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Abstract

COVID-19 is unlikely to be the last pandemic that we face. Accord-
ing to an analysis of a global dataset of historical pandemics from 1600
to the present, the risk of a COVID-like pandemic has been estimated
as 2.63% annually or a 38% lifetime probability. This rate may double
over the coming decades. While we may be unable to prevent future
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2 RapiD AI

pandemics, we can reduce their impact by investing in preparedness.
In this study, we propose RapiD AI : a framework to guide the use
of pretrained neural network models as a pandemic preparedness tool
to enable healthcare system resilience and effective use of ML during
future pandemics. The RapiD AI framework allows us to build high-
performing ML models using data collected in the first weeks of the
pandemic and provides an approach to adapt the models to the local
populations and healthcare needs. The motivation is to enable health-
care systems to overcome data limitations that prevent the development
of effective ML in the context of novel diseases. We digitally recre-
ated the first 20 weeks of the COVID-19 pandemic and experimentally
demonstrated the RapiD AI framework using domain adaptation and
inductive transfer. We (i) pretrain two neural network models (Deep Neu-
ral Network and TabNet) on a large Electronic Health Records dataset
representative of a general in-patient population in Oxford, UK, (ii)
fine-tune using data from the first weeks of the pandemic, and (iii) sim-
ulate local deployment by testing the performance of the models on a
held-out test dataset of COVID-19 patients. Our approach has demon-
strated an average relative/absolute gain of 4.92/4.21% AUC compared
to an XGBoost benchmark model trained on COVID-19 data only.
Moreover, we show our ability to identify the most useful historical pre-
training samples through clustering and to expand the task of deployed
models through inductive transfer to meet the emerging needs of a
healthcare system without access to large historical pretraining datasets.

Keywords: Pandemic Preparedness, Machine Learning, Transfer Learning,
Healthcare

1 Introduction

COVID-19 has introduced a shock that has substantially disrupted often
unprepared healthcare systems globally and exposed an array of gaps and
vulnerabilities that contributed to the sub-optimal outcomes during the pan-
demic [1, 2]. Haldane and colleagues [1] developed a framework of healthcare
system resilience based on the WHO building blocks of healthcare systems:
(1) Governance, financing, and collaborations across sectors, (2) Community
engagement, (3) Health Service Delivery, (4) Health workforce, (5) Medical

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2022. 
this version posted August; https://doi.org/10.1101/2022.08.09.22278600doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278600
http://creativecommons.org/licenses/by-nc/4.0/


RapiD AI 3

Products and technologies, and (6) Public health functions. Resilient health-
care systems are identified by their ability to (A) Activate comprehensive
responses, (B) Adapt health system capacity, (C) Preserve health system func-
tions and resources, and (D) Reduce vulnerability. Such systems are robust to
external shocks and are proactive rather than reactive in managing and mit-
igating risk with heavy investment in preparedness and the ability to scale
response to threats effectively when challenged. Capacity and resilience during
the COVID-19 pandemic were frequently inadequate. The pandemic illustrated
that the current metrics used to measure the preparedness of healthcare sys-
tems should change as they did not reflect performance during the pandemic.
For example, the US was ranked atop the Global Health Security Index, yet it
was one of the hardest-hit countries [3]. There is expert consensus that we will
have an increasing number of pandemics in the future as our world becomes
more connected. The latest estimates illustrate that the rate of extreme pan-
demics is higher than previously believed and that it is accelerating: 2.63%
annually or a 38% lifetime probability, with the possibility to double in the
coming decades [4]. In the context of pandemic preparedness, relatively little
attention is channelled towards data science and AI. Healthcare systems face
tremendous pressures during a novel disease pandemic. AI has the potential to
optimise and assist the performance of healthcare systems in many areas (pan-
demic spread prediction, infectious agent mutation prediction, patient triage,
patient management, and diagnosis). The COVID-19 pandemic is the first pan-
demic that witnessed a proliferation of machine learning solutions and offers us
an opportunity to learn about the successes and challenges of machine learning
implementation [5–10]. Some of the challenges are below

1. Machine learning applications during the pandemic were reactive due to
the lack of investments in machine learning preparedness.

2. The lack of access to data was a major barrier to building machine learning
algorithms. Two factors contribute to the lack of data (i) COVID-19 is
caused by a new infectious agent that healthcare systems have not seen
before. This means that historical disease data is unavailable, and (ii) the
lack of national and regional frameworks that allow effective data pooling
and aggregation across healthcare facilities means that data ends up in
small silos too small to enable the train of effective AI algorithms.

3. Distributional shifts (e.g., incidence changes, outcome prevalence, popu-
lation characteristics) occur during the different phases of the pandemic.
These may be driven by population-level control measures, behaviour and
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4 RapiD AI

healthcare use changes, and the impact of novel pathogen variants, vacci-
nations, and treatments. Distribution shifts substantially impact machine
learning performance, especially when training data is limited. This creates
variability in model performance, lack of robustness, bias, and many other
challenges. Singh and colleagues [11] demonstrate the impact of distribu-
tion shifts across 179 US facilities on a sepsis prediction model. Duckworth
and colleagues [12] show distribution shifts during the COVID-19 pandemic
and evaluate their impact on a hospital admission prediction model.

Taking the above challenges into account, the effective utilisation of AI in the
context of a novel disease pandemic will require a shift towards a proactive
development and implementation framework. The standard ML development
framework includes a phase of data collection or data acquisition. This is espe-
cially important in problems on which we do not have enough historical data,
such as a novel disease. In the context of a pandemic, human life is too pre-
cious to wait to collect enough data to train and deploy AI. Therefore, we
need better development approaches that overcome the limited availability
of data during pandemics. We present the concept of Rapidly Deployable AI
models (RapiD AI) as a novel disease and pandemic preparedness tool. The
RapiD AI framework enables healthcare systems to leverage the availability of
historical non-pandemic data to build models that can be rapidly deployed in
the case of a novel disease using small amounts of data collected during the
early encounters of the healthcare system with the novel pathogen [figure 1].
We provide an experimental demonstration of the framework by comparing
two sets of models. The first is pretrained : models trained historical patient
data and fine-tuned using COVID-19 data collected during the first weeks of
the pandemic. The second is trained from scratch : models trained on the
COVID-19 data collected during the first weeks of the pandemic. We show
that we can (i) use pretraining to gain a performance advantage over train-
ing from scratch [Scenario A], (ii) use a clustering approach to select the most
useful pretraining samples to produce non-inferior performance [Scenario B],
and (iii) expand the task of a deployed pretrained model to a pandemic-related
task using inductive transfer [Scenario C] [figure 2].
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Fig. 1 Section (a) provides an overview of the COVID-19 and historical training data used
for our experimental workflow, along with a timeline to demonstrate the training and deploy-
ment process. Section (b) shows the work schema RapiD AI framework for the development
of rapidly deployable AI models as a pandemic preparedness tool: (1) Different sources of
data can be used to pretrain many models (2) During new pandemics, these models can
be released (3) These models can be fine-tuned using limited population-specific local data
gathered in the first weeks of the pandemic to generate population-specific models across a
variety of tasks and data categories (e.g., EHR tabular, imaging, genomics data, etc.). Such
an approach addresses the issue of limited data available in the context of novel disease pan-
demics
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6 RapiD AI

Fig. 2 Sections (a1-a3) shows basic statistics (Total number of patients, percentage of
patients with deterioration, average age, and percentage of females) of our datasets DH,
DW1, and DW2 respectively. Sections (b1-b3) show each dataset’s use in our 3 experimental
workflows. We used three models in our experiments: Deep Neural Network (DNN),
TabNet, and XGBoost. Our neural network models (DNN & TabNet) are pretrained on DH

and fine-tuned on weekly cumulative data from DW1, while XGBoost, DNN (from scratch)
and TabNet (from scratch) models are trained with weekly cumulative data from DW1. All
models are tested on DW2 except for DNN and XGBoost from figure 4 (c) where test data
is a smaller segment of DW2 given we extended DW1 and reduced the size of DW2.
* TRD is the respiratory deterioration task, ** TGD is the general deterioration task. (A
detailed description is available in the results & methods sections)
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Fig. 3 The difference between two transfer learning approaches used in our work (domain
adaptation and inductive transfer). In domain adaptation, we have the same task but dif-
ferent data distribution in source and target domains. In inductive transfer, the source and
target domain tasks differ, while the data distribution could be the same or different. DS
is the source data from which we extracted pretraining datasets, DT is the target domain
data. TRD is the Respiratory deterioration task. TGD is the general deterioration task. (A
detailed description is available in the results & methods sections)
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8 RapiD AI

Fig. 4 Section (a1) compares the average performance of DNN (transfer learning) with
many configurations of XGBoost based on different sets of hyperparameters. Using the
best configuration of the first three weeks, we plot in (a2) the average performance and
confidence intervals of XGBoost and DNN (transfer learning) models. Section (b1) shows
the difference in DNN performance with and without pretraining. Section (b2) shows the
same as (b1) but for the TabNet. The lower part of (c) shows the weekly number of COVID-
19 hospital admissions in the UK between March 2020 and Jan 2021; the middle part shows
the difference in AUC between XGBoost and pretrained DNN and the upper part reflects an
attempt at measuring the potential clinical performance gain. Gain is measured by scaling
the algorithmic AUC performance gain (as a %) by a factor of COVID-19 weekly hospital
admissions in the UK. The algorithmic gain is measured as the AUC performance differential
between the pretrained DNN and the benchmark XGBoost. This is based on the assumption
that an algorithm is triggered on average once per admission. The number illustrates the
improved performance delivered by a pretrained DNN compared to an XGBoost trained on
COVID-19 data only.
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2 Results

2.1 Dataset

In our work, we used three datasets extracted from the same population:

1. DH: Pre-pandemic dataset from Jan 2016 to Dec 2019. General in-patient
cohort.

2. DW1: March 2020 to July 2020. COVID-19 patients only. This represents
the first wave of the pandemic.

3. DW2: August 2020 to June 2021. COVID-19 patients only. This represents
the second wave of the pandemic.

Each patient in the dataset has multiple observations, each of them charac-
terised by a 77-dimensional feature vector and a label exhibiting the occurrence
of a respiratory deterioration event within the next 24 hours. The features
include commonly measured vital signs and laboratory parameters as well as
the variability of those features over time D4. Figure 2 (a1 & a2 & a3) illus-
trates the cumulative number of patients as well as the demographic statistics
of patients and the rate of deterioration for the three datasets: DH, DW1, DW2.

2.2 Task Definition

In our experimental process, we use two distinct task definitions. Both are
composite patient deterioration prediction tasks. The first is a respiratory
deterioration prediction task TRD, a composite task based on the escalation
in the level of oxygen support requirement in a forward-looking window of 24
hours from level 0/1 to level 2/3 or unplanned ICU admission (as a proxy
for mechanical ventilation in COVID-19 patients). We defined the level of
support based on the oxygen delivery devices used. A list of the devices and the
corresponding level of support is documented in A1. The second is a general
deterioration prediction task TGD, defined as the composite outcome of
mortality or ICU admission in a forward-looking window of 24 hours. In both
tasks, outcomes happening less than 1 hour after admission were excluded. In
the case of multiple occurrences of adverse events for one patient, we removed
observations recorded after the first event.
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10 RapiD AI

2.3 Experimental setup

Our experimental setup is based on three scenarios (A, B, C). An XGBoost
model trained from scratch on weekly COVID-19 data was used as the bench-
mark performance measure in the three scenarios. We chose XGBoost because
it is one of the standard go-to models for tabular data problems [13]. More-
over, XGBoost has demonstrated strong performance on tasks similar to those
used in our experimental workflow. The PreVent study compared various
ML models to predict respiratory deterioration in COVID-19 patients and
demonstrated that XGBoost achieved the best performance [14].

2.3.1 Scenario A: Domain adaptation

In this experimental section, we sought to illustrate the value of using historical
data in pretraining RapiD AI models in the context of a pandemic of a novel
disease [figure 2 (c)]. We have used DH to pretrain our deep learning models.
We used DW1 to either (i) train our benchmark XGBoost and neural network
models (DNN & TabNet) from scratch or (ii) fine-tune the pretrained networks.
We used DW2 as a held-out test dataset to evaluate the performance of the
models.

We chose Deep Neural Network and TabNet models to test the RapiD AI
framework. TabNet is a deep learning sequential attention-based model
released by Google Brain. Its authors argue that the model has the potential
to dominate tabular data problems [15]. Our benchmark model is an XGBoost
model trained on cumulative weekly data from DW1.

Model performance

Our results show that pretraining deep neural models boosted their perfor-
mance over the first 20 weeks of the pandemic. Pretraining improved DNN
performance by relative/absolute 110.87/41.71% AUC in the first week of the
pandemic and then by a stable absolute average of 3.86% AUC over the next
19 weeks [figure 4 (b1)]. Pretraining improved TabNet performance by an aver-
age relative/absolute gain of 16.24/9.16% AUC over the first 20 weeks of the
pandemic [figure 4 (b2)].

We also extended the evaluation window to include the first ten months of
the pandemic (Mar ’20 - Jan 21). We tested our RapiD AI DNN model against
baseline XGBoost trained on the cumulative weekly data [figure 4 (c)]. We show
that our RapiD AI universally outperforms the baseline XGBoost model by
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relative/absolute 4.37/3.58% AUC in the first four weeks of the pandemic and
relative/absolute 4.92/4.21% AUC on average in the whole period. In the case
of a novel global disease pandemic, these small gains in performance can poten-
tially translate into significant clinical and operational benefits. In the first
23 months of the pandemic (until January 2022) the UK experienced 678,091
COVID-19 hospital admissions [16]. The lower section of figure 4 (c) shows
the number of weekly COVID-19 cases in the UK, and the upper part reflects
the performance gain we can achieve. The clinical impact is measured by scal-
ing the performance gain (as a %) by a factor of COVID-19 weekly hospital
admissions in the UK. The performance gain is measured as the AUC perfor-
mance differential between the pretrained DNN and the benchmark XGBoost.
The 4.21% average gain in algorithm AUC translates into a gain of up to 1,399
added correct classifications weekly if rolled across the UK National Health
Service. This number could translate into better targeted medical interventions
for thousands of patients.

Model robustness

Our results demonstrate that RapiD AI models are more robust than baseline
XGBoost and non-pretrained models. Figure 5 (a1) illustrates the variability
in the performance of the XGBoost model with different hyperparameter (HP)
sets. With certain sets of hyperparameters, the model performs well in some
weeks and poorly in others. For example, using the first three months of our
training data, we still get fluctuating AUC (63%-91%) depending on our chosen
hyperparameters. Generally, there is no universally best-performing HP set,
and achieving the optimal performance of the model would require frequent HP
fine-tuning if implemented in practice. Moreover, figure 4 (a2) illustrated that
our RapiD AI DNN has consistently narrower Confidence Interval CI com-
pared to a baseline XGBoost over the first 20 weeks of the pandemic. Figures 5
(b1 & b2) illustrate that pretrained DNN and TabNet models have narrower CI
compared to the same models trained from scratch on weekly cumulative data.
This consistency would translate into more stable performance after deploy-
ment. Figure 5 (c) demonstrates the RapiD AI DNN stability and superiority
over time compared to XGBoost.

2.3.2 Scenario B: Pretraining optimisation

This experiment aims to replicate the scenario of a healthcare system facing
a novel disease pandemic while having access to sufficient historical data. The
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12 RapiD AI

source domain (pretraining historical data) is large (more than nine million
samples) and diverse. It represents all possible clinical conditions that require
an in-patient admission within the source population. In this scenario, we
hypothesized that by selecting the most relevant pretraining examples, we
might achieve superior performance compared to pretraining on all historical
data while reducing the computational demand of the pretraining process. We
considered the historical examples with maximum similarity to the COVID-
19 data to be the most relevant. The selection of pretraining samples was
attempted in two ways:

• Using human experience: We asked a physician with COVID-19 care expe-
rience to identify five disease clusters with various degrees of similarity to
the observed clinical pattern of COVID-19 in the first week of the pandemic.
We identified five clusters with various degrees of similarity: viral pneumo-
nia (similar), all-cause pneumonia (similar), acute pancreatitis (dissimilar),
Asthma (dissimilar), and heart failure (dissimilar). The ICD10 codes used to
identify each condition are listed in B2. After that, we plotted the similarity
of COVID-19 patients to these five clusters using a tSNE clustering approach
[figure 5 (a)]. The clusters most similar are viral pneumonia (expected)
and pancreatitis (unexpected). This indicates that, in our case, the training
examples with the most similar distribution to COVID-19 (i.e., most useful
training examples) can not be identified using clinical intuition alone.

• Using computational approach: We used a computational approach to iden-
tify the most useful training examples. Using tSNE, we plotted clusters of
all the historical data along with the COVID-19 samples from the first three
weeks [figure 5 (b)]. Using clustering, we identified historical clusters similar
to COVID-19 and pretrained on these clusters. We did pretraining exper-
iments with 10%, 20%, 30%, 40%, and 50% of data and found that using
30% & 50% of pretraining clusters resulted in the best balance. Figure 5 (e)
shows the average performance over the last five weeks when using differ-
ent data partitions. Figure 5 (d) shows a detailed performance comparison
between 3 models: XGBoost, DNN model pretrained on 30% of data and
DNN model pretrained on all available data. A DNN pretrained on 30% of
the clusters demonstrated non-inferior performance compared to a network
pretrained on all data.
We identified the most frequent ICD10 codes in the 10% most similar clus-
ters [figure 5 (c)]. The top 10 codes were: I10, Z922, Z864, Z501, I489, N179,
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Z867, Z921, E119, N390. The full list of ICD-10 [appendix table B3]. We
observe that the most frequent ICD10 codes were not clinically intuitive.
However, this is compounded given (i) the frequency of the codes in the gen-
eral population may influence the composition of the most frequent ICD10
codes in the selected training clusters, and (ii) multiple ICD10 codes per
patient make it difficult to discern the code of primary diagnosis.

2.3.3 Scenario C: Task expansion & inductive transfer

This scenario aims to replicate the scenario of a healthcare system facing
a novel disease pandemic while having access to deployed machine learning
models but not historical data. Using the approach of inductive transfer, we
repurposed a pretrained deployed model to build an algorithm that would
address a different clinical problem in the context of a novel pandemic. A pre-
trained DNN on a general patient deterioration task TGD was fine-tuned using
weekly COVID-19 data to perform a respiratory deterioration task TRD in
COVID-19 patients. The algorithm demonstrated a performance relative/ab-
solute gain of 11.93/9.32% AUC over the first two weeks of the pandemic
compared to an XGBoost trained only on weekly data. The performance gain
was sustained over the first 20 weeks of the pandemic with an average AUC rel-
ative/absolute increase of 7.57/6.42%. Inductive transfer showed a dominant
performance over domain adaptation (scenario A) and clustering (scenario B)
[figure 6 (b)]. The dominant performance of the inductive transfer approach
over domain adaptation can be attributed to the fact that the knowledge
gained from training on two different tasks boosted the model capacity. This
can be seen similar to the benefits multi-task learning introduces to the gen-
eralisation of models [17]. Besides the dominant performance, this model can
be deployed faster than others as the pretrained part is assumed to be ready
and borrowed from a previously trained task.
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Fig. 5 The figure outlines the results of the clustering experiments to identify the most
relevant historical pertaining examples. Section (a) shows the similarity between COVID-19
samples and five selected disease populations based on ICD-10 codes. Of the five groups,
COVID-19 patients are most similar to Acute Pancreatitis and Viral Pneumonia patients.
Section (b) plots COVID-19 samples against cluster centres of the historical pretraining
data. Based on this plot, we select the most similar 10, 20, 30, 40, and 50% of historical
data clusters and use the selected data for pretraining. Section (c) shows the most frequent
ICD-10 codes in the top 10% of the selected clusters. Section (d) Shows that a pretrained
DNN model with only 30% of data can result in non-inferior performance compared to a
model pretrained on 100% of historical data. Section (e) shows the performance of our DNN
model as a function of the proportion of data used for pretraining. AUC was averaged over
the last five weeks of DW1 dataset.
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Fig. 6 The figure summarizes the experimental results for scenario C. Section (a) shows
the superior performance of inductive transfer over models trained from scratch. Section (b)
compares the performance of models trained using inductive transfer and domain adaptation
and the performance of models pretrained on 30% of data identified using clustering from
scenario B. All the provided models showed superiority over the XGBoost model.

3 Conclusions

We show that pretrained DNN models can deliver superior performance during
a novel disease pandemic compared to DNN and XGBoost models trained
from scratch on cumulative pandemic data alone. We show gains in AUC,
consistency, and robustness (measured by Confidence Interval and performance
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variability). Moreover, we demonstrate that we can identify the most relevant
historical training examples. We use 30% of the pretraining data to produce
a model that approximates the performance of a model pretrained on the
entire historical dataset. We also show that by using inductive transfer, we
readjust a deployed model to our COVID-19 task. Beyond those results, our
work highlights a few key points:

First, methodologies are needed to address the lack of training data during a
pandemic. During healthcare emergencies caused by a new pathogen or disease,
healthcare systems are exposed to an increased demand by clinical cases with
unique pathophysiology not described before. In the early phases, the lack
of data on the novel infectious agent limits the ability to develop machine
learning and statistical tools that can assist healthcare systems in coping with
emergencies.

The lack of data exposes models to a high risk of bias and limits gener-
alisability. Models developed in the early phase of the pandemic have indeed
demonstrated methodological limitations like bias, lack of validation, and cali-
bration [18–22]. Both domain adaptation and inductive transfer methodologies
can address the lack of data. Yet, despite the promise and positive results of
transfer learning, its applications in healthcare are very limited [23–25]. This
work is one of the few demonstrations of transfer learning on tabular EHR
data.

Second, machine learning algorithms are susceptible to distribution shifts.
Modern AI and deep learning show excellent performance as long as the train-
ing and test data are from a similar population/distribution [26]. Hence, a
model trained on one population may not perform when deployed on a differ-
ent population, even for the same task. In that sense, Deep Learning is local
[27, 28]. The local nature of Deep Learning calls for model domain adapta-
tion and fine-tuning when deploying to populations different from the training
set, allowing models to capture the distribution shifts that occur across popu-
lations due to workflow, genetic, environmental, and other differences. In the
context of a pandemic, algorithms are also susceptible to distribution shifts
due to the changing dynamics of the disease/population over time (e.g., vac-
cines have reduced the severity of COVID-19 cases). To capture these shifts,
we should incorporate online and incremental learning (frequent model retrain-
ing) into the local deployment pipeline. Recent regulatory updates such as the
FDA algorithmic predetermined change control plan make the localisation and
frequent fine-tuning practically, and regulatorily possible [29].
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Third, we demonstrate that while the computational efficiency of the pre-
training process can be optimised, selecting the most relevant pretraining
samples does not lead to superior performance in our case. We also show
that identifying the most useful training examples is not clinically intuitive.
Hence an optimal pretraining optimisation approach is likely to be either
purely computational or hybrid computational-clinical. This raises the ques-
tion of whether machines identify clinical patterns that humans overlook. One
potential reason is that humans and machines have different representations
of diseases. Humans understand diseases based on the underlying pathophys-
iological processes. Machines see data only and understand diseases based on
data. From a clinical standpoint, COVID-19 acute pneumonia and acute pan-
creatitis are very different diseases. From a machine’s perspective, these two
disease can be similar in the acute deterioration and decompensation patterns.

In this paper, we showcase the RapiD AI framework as a pandemic pre-
paredness tool and a conceptual framework for the implementation of machine
learning during a novel disease pandemic [figure 1 (b)]. To overcome the limita-
tions brought forward by the lack of data and pathogen novelty, we suggested
using historical data to pretrain rapidly deployable models. The models can be
fine-tuned to reach optimal performance rapidly using small amounts of data
collected during the early encounters with the novel pathogen at a local level.

RapiD AI framework suggests building rapidly deployable neural network
models using historical data to circumvent the need for large quantities of
novel disease training data. The models can be pretrained on historical data
from different domains such as biomedical signals (e.g., ECG), EHR, medi-
cal imaging, genomics, and epidemiology [figure 1 (b)]. This approach leads
to a library of models specific to different data modalities: an ECG model, an
EHR model, a CT model, etc. These models can be rapidly deployed when
the need emerges to support the pandemic response. The models can address
predictive tasks that vary according to the data modality (e.g., patient triage
and deterioration prediction for EHR models or disease spread prediction for
epidemiological models). The models can be built using global data, main-
tained by health authorities, and released in the event of a pandemic. Local
healthcare stakeholders can (i) use the data they collect during the first weeks
of the pandemic to fine-tune the pretrained models using domain adaptation
or inductive transfer, and (ii) maintain these local models as the pandemic
unfolds using online learning and fine-tuning. This approach uses generic pre-
trained deep learning models to develop localised versions of the model that
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address the local needs of healthcare facilities and populations either by allow-
ing the adaptation of the model to the local patient data distribution or by
adapting the predictive task according to the needs of the local facilities.

While it is true that historical data can be different than the disease
at hand, pretraining is helpful because neural networks benefit from being
exposed to a large quantity of data similar in structure to the data of the tar-
get task. A large pretraining dataset helps the neural network understand the
nature of different features and their interplay. The hierarchical structure of
neural networks means the knowledge in each layer builds on that contained in
the layers below. In a computer vision algorithm, the lower layers learn simple
features like edge and colour detection, the middle layers learn more com-
plicated features and representations, and the higher layers learn the specific
semantics of the task at hand. The knowledge in the lower and middle layers
is non-task-specific. A non-disease-specific dataset can teach the network this
knowledge, especially if it contains large data. On the other hand, the knowl-
edge in higher layers is task-specific. It needs to be learned from task-specific
data (e.g., COVID-19 data collected in the first weeks of the pandemic in our
case). The utility of transfer learning is most pronounced in problems where
task-specific data is scarce, such as a novel disease pandemic [30–32].

Analysis of the performance of different healthcare systems during the pan-
demic illustrated that the best performing systems had high preparedness and
resilience and could scale a response effectively and agilely. Healthcare system
resilience includes medical technologies [1]. Data science and AI preparedness
should be a part of healthcare system resilience, given the potential impact
of AI on optimising pandemic response. We envision RapiD AI to have the
potential to be a pandemic preparedness tool that would give healthcare sys-
tems the capability to deploy AI models rapidly after early encounters with a
novel pathogen.

We suggest the RapiD AI framework to support healthcare system pre-
paredness and the effective use of AI during a novel disease pandemic.
COVID-19 was arguably the first pandemic that witnessed large-scale exper-
imental use of modern machine learning. Pandemics are expected to increase
in frequency and scale. Machine learning can save human life and be a revo-
lutionary enabler of healthcare systems and capabilities. To achieve that, we
need to consider the lessons learned from the successes and failures of using
AI during the COVID-19 pandemic.
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All data in our study comes from multiple facilities in a single city,
potentially reducing generalisability. Future research could explore the repro-
ducibility of findings using pretrained models across different populations.
Moreover, we have only used a small subset of the potentially usable models.
More model architectures should be explored. Finally, we explored the appli-
cation of the RapiD AI framework on EHR data only. More data modalities
(such as biomedical signals and imaging data) should also be explored.

4 Methods

4.1 Dataset

In our work, we used three datasets extracted from the same population:

1. DH: Jan 2016 till Dec 2019. General in-patient cohort.
2. DW1: March 2020 till July 2020. COVID-19 patients only. This represents

the first wave of the pandemic.
3. DW2: August 2020 till June 2021. COVID-19 patients only. This represents

the second wave of the pandemic.

These datasets are de-identified data from the Infections in Oxfordshire
Research Database (IORD). This dataset has approvals from Research Ethics
Committee, Health Research Authority, and Confidentiality Advisory Group.
The data is collected from patients admitted to Oxford University Hospitals
(OUH) between January 2016 and June 2021. The data include administrative
data, vital sign measurements, laboratory test results, and data on the level
of oxygen support. Both DW1 and DW2 datasets include only data of COVID-
19 patients, while DH contains historical data of non-COVID-19 patients. For
each evaluated approach, a subset of samples was extracted from each dataset
to build the dataframe used for experimentation. Each patient has multiple
rows representing the observations recorded during the clinical stay. Observa-
tions are recorded at irregular intervals reflecting the time when the hospital
staff took the clinical measurements. Each data sample is characterised by a
77-dimensional feature vector and a label exhibiting the possible occurrence
of respiratory deterioration events within the next 24 hours (in a retrospective
manner). The features include demographic characteristics, vital sign measure-
ments, laboratory test results, and the level of oxygen support measured by
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FiO2. Moreover, our features include synthetic features that reflect the vari-
ability of the clinical features (range, mean of a previous 24-h window) in a
trailing window of 24 hours. The full list of features is outlined in D4.

Overall, DW1 dataset was used to train models in a way that simulated
the first wave of the pandemic, i.e., the samples were split cumulatively into
partitions, where partition i ∈ {1, ..., 20} contains data from week one up to
week i [figure C]. Models were trained and validated on each partition and
tested on the held out DW2 dataset. DW1 includes 20 weeks (partitions) that
represent the first wave of the pandemic. DH dataset was used to pretrain
the models on a source task TSource then each of the resulting models was
fine-tuned using DW1 to solve a target TTarget task [figure 2].

4.2 Model architectures

A three-layered fully-connected deep neural network (DNN) was trained to
predict respiratory deterioration events. This model consists of three dense
layers having 308, 231, and 1 hidden nodes or units. The first two layers are
followed by ReLU activation function, and the last one or output layer is
followed by sigmoid activation function. A dropout rate of 0.25 is used between
each dense layer for regularising the training process. The binary cross-entropy
is used as an objective or loss function, and Adam, with a fixed learning rate
of 0.0001 is used as an optimiser to train the models. The models are trained
for 100 epochs, and early stopping is used to store the best-performing weights
or parameters on the validation data.

Gradient boosting machines are a set of machine-learning techniques that
combine many weak learning models (models that are only slightly better than
the random prediction) to create a strong model [33]. Gradient boosting on
decision trees is a well-established ensemble machine learning algorithm that
uses trees as weak learners. The idea of boosting is based on sequentially
building weak estimators. Initially, all data samples have the same weight.
However, at successive iterations, the weights of mislabelled training samples
by the boosted model at the previous step are increased, while the weights are
decreased for the remaining training samples. Hence, as iterations proceed, the
influence of difficult samples is increased. Later, it combines the predictions
through a weighted majority vote to reduce the bias of the combined classifier.
XGBoost [34] is a highly efficient and accurate implementation of gradient
boosting trees known to provide state-of-the-art performance on tabular data.
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TabNet [15] is a deep learning-based approach for tabular data problems. It
uses sequential attention [35] to determine which features to use at each deci-
sion step (i.e., performing instance-wise feature selection), resulting in better
interpretability and more efficient learning. The model architecture is com-
posed of multiple steps, each step plays the role of a separate classifier, and
they vote together to get the final classification. However, these classifiers are
not completely independent since some layers are shared between steps to
provide robust learning and high learning capacity.

4.3 Model development and training

We pretrained DNN and TabNet models on DH dataset, then fine-tuned and
validated using DW1 and finally tested on DW2. Since pertaining is not appli-
cable for XGBoost we trained and validated it with DW1 and tested it on DW2.
For simplicity, we will refer to fine-tuning and XGBoost training as training.

During training, we split DW1 into cumulative parts, where part i contains
data from weeks one up to i. For each part, we applied grid search to find
the best HP for each model. Each part is split into train/validation sets (80 /
20). We trained the model on the train set and validated it on the validation
set. We optimized the classification threshold using the validation set to get
better performance (measured by the AUROC metric). Finally the models
were tested on DW2.

For XGBoost we tried to tune the number of estimators,(11, 13, 15, 17,
19), their depth (7, 8, 9, 10, 11, 12, 13) and learning rate (0.01, 0.1, 0.2, 0.3).
Configuring neural networks is more difficult and sometimes computationally
heavy, especially for the TabNet model. So for choosing the architecture and
HP, we tend to rely on our understanding of the complexity of our problem
and the semantics of the parameters being tuned. For DNN, we used an input
layer of size 77, two hidden layers of size 304 and 231, and an output layer
of size 1 with a sigmoid activation function. We used a dropout rate of 0.1
between the dense layers and tried to find the optimal learning among [0.0001,
0.0005, 0.001, 0.005, 0.01]. TabNet was the heaviest computationally. We tried
the values 32, 64, 128 for n a and n d, 5, 7, 9 for n steps, and 1.5, 1.75 for
gamma, however for pretraining, we used n steps = 5, n a = n d = 128 so that
our model can generalise to the large number of samples we have.

Among the tested configurations, we used the best parameters set from the
first three weeks as the final parameters for our models. After that, we eval-
uated the models’ stability through confidence intervals. To do that, we used

 . CC-BY-NC 4.0 International licenseIt is made available under a 
the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is(which was not certified by peer review)The copyright holder for this preprint 18, 2022. 
this version posted August; https://doi.org/10.1101/2022.08.09.22278600doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278600
http://creativecommons.org/licenses/by-nc/4.0/


22 RapiD AI

5-fold cross-validation, and for each split, we tested the model performance on
the test set DW2. This resulted in 5 measures for the metric, which were then
used to find the confidence interval.

After training the models, we calculated the mean performance and the
confidence intervals in terms of accuracy, sensitivity, specificity, precision, and
AUROC.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1-score = 2
precision × sensitivity

precision + sensitivity

(1)

TP, TN, FP, and FN stand for true positive, true negative, false positive,
and false negative, respectively. Considering a probability estimate as the out-
put of each classifier for the validation set and setting various thresholds to
categorize this output as event/non-event could result in different TP, FP, FN,
and TN rates. Alternatively, a receiver operating characteristic (ROC) curve
shows the sensitivity as a function of 1 - specificity for different thresholds;
each point in the curve indicates a specific value for sensitivity, specificity, and
accuracy. AUROC is the area under the ROC curve.

4.4 Comparative methods

In this work, we investigated three approaches for our framework. We will refer
to these approaches as Scenarios A, B, and C.

In Scenario A [figure 2 (b1)], we tested a domain adaptation approach to
model development. In this approach, a model is trained on source data with
a unique distribution DS to solve a task T. We use the resulting weights as
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initial weights and train it again on target data with different distribution DT

to solve the same task T.
We pretrained the DNN and TabNet models to solve the respiratory deteri-

oration task TRD using general population data (i.e., non-COVID-19 patients).
We then fine-tuned it with the COVID-19 patient population to solve the same
task (TRD). COVID-19 patients and non-COVID-19 patients represent differ-
ent domains, and our model aims to benefit from the knowledge gained from
the source domain (non-COVID-19 patients) to solve the same task in the
target domain (COVID-19 patients).

The stability of this method was examined by extending the pandemic
simulation for a longer time. In details, we extended DW1 to cover admissions
up to January 2021 using COVID-19 patients from DW2. The resulting training
set (DW1-extended) contained 2064 patients (60572 samples) while keeping
207 patients (17140 samples) of DW2 for testing (DW2-truncated).

In this scenario, we hypothesize that we can pretrain effectively using only
the most relevant examples from the available historical data. In the current
context, the historical examples that demonstrate maximum similarity to the
COVID-19 data are regarded as the most relevant. We used K-means cluster-
ing and Euclidean distance to select these most relevant examples. K-means
clustering is employed to obtain distinct 256 clusters in the historical data.
Each cluster or cluster center can be seen as a pseudo-phenotype.

When the COVID-19 data arrives, we compute the Euclidean distance
between each COVID-19 example and each cluster centre. We assign a cluster
to each COVID-19 example based on the lowest Euclidean distance. In the
end, we compute the frequency of each cluster selected by the COVID-19
examples. The clusters with larger selection frequencies are regarded as similar
to COVID-19, and their data points are relevant to COVID. By controlling
the number of selected clusters, we can control the amount of historical data
used for pretraining. In our experiments, we used 10, 20, 30, 40, and 50% of
clusters for pretraining. Algorithm 1 outlines the implementation details of
this distillation process in detail.

In the last scenario, scenario C [figure 2 (b3)], we demonstrate how to
use pretrained deployed models to build an algorithm that solves a different
problem. To do this, we used another useful tool in machine learning called
inductive transfer learning [36].

Inductive transfer learning is a type of transfer learning where the source
and target domain tasks are different. This approach allows us to use deployed
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models for some task (source task TSource) to rapidly develop a working model
for a new (target task TTarget). Inductive transfer learning helps transfer knowl-
edge from the source task to the target task [36]. Inductive transfer allows us
to leverage various models pretrained on different tasks without the need to
access the pretraining data itself. To test the value of this approach, we pre-
trained a model on a general deterioration prediction task TGD (source
task TSource) using DH (source data), and then fine-tuned it to solve a respira-
tory deterioration prediction task TRD in COVID-19 population (target
task TTarget) using DW1 (Target data).
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Appendix A Respiratory Deterioration Event

The level of respiratory support is defined based on the oxygen delivery devices.
A list of the devices and the corresponding level of support is documented in
Table A1.

Table A1 Different respiratory support levels and the corresponding oxygen support
devices used at each level.

Support Level Devices

Level 0 No support required

Level 1 Simple Mask, Venturi Face Mask, Nasal Cannulae, Nebuliser
Mask, Oxymask, Tracheostomy Mask

Level 2 Reservoir Mask, Non-rebreather mask

Level 3 High Flow, Non-invasive system, Continuous positive airway
pressure (CPAP),AIRVO

Appendix B Clusters similar to COVID-19

Table B2 shows the set of disease clusters identified by a physician as similar
to COVID-19. Each cluster is presented along with detailed ICD-10 codes.

Table B2 ICD-10 codes used in identified clusters

Cluster ICD codes
Viral pneumonia J09, J100, J101, J108, J110, J111, J118, J120, J121, J122, J123,

J128,J129
All causes pneumonia J13, J14, J150, J!51, J152, J153, J154, J155, J156, J157, J158,

J159, K160, J168, J170, J171, J172, J173, J178, J180, J181, J182,
J188, J189

Athma J441, J448, J449, J450, J451, J458, J459
Heart failure I500, I501, I509, I510, I511, I512, I513, I514, I515, I516, I517,

I518, I519, I528
Acute pancreatitis K850, K851, K852, K853, K858, K859
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Table B3 Top 10 most common ICD-10 codes in the selected historical data clusters

ICD code Description
I10 Essential (primary) hypertension
Z922 Personal history of drug therapy
Z864 Personal history of psychoactive substance abuse
Z501 Other physical therapy
I489 Unspecified atrial fibrillation and atrial flutter
N179 Acute kidney failure, unspecified
Z867 Personal history of diseases of the circulatory system
Z921 Cardiac resynchronization therapy (CRT) pacemaker
E119 Type 2 diabetes mellitus without complications
N390 Urinary tract infection, site not specified

Appendix C COVID-19 pandemic simulation

Figure C shows the process we used to simulate the pandemic; each batch is
split into train and validation sets to train the models, and a final test is done
on a separate dataset.

Fig. C1 Simulation of COVID-19 pandemic

Appendix D Features set

Table D4 demonstrates the features used in training our model.
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Table D4 Features included in our extracted datasets

Feature Type Features included
Vital signs HR, RR, SBP, TEMP, SPO, FiO2, masktyp, avpu
Venous blood tests ALT, CRP, Albumin, Urea, Sodium, Haematocrit, Haemoglobin,

Bilirubin, Potassium, Basophils, Creatinine, MeanCellVol,
Monocytes, Platelets, Eosinophils, Lymphocytes, Neutrophils,
WhiteCells, Alk. Phosphatase

Blood gas BE Act, BE Std, Bicarb, Ca+ +,Cl-, CLAC, CREAT, Esti-
mated Osmolality, FCOHb, FHHB, FIO2, Glucose, Hb, Hct, K+,
MetHb, Na+, O2 Sat, cLAC, ctO2c, p5Oc, pCO2 POC, pH, pO2,
Temperature POCT

Variations in vital signs Mean, max-min, and delta (current value - mean) of vital signs
Other featuers Age, sex
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Appendix E Clustering algorithm

Algorithm 1 Algorithm to select a subset of historical data for model training.

1: Dhist ∈ RN×D: Historical data consisting of N D-dimensional vectors

2: Dcov ∈ RM×D: COVID-19 data consisting of M D-dimensional vectors

3: K: Number of clusters

4: P : Number of clusters to be selected

5: Cluster-means, Cluster-labels= K-MEANS(Dhist,K) ▷ Cluster
historical data using K-means clustering to obtain K cluster centers and
cluster labels for each input example.

6: Index=[ ] ▷ Empty array to store selected cluster index
7: for all x ∈ Dcov do

8: ind= Nearest-Neighbour-Index(x,Cluster-means) ▷ Identify
cluster whose cluster mean is nearest to x

9: Index.append(ind)
10: end for

11: Count = Frequency(Index) ▷ Compute the frequency of occurrence of
each of the K clusters in Index.

12: Cluster-Ind = Argsort(Count) ▷ Sort clusters in descending order
of the count.

13: Selected-cluster-Ind = Cluster-Ind[0 : P ] ▷ Select top P clusters.

14: Select historical examples Shist who are assigned to clusters listed in
Selected-cluster-Ind

15: RETURN Shist
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