 0.00219
0.1% 1.00 hm3 0.229 0.00199
0.1% 1.00 imputed 0.247 0.00208
1% 0.90 hm3 0.242 0.0023
1% 0.90 imputed 0.257 0.0023
1% 0.95 hm3 0.238 0.00211
1% 0.95 imputed 0.256 0.00211
1% 1.00 hm3 0.232 0.00204
1% 1.00 imputed 0.248 0.00207

Table S4: Numeric results of ℎ26 estimation in genome-wide simulations (with fixed ℎ26 = 0.25). We
fixed genome-wide heritability ℎ26 = 0.25, and we varied the proportion of causal variants ?causal =

0.001%, 0.01%, 0.1%, 1%, genetic correlation Aadmix = 0.90, 0.95, 1.0, and SNP set used in the estimation. For
each simulated genetic architecture, we report the mean and SEM of the estimates across 100 simulations.
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Study Trait N Mode 95% credible interval(s) p-value ℎ26

UKBB Asthma 4079 1.000 [0.15, 1.00] 1 0.21 ± 0.087
UKBB BMD 1668 0.000 [0.00, 0.78] 0.012 0.34 ± 0.16
AoU BMI 28747 0.996 [0.93, 1.00] 0.89 0.23 ± 0.017
PAGE BMI 16684 0.929 [0.81, 1.00] 0.14 0.23 ± 0.024
UKBB BMI 4090 1.000 [0.06, 1.00] 1 0.084 ± 0.082
PAGE C-reactive protein 8321 0.995 [0.82, 1.00] 0.94 0.28 ± 0.046
PAGE Cigarettes per day 6995 0.999 [0.08, 1.00] 1 0.097 ± 0.047
PAGE Coffee consumption 11587 0.982 [0.10, 1.00] 0.9 0.074 ± 0.03
AoU Diastolic blood pressure 28765 1.000 [0.88, 1.00] 1 0.094 ± 0.015
PAGE Diastolic blood pressure 11005 1.000 [0.06, 1.00] 1 0.037 ± 0.028
UKBB Diastolic blood pressure 4017 1.000 [0.07, 1.00] 1 0.14 ± 0.084
UKBB Education years 3324 0.000 [0.00, 0.94] 0.4 0.055 ± 0.075
UKBB Ever smoked 4083 0.764 [0.04, 0.98] 0.31 0.17 ± 0.082
PAGE Fasting glucose 9646 0.695 [0.00, 0.93] 0.27 0.064 ± 0.035
PAGE Fasting insulin 7753 1.000 [0.21, 1.00] 1 0.13 ± 0.044
AoU HDL 8539 0.969 [0.65, 1.00] 0.66 0.24 ± 0.049
PAGE HDL 9929 0.788 [0.10, 0.99] 0.1 0.13 ± 0.036
UKBB HDL 3571 1.000 [0.66, 1.00] 1 0.35 ± 0.098
UKBB HLR count 3852 1.000 [0.07, 1.00] 1 0.12 ± 0.086
PAGE HbA1c 1740 1.000 [0.06, 1.00] 1 0.27 ± 0.2
UKBB HbA1c 3613 0.883 [0.07, 1.00] 0.58 0.17 ± 0.085
AoU Heart rate 28764 0.980 [0.82, 1.00] 0.74 0.099 ± 0.015
AoU Height 28800 0.952 [0.90, 0.99] 0.03 0.41 ± 0.017
PAGE Height 16705 0.902 [0.81, 0.97] 0.0042 0.39 ± 0.025
UKBB Height 4100 0.911 [0.51, 1.00] 0.37 0.43 ± 0.089
PAGE Hypertension 16617 0.910 [0.16, 1.00] 0.42 0.071 ± 0.021
UKBB Hypertension 4127 0.983 [0.09, 1.00] 0.93 0.16 ± 0.082
UKBB Hypothyroidism 4063 1.000 [0.05, 1.00] 1 0.046 ± 0.07
AoU LDL 8513 0.835 [0.06, 1.00] 0.46 0.075 ± 0.04
PAGE LDL 9574 0.967 [0.39, 1.00] 0.73 0.15 ± 0.037
UKBB LDL 3892 0.991 [0.26, 1.00] 0.94 0.28 ± 0.088
UKBB Lymphocyte count 3935 1.000 [0.00, 0.60] [0.66, 1.00] 1 0.13 ± 0.086
UKBB MCH 3948 0.829 [0.07, 1.00] 0.36 0.2 ± 0.076
PAGE MCHC 3650 0.228 [0.00, 0.87] 0.061 0.21 ± 0.092
UKBB Monocyte count 3935 0.972 [0.26, 1.00] 0.82 0.3 ± 0.087
UKBB Neuroticism 3044 1.000 [0.36, 1.00] 1 0.36 ± 0.11
PAGE PR interval 4071 0.844 [0.08, 1.00] 0.36 0.22 ± 0.084
PAGE Platelet count 8597 0.839 [0.20, 1.00] 0.12 0.18 ± 0.042
UKBB Platelet count 3948 0.617 [0.00, 0.90] 0.083 0.21 ± 0.086
PAGE QRS interval 4078 1.000 [0.07, 1.00] 1 0.12 ± 0.082
PAGE QT interval 4089 0.920 [0.07, 1.00] 0.69 0.16 ± 0.083
UKBB RBC count 3948 1.000 [0.37, 1.00] 1 0.31 ± 0.09
UKBB RBC distribution width 3925 1.000 [0.27, 1.00] 1 0.28 ± 0.087
AoU Systolic blood pressure 28765 1.000 [0.79, 1.00] 1 0.069 ± 0.014
PAGE Systolic blood pressure 11006 1.000 [0.11, 1.00] 1 0.073 ± 0.032
UKBB Systolic blood pressure 4017 1.000 [0.06, 1.00] 1 0.13 ± 0.086
AoU Total cholesterol 8676 0.861 [0.10, 1.00] 0.28 0.13 ± 0.041
PAGE Total cholesterol 9981 0.696 [0.10, 0.92] 0.0053 0.18 ± 0.036
UKBB Total cholesterol 3898 0.972 [0.36, 1.00] 0.81 0.32 ± 0.089
AoU Triglycerides 8698 0.891 [0.29, 1.00] 0.2 0.2 ± 0.043
PAGE Triglycerides 9896 0.792 [0.17, 1.00] 0.062 0.15 ± 0.036
UKBB Triglycerides 3900 0.822 [0.09, 1.00] 0.24 0.27 ± 0.082
UKBB Type 1 diabetes 3767 0.381 [0.00, 0.95] 0.77 −0.033 ± 0.016
PAGE Type 2 diabetes 14516 0.895 [0.47, 1.00] 0.24 0.12 ± 0.026
UKBB Type 2 diabetes 4114 0.920 [0.06, 1.00] 0.82 0.09 ± 0.072
AoU WHR 26689 0.989 [0.86, 1.00] 0.83 0.12 ± 0.017
PAGE WHR 10067 0.903 [0.15, 1.00] 0.38 0.12 ± 0.035
PAGE White blood cell count 8615 0.902 [0.61, 1.00] 0.17 0.25 ± 0.041
UKBB White blood cell count 4140 1.000 [0.13, 1.00] 1 0.18 ± 0.074
PAGE eGFR 7978 0.805 [0.16, 1.00] 0.09 0.19 ± 0.046

Table S5: Genome-wide genetic correlation across 38 complex traits (60 study-trait pairs) for African-
European admixed individuals in PAGE, UKBB, AoU. For each trait, we report number of individuals, posterior
mode and 95% credible interval(s) for estimated Aadmix, ?-value for rejecting the null hypothesis of �0 : Aadmix = 1,
and estimated heritability and standard error. Meta analysis results are performed across 60 study-trait pairs. UKBB
Lymphocyte count has two credible intervals because of the non-concave profile likelihood curve, likely as a result
of small sample size.
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See Supplementary Excel table.

Table S6: Genetic correlation estimation are robust to genetic architecture and SNP set. We performed Aadmix
estimation under the assumption of alternative genetic architecture and SNP set on real trait analysis across PAGE
and UKBB.We compared posterior mode, 95% credible intervals and ?-values (for testing Aadmix < 1) of our default
setting (using frequency-dependent genetic architecture and imputed SNPs; Table 1) to those obtained using GCTA
genetic architecture and imputed SNPs, and to those obtained using frequency-dependent genetic architecture and
HM3 SNPs. Study-trait pairs whose GCTA optimization failed to converge are indicated as ‘NA’.

See Supplementary Excel table.

Table S7: Summary statistics of 217 genome-wide significant trait-associated SNPs. We performed GWAS for
each of 60 study-trait pairs in PAGE, UKBB, AoU. We report summary statistics for each of trait-associated SNPs
that have association ? < 5 × 10−8 and minor allele frequency > 0.5% in both European and African ancestries.
For each pair of trait and SNP, we report association ?-value, HET ?-value, ancestry-specific allele frequencies
calculated within PAGE, UKBB, AoU admixed individuals, estimated ancestry-specific effect sizes and standard
errors. Across all 217 SNPs, Pearson’s A = 0.73 (SE 0.04), OLS regression slope of Vafr ∼ Veur = 0.84 (SE 0.06),
OLS regression slope of Veur ∼ Vafr = 0.64 (SE 0.06), Deming slope of Vafr ∼ Veur = 1.22 (SE 0.09), Deming
regression slope of Veur ∼ Vafr = 0.82 (SE 0.06). Across 193 SNPs after excludingMCH-associated SNPs, Pearson’s
A = 0.85 (SE 0.03), OLS regression slope of Vafr ∼ Veur = 0.92 (SE 0.05), OLS regression slope of Veur ∼ Vafr =
0.80 (SE 0.06), Deming slope of Vafr ∼ Veur = 1.08 (SE 0.05), Deming regression slope of Veur ∼ Vafr = 0.93 (SE
0.04).

ℎ26 Veur : Vafr w/o lanc included lanc regressed

0.2% 1.00 0.0515 (0.012) 0.0509 (0.01) 0.0768 (0.013)
1.05 0.0525 (0.011) 0.0514 (0.0096) 0.0791 (0.014)
1.10 0.0598 (0.01) 0.0575 (0.0094) 0.0814 (0.014)
1.15 0.0714 (0.011) 0.0613 (0.011) 0.0884 (0.014)
1.20 0.0826 (0.011) 0.0675 (0.01) 0.0946 (0.014)

0.6% 1.00 0.0503 (0.01) 0.0509 (0.0094) 0.166 (0.014)
1.05 0.0583 (0.011) 0.0557 (0.01) 0.174 (0.016)
1.10 0.0841 (0.012) 0.0687 (0.013) 0.191 (0.015)
1.15 0.113 (0.015) 0.0832 (0.013) 0.207 (0.018)
1.20 0.153 (0.016) 0.104 (0.013) 0.22 (0.019)

1.0% 1.00 0.0524 (0.01) 0.0528 (0.0091) 0.228 (0.018)
1.05 0.0631 (0.01) 0.0584 (0.0097) 0.242 (0.018)
1.10 0.0989 (0.013) 0.0771 (0.012) 0.263 (0.021)
1.15 0.158 (0.015) 0.106 (0.015) 0.283 (0.022)
1.20 0.227 (0.017) 0.147 (0.017) 0.308 (0.02)

Table S8: Numerical results for pitfalls of including local ancestry in estimating heterogeneity (Figure 5).
We report the false positive rate (for null simulations) and power (for power simulations) for HET ?-values. In
each simulation, we selected a single causal variant and simulated quantitive phenotypes where causal variants
had varying heritability ℎ26 = 0.2%, 0.6%, 1.0% and varying ratios of effects across ancestries Veur : Vafr =
1.0, 1.05, 1.1, 1.15, 1.2. Standard errors (displayed in parentheses) were calculated based on 100 random sub-
samplings with each sample consisting of 500 SNPs (Methods).
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HET FPR Deming (AFR∼EUR) Deming (EUR∼AFR) Pearson r OLS (AFR∼EUR) OLS (EUR∼AFR)
group ℎ26

Causal 0.2% 0.051 (0.01) 0.999 (0.013) 1.001 (0.013) 0.914 (0.009) 0.878 (0.023) 0.952 (0.024)
0.6% 0.051 (0.011) 0.996 (0.01) 1.005 (0.01) 0.964 (0.005) 0.943 (0.017) 0.985 (0.017)
1.0% 0.048 (0.008) 0.999 (0.008) 1.001 (0.008) 0.978 (0.002) 0.967 (0.013) 0.989 (0.013)

Clumped (single) 0.2% 0.048 (0.008) 1.003 (0.014) 0.997 (0.014) 0.886 (0.048) 0.837 (0.08) 0.939 (0.032)
0.6% 0.049 (0.009) 0.998 (0.009) 1.002 (0.009) 0.964 (0.004) 0.947 (0.017) 0.983 (0.017)
1.0% 0.047 (0.009) 0.999 (0.007) 1.001 (0.007) 0.978 (0.002) 0.968 (0.013) 0.988 (0.013)

Clumped (all) 0.2% 0.048 (0.008) 1.002 (0.014) 0.998 (0.014) 0.87 (0.047) 0.823 (0.074) 0.921 (0.05)
0.6% 0.064 (0.01) 0.996 (0.011) 1.004 (0.011) 0.859 (0.052) 0.797 (0.07) 0.927 (0.058)
1.0% 0.14 (0.014) 0.984 (0.009) 1.016 (0.01) 0.709 (0.054) 0.562 (0.07) 0.898 (0.072)

Table S9: Numerical results for simulations with single causal variant (Figure 6). We report the average and
standard errors for each metric in simulations. Standard errors (displayed in parentheses) are based on 100 random
sub-samplings with each sample consists of 500 SNPs. For clumped variants, we either retained only the SNP
with strongest association within each region (“Clumped (single)”), or retained all the SNPs from clumping results
(“Clumped (all)”) (Methods).

=causal ℎ26 HET FPR Deming (AFR∼EUR) Deming (EUR∼AFR) Pearson r OLS (AFR∼EUR) OLS (EUR∼AFR)

62 10% 0.181 (0.011) 0.985 (0.011) 1.015 (0.011) 0.916 (0.008) 0.858 (0.015) 0.978 (0.013)
20% 0.25 (0.013) 0.995 (0.012) 1.005 (0.012) 0.926 (0.005) 0.885 (0.013) 0.969 (0.012)

125 10% 0.195 (0.013) 0.987 (0.012) 1.014 (0.012) 0.884 (0.01) 0.817 (0.018) 0.957 (0.014)
20% 0.279 (0.015) 0.979 (0.014) 1.022 (0.015) 0.892 (0.007) 0.83 (0.015) 0.959 (0.015)

250 10% 0.203 (0.011) 0.975 (0.013) 1.025 (0.013) 0.874 (0.009) 0.804 (0.016) 0.95 (0.013)
20% 0.304 (0.014) 0.958 (0.017) 1.044 (0.019) 0.852 (0.009) 0.773 (0.016) 0.94 (0.02)

500 10% 0.249 (0.012) 0.922 (0.013) 1.085 (0.016) 0.838 (0.011) 0.739 (0.016) 0.951 (0.015)
20% 0.307 (0.015) 0.954 (0.019) 1.049 (0.021) 0.817 (0.011) 0.729 (0.018) 0.917 (0.019)

1000 10% 0.28 (0.011) 0.942 (0.012) 1.062 (0.014) 0.818 (0.009) 0.732 (0.014) 0.914 (0.014)
20% 0.361 (0.015) 0.906 (0.022) 1.105 (0.026) 0.761 (0.014) 0.651 (0.017) 0.89 (0.026)

(a) Results for causal variants

=causal ℎ26 HET FPR Deming (AFR∼EUR) Deming (EUR∼AFR) Pearson r OLS (AFR∼EUR) OLS (EUR∼AFR)

62 10% 0.234 (0.013) 0.963 (0.013) 1.038 (0.014) 0.548 (0.057) 0.383 (0.062) 0.789 (0.066)
20% 0.354 (0.015) 0.923 (0.02) 1.084 (0.024) 0.426 (0.046) 0.275 (0.044) 0.662 (0.075)

125 10% 0.23 (0.012) 0.971 (0.015) 1.031 (0.016) 0.606 (0.082) 0.498 (0.095) 0.745 (0.101)
20% 0.357 (0.013) 0.908 (0.021) 1.102 (0.026) 0.462 (0.047) 0.345 (0.054) 0.626 (0.083)

250 10% 0.217 (0.013) 0.97 (0.013) 1.031 (0.014) 0.669 (0.075) 0.567 (0.097) 0.798 (0.099)
20% 0.355 (0.015) 0.921 (0.019) 1.087 (0.022) 0.514 (0.055) 0.395 (0.07) 0.679 (0.086)

500 10% 0.25 (0.013) 0.941 (0.018) 1.063 (0.02) 0.632 (0.057) 0.531 (0.087) 0.759 (0.08)
20% 0.351 (0.014) 0.915 (0.02) 1.094 (0.024) 0.502 (0.061) 0.414 (0.083) 0.619 (0.089)

1000 10% 0.28 (0.012) 0.923 (0.016) 1.083 (0.018) 0.535 (0.067) 0.466 (0.088) 0.621 (0.071)
20% 0.395 (0.017) 0.875 (0.024) 1.144 (0.031) 0.459 (0.064) 0.393 (0.081) 0.543 (0.076)

(b) Results for clumped variants

Table S10: Numerical results for simulations with multiple causal variants (Figure 6). We report numerical
results for the 4 metrics in simulations with varying number of causal variants 62, 125, 250, 500, 1000 causal
variants (such that on average there were approximately 0.25, 0.5, 1.0, 2.0, 4.0 causal variants per Mb) and varying
heritability explained by all causal variants ℎ26 = 10%, 20%. We specified heritability values that were larger than
the chromosome 1 heritability of a typical complex trait because the limited sample size in our data produced only
few clumped variants when ℎ26 was small. We report the average and standard errors for each metric in simulations.
Standard errors (displayed in parentheses) were based on 100 random sub-samplings with each sample consists of
1,000 SNPs (Methods).
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ℎ26 Single All

0.2% 0.45 0.45
0.6% 0.57 0.51
1.0% 0.63 0.36

Table S11: Probability for the clumped variants being causal in simulations with single causal variant
(Figure 6). We report the probability for the clumped variants to be causal in simulations. “Single” corresponds
to retaining only the SNP with strongest association within each region and “All” corresponds to retaining all the
SNPs from clumping results (Methods).

EUR AFR lanc

EUR 1.00 -0.22 ± 0.0086 -0.55 ± 0.0098
AFR -0.22 ± 0.0086 1.00 0.36 ± 0.0092
lanc -0.55 ± 0.0098 0.36 ± 0.0092 1.00

Table S12: Correlation between ancestry-specific genotypes and local ancestry. We report the pairwise Pearson
correlation across ancestry-specific genotypes 6B,eur, 6B,eur and local ancestry ℓB. For each SNP, we calculated the
pairwise correlations across 17,299 individuals. We report the mean and SEM averaged across 500 random SNPs
across chromosome 1.

Group =causal HET FPR Deming (AFR∼EUR) Deming (EUR∼AFR) Pearson r OLS (AFR∼EUR) OLS (EUR∼AFR)
PAGE 1 0.052 (0.01) 0.999 (0.008) 1.001 (0.008) 0.964 (0.004) 0.947 (0.016) 0.981 (0.016)

41 0.623 (0.023) 0.888 (0.047) 1.129 (0.06) 0.748 (0.019) 0.651 (0.023) 0.86 (0.035)
Simu 20% EUR 80% AFR 1 0.048 (0.008) 0.995 (0.008) 1.005 (0.008) 0.968 (0.004) 0.946 (0.018) 0.99 (0.017)

41 0.6 (0.021) 0.922 (0.038) 1.086 (0.045) 0.808 (0.014) 0.727 (0.022) 0.899 (0.028)
Simu 80% EUR 20% AFR 1 0.047 (0.008) 1.001 (0.008) 0.999 (0.008) 0.967 (0.004) 0.987 (0.017) 0.948 (0.016)

41 0.581 (0.022) 1.067 (0.048) 0.939 (0.043) 0.817 (0.014) 0.899 (0.032) 0.743 (0.023)

(a) Results for causal variants

Group =causal HET FPR Deming (AFR∼EUR) Deming (EUR∼AFR) Pearson r OLS (AFR∼EUR) OLS (EUR∼AFR)
PAGE 1 0.114 (0.014) 0.989 (0.011) 1.011 (0.011) 0.857 (0.044) 0.792 (0.081) 0.931 (0.05)

41 0.604 (0.022) 0.403 (0.181) 2.322 (0.34) 0.134 (0.052) 0.109 (0.048) 0.169 (0.064)
Simu 20% EUR 80% AFR 1 0.083 (0.013) 0.991 (0.009) 1.009 (0.009) 0.821 (0.056) 0.688 (0.091) 0.983 (0.027)

41 0.566 (0.021) 0.593 (0.063) 1.705 (0.183) 0.331 (0.045) 0.188 (0.037) 0.586 (0.079)
Simu 80% EUR 20% AFR 1 0.069 (0.01) 1.004 (0.009) 0.996 (0.009) 0.871 (0.056) 0.893 (0.086) 0.855 (0.082)

41 0.508 (0.024) 1.527 (0.147) 0.661 (0.063) 0.315 (0.051) 0.222 (0.045) 0.451 (0.083)

(b) Results for clumped variants

Table S13: Simulation results in PAGE data set and simulated genotype data sets with varying ancestry
proportion (Figure S8). We report numerical results for the 4 metrics in genotype data sets with varying ancestry
proportion. For each data set, we varied =causal = 1, 41 and fixed the heritability at ℎ26 = 0.6%. We report the
mean and standard errors for each metric. Standard errors (displayed in parentheses) are based on 100 random
sub-samplings with each sample consists of 500 SNPs. See details for simulation in Figure S8.
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