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Explainable-AI to Discover Associated Genes

for Classifying Hepato-cellular Carcinoma

from High-dimensional Data
Easin Hasan, Fahad Mostafa, Md S Hossain, Jonathon Loftin

Abstract

Knowledge-based interpretations are essential for understanding the omic data set because of its nature, such

as high dimension and hidden biological information in genes. When analyzing gene expression data with many

genes and few samples, the main problem is to separate disease-related information from a vast quantity of

redundant data and noise. This paper uses a reliable framework to determine important genes for discovering

Hepato-cellular Carcinoma (HCC) from micro-array analysis and eliminating redundant and unnecessary genes

through gene selection. Several machine learning models were applied to find significant predictors responsible

for HCC. As we know, classification algorithms such as Random Forest, Naive Bayes classifier, or a k-Nearest

Neighbor classifier can help us to classify HCC from responsible genes. Random Forests shows 96.53% accuracy

with p < 0.00001, which is better than other discussed Machine Learning(ML) approaches. Each gene is not

responsible for a particular patient. Since ML approaches are like black boxes and people/practitioners do not

rely on them sometimes. Artificial Intelligence(AI) technologies with high optimization interoperability shed light

on what is happening inside these systems and aid in the detection of potential problems; including causality,

information leakage, model bias, and robustness when determining responsible genes for a specific patient with

a high probability score of almost 0.99, from one of the samples mentioned in this study.

Index Terms
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I. INTRODUCTION

Cancer deaths from hepatocellular carcinoma (HCC) are the most common cause of mortality around the

globe. HCC causes more than 85 percent of all primary liver cancers. It is the sixth most prevalent cancer

worldwide and the second leading factor in cancer-related fatalities [1]. The high mortality rate of HCC results
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from metastasis or the development of newly generated tumors within the sick liver. Research has revealed that

90% of all cancer-related fatalities are caused by metastasis. Since HCC’s genomic changes and gene expression

patterns are so diverse among patients, it is nearly impossible to pinpoint the mechanisms and pathways of the

disease. That is why ineffective therapy is to blame for poor patient outcomes in the HCC patient group.

Recurrence after surgery is a major factor in HCC’s poor prognosis, and there are currently few therapeutic

approaches that successfully reduce recurrence due to metastasis. As a result of this difficulty in identifying HCC

patient subgroups at high risk of developing metastatic illness in advance, one of the key reasons for this study.

The efficacy of a metastatic signature made up of 153 genes that might identify HCC patients as a risk classifier

for HCC recurrence and survival was examined using two independent cohorts totaling 386 HCC patients [2].

But this study wasn’t enough to predict HCC in the early stage of cancer development which motivated us

to predict the genes responsible for HCC so that doctors and health practitioners can take the necessary steps

to prevent HCC in the early stage. So, if they can identify the responsible genes for HCC existing in the

patient’s body, many lives can be saved from this cancer disease. According to the conventional tumor evolution

model, a primary tumor is initially benign but develops mutations over time, allowing a small number of tumor

cells to spread. To enhance patient survival, early diagnosis of tumors that have already mutated is extremely

important. Using genes whose copy counts correspond with gene expression and cancer development as the

standard for HCC driver genes, Roessler et al. employed an integrated strategy to find these genes, even though

the mechanisms underlying the aggressive cancer HCC genesis and progression are poorly understood [3]. This

study directed us to apply state-of-the-art Artificial intelligence techniques to determine the responsible genes for

developing HCC. So from a patient’s genomic information, if health practitioners can identify those responsible

genes, individuals can begin medical therapy when the disease is still in its early stages. Although surgical

resection and liver transplantation are possible, the recurrence rate is significant, and surgery is usually out of

the question since the disease has progressed too far. Given that patients with HCC, especially those incompetent

for surgical resection or liver transplant, it is crucial to identify key drivers and potential treatment targets [4].

Zhao et al. show the viability and strength of a novel approach by identifying key pathways associated with

prognostically significant HCC subtypes using well-defined patient samples and integrated genomics [3]. But

they only used unsupervised clustering algorithms to find the key pathways, which can be improved significantly

by applying the machine learning algorithms to the high dimensional genomics data to figure out the key genes

which cause the HCC disease. It is common practice to extract a biological sample and then use microarrays

to express the genes. Statistical approaches are used to assess the data and discover meaningful meaning that

biologists can utilize to give them biological significance once the data have been transformed into numbers.

Numerous genome-wide tools, including microarrays and, more recently, next-generation sequencing platforms,

have been used to analyze thousands of clinical HCC samples in an effort to identify promising treatment

targets [4]. But, there are minimal applications of machine learning methods in genomic datasets for identifying

the key genes besides the bioinformatic analysis. Wang et al. discovered 13 clinically significant target genes

with therapeutic promise utilizing genome-wide growth depletion screens and combining real HCC tumors’

expression data and clustered regularly spaced short palindromic repeats [5]. So. there is much possibility to

discover the significant target genes by applying machine learning algorithms in addition to the bioinformatics
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analysis. Lu et al. investigated Numb mRNA expression in tumors and surrounding healthy tissues using either

χ̃2 or Mann-Whitney U-tests on a microarray dataset of 241 HCC patients to determine the relationship between

clinicopathological traits and HCC subtypes [6]. But machine learning methods could be very useful for analyzing

a high-dimensional dataset to determine additional marker genes which cause HCC. Identifying genes that could

serve as biomarkers is critical to diagnose patients better early on and enhance the effectiveness of treatment

options while also increasing the likelihood of a positive outcome. A microarray is a kind of experimental

setup where probes are created or attached to solid substrates to expose them to the target molecules. The

microarray data set holds experimental data in a matrix, where columns typically correspond to sample IDs and

rows typically to the names of genes or probes. Microarray genomic data analysis is very useful for finding the

differentially expressed long non-coding RNA (lncRNA). According to Chen et al. bioinformatic analysis in the

liver tissue in the brain-dead donor liver transplantation, microarray probes effectively identified hundreds of

transcripts by displaying differentially expressed lncRNA and circRNA profiles [7]. So, using machine learning

techniques, we may decipher nuanced connections and identify intricate patterns in microarray data. Healthcare

researchers utilize the study of microarrays and gene expression as a tool to learn about diseases and how

to remedy them. It may provide important information about highly complicated diseases like HCC. Due to

its poor prognosis and ineffective response to systemic therapy, HCC ranked fourth among the top causes of

cancer-related fatalities in 2018. Considering this situation, the HCC survival rate is still below tolerable levels.

As a result, it is essential to keep looking for possible HCC prognostic and therapeutic targets by improving our

comprehension of its cellular biological processes [8]. The genetic machinery responsible for metastasis may

be hard-wired into tumors from the start, which motivates tumor profiling to forecast patient progress. Benefits

of Machine Learning in Health Care.

Machine learning techniques have lately become more precise and effective than conventional parametric

algorithms when used for large area modeling and working with high dimensional and complex data sets

[9], [10], [11]. Since these algorithms don’t rely on data distribution assumptions like normality, they are

more accurate, efficient, and effective [12] [13]. However, because of the numerous parameters that need to be

modified and the complexity of implementing them, some machine learning systems (such as neural networks

and support vector machines) are sophisticated [14], [15]. Furthermore, these algorithms frequently overfit the

data [16]. For two class situations, new work shows that random forests are equal to a kernel operating on the

true margin in distribution space [17]. The symmetry of the kernel is said to be enforced by randomness (poor

correlation), while strength increases a desirable skewness at abruptly curved boundaries. This should clarify the

dual function of correlation and strength. Understanding may also be aided by [18] theoretical framework for

stochastic discrimination. The random forest classifier has now been tested against the probabilistic and k-NN

classifiers. It is based on probability models with strong assumptions of independence. Probability models may

be created using Bayes’ theorem. Despite their simple design and assumptions, naive Bayes classifiers [19]

optimality have performed excellently in various challenging real-world settings. However, a comprehensive

comparison with different classification algorithms in 2006 revealed that more advanced methods, such as

boosted trees or random forests, outperformed Bayes classification. The Naive Bayes Classifier [20] model was
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employed to determine if it yielded the same conclusions as the Gene Expression data. The random forest

method does not require the researcher to propose any particular model structure. This is essential in early

genome-wide or candidate area prospective studies where the feature’s genetic structure is ambiguous. However,

combining a vast number of genes and relatively small microarrays introduces new challenges for statistical

models. Furthermore, they are becoming increasingly popular due to their ability to tackle large numbers of

genes without conventional feature selection, robustness to outliers, and extensive application in microarray data

analysis. Santos et al. employed logistic regression and neural network classifiers to classify the 165 patients

in the Coimbra Hospital and University Centre database, with NN achieving an accuracy of 75.2% and LR of

73.3%, respectively [21]. The proper preprocessing of the dataset might considerably enhance their model to

achieve better accuracy, inspiring us to use the cutting-edge data reduction technique PCA in our HCC dataset.

Acharya et al. introduced a hybrid system that used three algorithms, including linear discriminant analysis

to minimize the number of features, a Support Vector Machine for classification, and a Genetic Algorithm to

improve the model, and produced an accuracy of 90.30%, specificity of 96.07%, and sensitivity of 82.25% [22].

Models must be understandable by users if humans are to trust AI technologies. AI interoperability sheds light

on what is happening inside these systems and aids in the detection of potential problems, including causality,

information leakage, model bias, and robustness. The concept comes from a work published in 2016 [23] in

which the researchers perturb the initial data points, feed them into the black box model, and watch what

happens. The approach then adjusts the weights of those additional data points based on how close they are

to the original point. It uses those sample weights to fit a substitute model, such as linear regression, to the

data set with variations. The newly trained explanation model can then be used to explain each original data

point. Local interpretable model-agnostic explanations(LIME) provide a general framework to decipher black

boxes and explain the” why” behind forecasts or suggestions made by AI. Local Interpretable Model-Agnostic

Explanations is known as LIME which was studied by many researchers for improving diagnoses of patients [24],

[25], [26]. In this study, we are interested in how doctors and patients can trust machine learning prediction

when each patient is different from the other, and multiple parameters can decide between Hepato Cellular

Carcinoma or not. To solve this problem, LIME has been used in the test model. The method of explanation

should be applicable to all ML models. The researchers term this as the explanation being model-agnostic along

with the individual predictions, and the model should be explainable in its entirety, i.e., a global perspective

was considered.

In this research, a unique framework is established for gene expression data of HCC to figure out the

genes responsible for HCC. The accuracy of ML models is determined where the best model, among several

classification algorithms, and the trained model pass thru an AI-explainable technique. In brief, we want to

find patterns in the gene changes to assess whether they are normal or indicative of a disease and identify the

circumstances under which a gene transforms from a healthy state to a pathogenic state using several machine

learning models. This article organizes as follows: section II describes the framework for this study with a

brief discussion of the mathematical methodology of Random Forest, logistic regression, Naive Bayes classifier,

and k-nearest neighborhood classifier models. To select the important variables, Gini Index and entropy with



5

Fig. 1: Diagram for ML/AI approaches for microarray analysis of gene expression data. There are two main
process steps, first one is classification processing unit where train and test data are used to select the best
model, and second one is AI processing unit for global explanation.

information are used. To visualize and reduce dimensionality, a heat-map and principal components are used

extensively. After using various classification techniques to predict HCC, ROC and bio-statistical analyses are

reported. The local interpretable AI method, LIME, was used to interpret the responsible genes for a particular

HCC patient. Section III is dedicated to the results and discussion of ML classifications and AI explanations.

Finally, section IV concludes this study.

II. METHODOLOGY AND FRAMEWORK

A. Samples from Gene Data:

Data was collected from the national center for biotechnology information. The title of the data is Gene

expression data of HCC with ID GSE14520 [27], and the access date of this data set was March 01, 2022. To

study the gene expression patterns in HCC patient tumor and non-tumor tissue matched with healthy donor liver

tissue, Affymetrix microarray profiling was used by lab technicians. Using a single channel array technology,

tumors and matching non-tumor tissues were assessed independently for gene expression profiling. On Affymetrix

GeneChip HG-U133A 2.0 arrays, data providers used the manufacturer’s instructions to evaluate tumor and non-

tumor samples from 22 patients in cohort 1, as well as normal liver samples. They measured the fluorescence

intensities by using GCOS Affymetrix software and an Affymetrix GeneChip Scanner 3000. On the 96 HT

HG-U133A microarray platform, all samples from cohort 2 and 42 tumors and paired non-tumor samples from

cohort 2 were processed. So, we extracted the gene expression microarray data GSE14520 from the NCBI

GEO website. Four hundred forty-five samples were taken from patients between 2002 and 2003 at the Liver

Cancer Institute (LCI), Fudan University in China, and the Liver Tissue Cell Distribution System (LTCDS),
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Fig. 2: Heatmap of top 100 genes. Due to lack of space this plot represents only 25 gene names in the horizontal
line. In the right vertical line, it gives the gene identity numbers from the collection of the data set.

the University of Minnesota in the United States. The dataset contained 222 cases and 212 controls; however,

no case-control data were provided for 11 cases. The majority of HCC patients had a history of hepatitis B

infection (96.31%).

B. Mathematical Framework Machine Learning Approaches:

Let us consider the predictor gene data matrix is X ∈ Rnxd and target/response variable is T ∈ Rd.

The prepossessed micro-array data set was retrieved from the NCBI GEO repository and cleaned using the R

software’s limma package and Bio conductor. The dimension of this dataset is 445 by 22268 with 445 samples

and 22268 genes. Additionally, of the data set’s 46 phenotypic features, tumor and non-tumor tissue types are

employed as response variables and are factorized into 0 and 1 to facilitate the analysis. The data set was
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additionally cleaned to eliminate any NA, and a response variable column was added to the gene dataset along

with sample ID matching between the phenotypic dataset and the gene dataset.

This data set was used for machine learning and statistical analysis to predict Hepato Cellular Carcinoma.

Four different classification methods were used such as random forest, naive bayes classifier, k-NN and Logistic

Regression, and the final results in the form of plots such as Confusion Matrix, ROC analysis were compared

to get the results.

Data mining is a relatively efficient way of analyzing data that is used to discover patterns and connections in

gene data that may suggest genuine interference. A newly refined one-size-fits-all technique will be effectively

used in microarray data prediction. The decision tree is the most well-known and practical approach for

discovering information from massive and complicated data sets. Moreover, it is straightforward to understand

and implement.

1) Variable selection for classification and statistical analysis: To identify important variables/genes, Prin-

ciple Component Analysis [28] was employed, and it was compared to the Variable Importance ranking [29].

Since RF is used for classification, and RF is the average of multiple decision trees. As a result, the following

discussions are incorporated into the framework.The data sets must first be divided into parts in order to form

an intermediate decision tree with roots nodes at the top, which is fundamental to decision trees. Then, the

decision tree’s stratification model leads to the final result through the tree pass-over nodes. A comprehensive

discussion of Entropy, Gini Index, and Information Gain, as well as their roles in the Decision Trees method

implementation, may be found here ( [30], [31]). Furthermore, because many factors influence decision-making,

the significance and impact of each factor must be studied. The root node is assigned the required feature, and the

node division is traversed downwards. At each node, descending downwards reduces impurity and uncertainty

levels, resulting in enhanced classification or an exclusive split. Splitting measures such as Entropy, Information

Gain, and the Gini Index have been used to solve the problem. Entropy quantifies the impurity or randomness

of data points. It is a value between 0 and 1. Entropy close to 1 indicates that the model has a higher level

of disorder. The concept of entropy is crucial for computing Information Gain. By determining which feature

provides the most information about the classification based on the idea of entropy, Information Gain is used to

determine which feature provides the most information about the classification, with the goal of reducing the

amount of entropy starting from the top (root node) to the bottom (leaves nodes). Mathematically, Entropy is

defined as follows:

Entropy = −
n∑

k=1

pklog2(pk), (1)

where pk denotes the probability that it is a function of entropy. The Gini Index is defined as follows: The Gini

index ranges from 0 to 1. A Gini Index of 0 corresponds to absolute classification, meaning that all of the items

belong to a single class or that only one class is present. A Gini Index of 1 shows the uneven distribution of

components across several categories. A Gini Index of 0.5 indicates that items in some classes are distributed
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equally. The Gini Index can be represented mathematically as:

GiniIndex = −
n∑

k=1

P 2
k , (2)

where Pk is known as the chance that an element will be assigned to a specific class. Each feature’s importance

is determined by the Gini Importance or Mean Decrease in Impurity (MDI) method, which adds up all of the

splits (across all trees) that include the feature in proportion to the amount of samples it splits. This idea was

used in the RF algorithm after discussing the other classification algorithms below.

2) Classification of Gene Expression Data: To classify HCC from gene expression data, four different

Machine Learning techniques are applied. The foremost technique is Naive Bayes Classifier, which is asymp-

totically equivalent to Logistic Regression if the Naive Bayes assumption holds. Another well known technique

is k-Nearest Neighbor(kNN). The Euclidean distance between the test samples and the training samples is used

as the basis for kNN’s determination of the class level for the test samples. As a result of the microarray

profiling, gene expression patterns in healthy donor livers, as well as tumor and paired non-tumor tissue from

HCC patients, were analyzed. kNN classifies whether it is tumor and paired non-tumor tissue of HCC patients

or not based on the Euclidean distance. Finally, Random Forest method is applied and its result produces from

the aggregation of the decision trees.

2.1. Naive Bayes classifier for HCC Classification: Although the Naive Bayes classifier is not linear in

general, it corresponds to a linear classifier in a given feature space provided the probability likelihood factors

p(ti|c) come from exponential families. The data in this case comes from HCC, and the label is either cancer or

not. Whether or not we are aware that a patient has cancer, the Naive Bayes assumption states that the variables

in the data are conditionally independent, both liver cancer and non-liver cancer are drawn independently at

random. Although this assumption can be fragmented, the resulting classifiers can still perform well in real-

world applications [32], [33]. Let’s assume the Naive Bayes assumption holds for now and define the Bayes

Classifier by:

h(x) = argmaxP (t|x) = argmax
P (x|t)P (t)

P (x)
= argmaxP (x|t)P (t) = argmax

d∏
α=1

P (xα|t)P (t)

= argmax

d∏
α=1

P (xα|t)P (t) = argmax

d∑
α=1

log(P (xα|t)) + log(P (t)). (3)

One dimension estimating log(P (xα|t)) should be considered, because it is easy to calculate. Now suppose that

ti ∈ (−1,+1) and features are multinomial. The goal is to show that,

h(x) = argmaxP (t)

d∏
α−1

P (xα|t) = sign(wTx+ b). (4)
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That is,

wTx+ b > 0 =⇒ h(x) = +1.

Since, P (xα|t = +1) ∝ θxα
α+ and P (T = +1) = π+ :

Wα = log(θα+)− log(θα−), b = log(π+)− log(π−)

One can compute the wTx+ b by applying the above for performing classification. By further simplification,

wTx+ b > 0,

which implies
d∑

α=1

xα(log(θα+)− log(θα−) + log(π+)− log(π−)) > 0,

⇐⇒ exp(

d∑
α=1

xα(log(θα+)− log(θα−) + log(π+)− log(π−)) > 1

⇐⇒
d∏

α=1

exp(log(θxα
α+) + log(π+))

exp(log(θxα
α−) + log(π−))

> 1 ⇐⇒
d∏

α=1

(θxα
α+π+)

(θxα
α−π−)

> 1

⇐⇒
∏d

α=1 P (xα|T = +1)π+∏d
α=1 P (xα|T = −1)π−

> 1 ⇐⇒ P (x|T = +1)π+

P (x|T = −1)π−
> 1 ⇐⇒ P (T = +1|x)

P (T = −1|x)
> 1

⇐⇒ P (T = +1|x) > P (T = −1|x) ⇐⇒ argmaxP (T = t|x) = +1.

Iff Naive Bayes predicts +1 this demonstrates that point x is located on the positive side of the hyperplane. In this

gene expression data set all the variables are continuous, therefore Gaussian Naive Bayes can be considered.

Thus, Naive Bayes Classifier and Logistic Regression produce asymptotically identical models, if the Naive

Bayes hypothesis holds.

2.2. Logistic Regression classifier for HCC Classification: The Logistic Regression model [3, 4] is used to

model the relationship between a binary target variable and a set of independent variables. In logistic regression,

the model predicts the Logistic Regression transformation of the probability of the event, which is used for the

high dimensional gene expression data [34]. The following mathematical formula is used to generate the final

output:

ti = logit

(
Pi

1− Pi

)
= b0 + b1x1 + b2x2 + ...+ bnxn. (5)

The odds ratio is represented by Pi in the equation above, and its formula is as follows:

odds =
Pi

1− Pi
,
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where, Pi stands for probability of ”presence of Hepato Cellular Carcinoma”, and 1 − Pi is for ”absence of

Hepato Cellular Carcinoma”. As a result, the predicted values from the above model, the log odds of the event,

can be transformed into the probability of an event as follows:

Pi = 1− 1

1 + eti
. (6)

In matrix-vector form, ti = b0 +bTX. Then (b0, b1, ..., bn) is fitted thru Maximum Likelihood Estimator. Then

the log-likelihood function is l(b0,b) =
∑d

i=1 log(P (T = ti|X = xi)). Therefore,

(b̂0, b̂) = argmax

d∑
i=1

[log(ti ∗ (b0 + bTxi))− log(1 + exp(b0 + bTxi))].

Another well known classifier is the k-Nearest Neighbor classifier which depends on a distance metric [35],

[36]. The more accurately the metric captures label similarity, the more accurate the classification is determined.

k-NN is discussed in the next sub section.

2.3. k-NN classifier for HCC Classification: k-NN is based on a distance metric. The Minkowski distance

is the most popular option. Mathematically the Minkowski distance is denoted by d(x, t) for data point x and

t, and defined by

d(x, t) = [

n∑
k=1

|xk − tk|p]
1
p .

When p = 2, it becomes the l2 distance. Here, t are the test points, and the set of the k nearest neighbors of t

is given as St. Formally St is defined as a subset of the data set D s.t. |St|= k and (t′,x′) ∈ D−St, therefore

the metric has the following property:

d(t′, t) ≥ max
(x′′,t′′)∈St

d(t, t′′),

i.e., every point in D, but not in St, is at least as far away from t as the furthest point in St. We can then

define the classifier c(.) as a function returning the most common label in St. Specifically,

c(x) = mode(x′′ : (t′′,x′′) ∈ St), (7)

where mode(.) means selecting the highest occurrence label. Here k is determined before training the algorithm,

and a good solution is to return the result of k-NN with smaller k [37]. Moreover, for binary classification,

another method known as the random forest is based on the average of many decision trees. Each tree is weaker

than the combination of all trees, but together they are powerful. Therefore, it yields better performance.

2.4. Random Forest classifier for HCC Classification: Random Forest is a supervised learning approach that

employs a tree-based ensemble in which each tree is dependent on a set of random variables. It is a combination

of the two classification trees that differ in two important respects. Each tree is first fitted to a random bootstrap

sample selected from the entire dataset. To obtain the bootstrap sample, we randomly sample microarrays from
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the underlying data with replacement until our sample is the same size as the original. Out-of-bag data refers to

microarrays that did not make it into the bootstrap sample and serves as a natural test set for the tree that is fitted

to the bootstrap sample. The trees differ because we do not choose the best feasible split for all genes. Instead,

we take a sample of a few genes for each node and determine the optimal split on the selected genes. In general,

the number of genes selected at each node is the square root of the total number of genes. We assume that the

random vector X = (X1, X2, ..., Xk) denoting the real-valued predictor variables and the random variable T

denoting the response variable [38] have an unknown joint distribution fXT (X,T ). The main goal is to find

a prediction function f(X) for predicting T . The prediction function is determined by minimizing the loss

function L(T, f(X)); for classification, the zero-one loss is commonly used.

L(T, f(X)) =

0 if T = f(X)

1 otherwise.
(8)

Let T = (x1, t1), (x2, t2), ..., (xN , tN ) represent the training data set, where i = 1, 2, ..., N . Take a Tm bootstrap

sample of size N from T . Fit a tree using binary recursive partitioning using the bootstrap sample Tm as the

training data. Begin by grouping all observations into a single node. Choose m predictors randomly from the p

available predictors, then determine the optimal binary split on the m predictors. Finally, using the split, divide

the node into two descendant nodes and repeat the process until the stopping criterion is satisfied.

C. Statistical Hypothesis on Accuracy:

To compare models statistically, the statistical k-fold test was implemented. There were three pair tests

considered before implementation. This test is ignored for the Logistic Regression classifier since NBC and

Logistic Regression plays the same role. The hypothesis test setup between RF and NBC is:

H0 : pj(RF )− pj(NBC) = 0

HA : pj(RF )− pj(NBC) ̸= 0

The hypothesis test setup between RF and kNN is:

H0 : pj(RF )− pj(kNN) = 0

HA : pj(RF )− pj(kNN) ̸= 0

The hypothesis test setup between NBC and kNN is:

H0 : pj(NBC)− pj(kNN) = 0

HA : pj(NBC)− pj(kNN) ̸= 0,

where ”j” stands for the accuracy. The k-fold cross-validated paired t test is applied to compare accuracy.

Let’s consider the estimator (e.g., classifiers) for j = 1 and j = 2. The performance difference among model

1 and 2 in each k-fold cross-validation iteration to get k difference measures are computed. Now, under the
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null hypothesis that models 1 and 2 perform equally, the following t statistic with k − 1 degrees of freedom

is implemented. This is done in accordance with Student’s t test by assuming that these k differences were

separately generated and it follows an essentially normal distribution. The test statistic is,

tstat =
p̄
√
k√∑k

ı=1(p
(i) − p̄)2/(k − 1)

, (9)

where p(i) computes the difference between the model performances in the ith iteration, p(i) = p1
(i)−p2

(i), and

p̄ represents the average difference between the classifier performances, p̄ =
∑k

ı=1 p
(i)/k. After calculating the

t statistic, we can compute the p-value and compare it to the significance threshold we’ve selected, in this case,

0.05. The null hypothesis will be rejected and acknowledge a substantial difference between the two models if

the p-value is less than 0.05.

D. Model accuracy, 95% Confidence Interval for accuracy, and analysis of Receiver Operating Characteristics

curve

The measures for ML model performance are specificity, sensitivity, accuracy, precision, F1score, and Matthew

Correlation Coefficient (MCC). These are described in terms of True Positive as TP, True Negative as TN, False

Negative as FN, and False Positive as FP obtained from the confusion matrix. The first measure is,

Sensitivity =
TP

TP + FN
.

The measures for the sensitivity indicate the likelihood that a diagnostic test will identify persons who truly

have the condition. As the sensitivity value rises, the probability of a diagnostic test yielding false-positive

results falls. For example, if sensitivity is 95 percent, there is a 95 percent likelihood that the problem will

be discovered in this patient. Therefore, utilizing a test with high sensitivity to detect the illness has become

standard practice. Next,

Specificity =
TN

TN + FP
.

The likelihood that a test would correctly detect a certain condition without producing false-positive results

is indicated by the specificity score. If a test’s specificity, for instance, is 95 percent, it means that when we

perform a diagnosis for a patient, there is a 95 percent chance that the results will be negative if they don’t

have a certain disease condition. Moreover,

Precision =
TP

TP + FP
.

Precision, or the positive predictive value, is the fraction of positive values out of the total predicted positive

instances.

Accuracy =
TN + TP

TN + TP + FN + FP
. (10)

The accuracy score is a measure of the percentage of true positive and true negative outcomes in the chosen

population. It’s important to remember that the equation for accuracy indicates that the test’s accuracy may not
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be as high as its sensitivity and specificity. Accuracy is affected by sensitivity, specificity, and the prevalence

of the disease in the target population. A diagnosis may have high sensitivity and specificity but low accuracy

for rare illnesses in the population of interest. Moreover, the F1 score is the harmonic mean of precision and

sensitivity; it gives importance to both factors:

F1 = 2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

.

The two measures that are most frequently used in binary classification tasks are accuracy and F1 score, which are

computed using confusion matrices. However, especially when applied to unbalanced data sets, these statistical

metrics have a serious tendency to provide too optimistic outcomes. A high score is only produced by the

Matthews correlation coefficient (MCC) in the event that the prediction was accurate with regard to each of the

confusion matrix’s four categories. MCC is defined by,

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
. (11)

Furthermore, a 95% confidence interval for a machine learning classifier provides a further window into the

ambiguity around an ML model’s reported performance, and accuracy [39]. Let’s define the mean test accuracy

as ACCtest. Therefore, the 100(1−α)% confidence interval for the accuracy of the machine learning model is

as follows:

ACCtest ± zα/2
√
ACCtest(1−ACCtest)/n, (12)

where n is the test set size and zα/2 is the critical value obtained for the choice of α from the z−table.

A direct and natural connection may be made between cost-benefit analysis and diagnostic decision-making

using ROC analysis [40]. The Gini Index measures the homogeneity of variables and is related to the ROC. The

Gini Index is the area between the ROC curve (AUC) and two times the no-discrimination line (linear). That

is, the formula for the Gini Index is: Gi = 2AUC–1. Moreover, plotting the true positive rate (TPR) against

the false positive rate (FPR) at various threshold levels yields the Receiver Operating Characteristics (ROC)

curve [41]. Other names for the true-positive rate include sensitivity, recall, and the likelihood of detection. The

probability of a false alarm, which is another name for the false-positive rate, may be computed as (1-specificity).

It may also be considered a plot of the power as a function of the decision rule’s Type I Error (estimators of

these quantities may be derived from the performance of the population as a whole when that performance is

derived from just a sample of the population). After analyzing the ML classification model, the relatively best

approach is chosen based on the model accuracy. Mathematically, to describe the behavior of the ROC curve,

the following numerical measure is used,

AUC =

∫ 1

0

ROC(r) dr, (13)

where r is the false positive rate. In the next subsection, AI techniques for model explanation are introduced.
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E. Explainable AI for best predictive model applied to gene expression data

To get the local explanation of the disease with responsible genes, we use Local Interpretable Model-Agnostic

Explanations, which is shortly called LIME [23]. How can doctors and patients trust machine learning predictions

when each patient is different from the other and multiple parameters can decide between Hepato Cellular

Carcinoma or not? To solve this problem, LIME has been used in the test model. It is important that the manner

of explanation be relevant to all of the models. Therefore, the researchers have referred to this aspect of the

explanation as having a ”model-agnostic” status. More precisely, the explanation for a data point x is the model

ϕ that minimizes the locality-aware loss L(f, ϕ,Πx), which measures how unfaithful ϕ approximates the model

to be explained by f in its vicinity Πx, while keeping the model complexity low. Mathematically,

explain(x) = argmin
ϕ∈Φ

L(f, ϕ,Πx) + Ω(ϕ) (14)

where model ϕ belongs to class Φ, and Πx is the neighborhood of data point x.

Note that models f and ϕ may operate on different data spaces. The black-box model (function) f : X → R

is defined on a large, p−dimensional space X corresponding to the p explanatory variables used in the model.

The glass-box model (function) ϕ : X̄ → R is defined on a q−dimensional space X̄ with q << p, often called

the “space for interpretable representation.” Just like the RF/NBC/kNN models that are trained and fit to the

data, the LIME method is used to train this explainer, and then new predictions are made using the explain(x)

function.

III. RESULTS AND DISCUSSION

. After implementing supervised learning on gene expression HCC dataset using RF, NBC, Logistic Regression,

and kNN algorithms, the following results were obtained to identify marker genes. Since the dataset was

very large, the dimension was reduced using PCA before working on the dataset to keep the important risk

factors(genes) only. Then, the dataset was split into training (66.67%) and a testing set (33.33%) by using a

simple random sampling technique. The seed was set before splitting for reproducibility. The statistical k-fold

test was used to compare models statistically. Prior to implementation of hypothesis testing, three pair-tests

were taken into account, and the obtained p-value is less than 0.00001 for each pair of tests, which implies null

hypotheses are rejected at the 5% level of significance. Therefore, NBC, RF, and k-NN are unique machine

learning models for gene expression liver cancer classification.

In Fig. 3, the most and least essential variables are arranged from top to bottom, with variables with high mean

decrease values being relevant. Mean decrease accuracy and Gini Index are used to identify which variables

are important. Variance importance ranking in Fig. 3 uses the mean decrease Gini Index to determine which

variables (genes in this case) are important. Then a variable importance ranking plot was also plotted. The RF

was applied to the data set. Then RF was compared with NBC, Logistic Regression, and k-NN models. Table

I shows the performance of the ML algorithms. A ROC curve is a graph that shows how a binary classifier

system’s diagnostic capacity changes when its discriminating threshold is altered. Hit rate, which is deviant to

true positive or sensitivity, is on the y-axis, and specificity, which is deviant to false positive, is on the x-axis.

As a result, ROC might be seen as a power plot that depends on a Type I error. The ROC curves were plotted
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Fig. 3: Left panel indicates errors for a growing number of trees in random forest algorithm. For different
values of the mtry parameter, the random forest error rates (calculated from out-of-bag situations) are shown
as a function of the number of trees. This is based on the random forest voting method used to estimate gene
expression response 1 in early testing. The right panel indicates the top 30 variables calculated from the Gini
index.

for RF, NBC, kNN, and Logistic Regression based on the most important predictors determined by PCA for

comparing the 1-specificity versus sensitivity.

TABLE I: Performance for HCC gene expression data classifiers

Methods Sensitivity Specificity Precision F1 MCC

RF 0.9600 0.9710 0.9730 0.9664 0.9303
NBC 0.96 0.9565 0.96 0.96 0.9165

Logistic Regression 0.96 0.9565 0.96 0.96 0.9165
kNN 0.9263 0.9828 0.9888 0.9565 0.9117

Fig. 4. shows the comparison of confusion matrices where the random forest classifier produces the best

results. Random Forest has the lowest false positive and false negative cases, and the k-NN classifier has the

highest false positive and false negative cases. A histogram of Fig. 5. describes the comparison of models

perfectly. The accuracy score of the random forest classifier is very close to 1. Among all, k-NN shows the

lowest accuracy, which is 94.92%. Overall, the accuracy level of each classifier performs very well. Table I

gives the performances of the ML classifiers using different measures. All measures are very important for

explaining the model behaviors and classification performance. An F1 score is defined as the harmonic mean
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Fig. 4: Comparison of Confusion Matrices for four different classifiers. Position (0,0) is the true positive, and
(1,1) is the true negative. Position (1,0) is the false positive, and (0,1) is the false negative.

Fig. 5: Plot shows the comparison of accuracy for four different classifiers measured in percentage. Names of
the ML classifiers are given on the horizontal axis.
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between precision and recall. It is used as a statistical measure to rate performance. Almost all the models

have yielded a 96% F1 score. RF shows an F1 score of 0.9664, which means the harmonic mean between

precision and recall is 0.9664. Moreover, the MCC scores are present in Table I. The MCC score is above 90%,

which suggests all the models produce highly accurate predictions. Fig. 6. shows the diagnostic performance

of the applied ML models mentioned above. The AUC under ROC gives almost 0.96, 0.95, and 0.94 for

RF, NBC/Logistic Regression, and k-NN, respectively. As diagnostic test accuracy improves, the value gets

closer to 1.0, which is the gold standard AUC(AUC=1). Since the sensitivity and specificity are calculated

nonparametrically, so the nonparametric approach produces a jagged curve. The metric that effectively averages

diagnostic accuracy over the range of test results is summarized by the area under the ROC curve overall. The

normal approximation interval is the easiest and most conventional method of generating confidence intervals.

We construct the confidence interval using this approach from a single training-test split. Due to the high cost

of model training in deep learning, this is particularly appealing. When we want a particular model, it also

is interesting when compared to models fit on different training folds, like in k-fold cross-validation, mostly

in a deep learning context. The accuracy of the test set shows the expected generalization accuracy. The 95%

confidence interval presents us with a measure of the degree of uncertainty surrounding this estimate. Therefore,

the 100(1 − α)% confidence interval for the accuracy of the machine learning models RF, NBC, Logistic

Regression and kNN are calculated. For RF, the 100(1− α)% confidence interval is

0.9654± zα/2
√
0.9653(1− 0.9653)/n = 0.9654± 0.0294.

For NBC and Logistic Regression, the 100(1− α)% confidence interval remains the same, which is

0.9583± zα/2
√

0.9583(1− 0.9583)/n = 0.9583± 0.0327.

For kNN model, the 100(1− α)% confidence interval is

0.9492± zα/2
√

0.9492(1− 0.9492)/n = 0.9492± 0.0359,

where n = 144 is the test set size. zα/2 = 1.96 is the critical value obtained for the choice of α = 0.05 from the

z−table. The sensitivity/specificity pair associated with each point on the ROC curve corresponds to a specific

decision threshold. From Fig. 6, the ROC curve that goes through the upper left corner indicates a test that

has perfect discrimination, i.e., there is no overlap between the two distributions meaning 100% sensitivity and

100% specificity. Random Forest shows almost 96.5%. NBC and Logistic Regression are close to 95%, and

k-NN is 94%, approximately.

The LIME model focuses on the decision-making process of the machine learning models, hence establishing

the base for their use in practical application. The framework analyzes individual observations at the local level.

It does not provide a comprehensive explanation for why the model performs as it should but rather explains

how well a given observation is classified. The user should be able to comprehend what a model produces if it

is interpretable. The responsible genes for HCC are not the same for different patients, so it is essential to know



18

Fig. 6: Area under the curve for different ML models. The green line indicates RF, the red line indicates
NBC/Logistic Regression, and the blue line indicates kNN classifiers for AUC under ROC curves.

Fig. 7: LIME outcomes for the RF classifier for HCC patients. Left panel (a) indicates the credentials of sample-
9 of the gene data set. Right panel (b) shows the credentials of sample-20 of the gene data set. The blue color
suggests the gene causes negative effects, and the orange color suggests the gene causes positive effects on
HCC.
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this information for individual patients. As we used tabular data in this research, LIME explains which features

influence its decision. The machine learning we used in this research can perform classification based on the

attributes of future patients. The patient can be well treated if the physicians know which genes are responsible

for HCC. LIME helps us determine the responsible features for HCC and gives us the order of the importance

of the features that either positively or negatively impact the response for each particular observation. Fig. 7

depicts two instances of a random forest model predicting that one patient has HCC while the other does not.

An ”explainer” then explains the prediction by emphasizing the features essential to the model. LIME was used

under an ML model with a relatively high accuracy score in this case. After learning about the model’s rationale,

the physician is better equipped to decide whether or not to believe it. We chose two patients randomly to apply

LIME. Fig. 7 shows the most important 17 features responsible for HCC for those two patients. The model also

classified the first person as a positive HCC patient with 98% confidence, and the second person is classified

as a negative HCC patient with 98% confidence. For the first patient, out of the first seventeen most important

features, fifteen positively impact the response, and two negatively impact the response. For the second patient,

thirteen of them are negatively impacting the response, and four of them are positively impacting the response.

Since the physicians now know which genes are responsible for HCC for a particular patient, that will help

them to treat the patient better.

IV. CONCLUSIONS

Our findings supported prior research by proving that machine learning approaches can be utilized to discover

responsible genes that have a substantial influence on HCC. According to Lee et al., precision medicine has shown

that genetic properties of cancer cells may be used to predict treatment response, and new research suggests

that gene-drug links may be predicted very precisely by investigating the cumulative impact of multiple genes

at the same time [42]. As a result, the genes responsible for HCC that we discovered using the RF model can

assist the development of novel treatments or improve existing therapeutic techniques to prevent HCC in its

beginning phases. Because of the limited number of training instances, the availability of a large number of

genes, and the various inherent uncertainties, microarray data analysis poses a challenge to conventional machine

learning approaches. Since one of the most important advantages of machine learning in the healthcare sector is

its capacity to recognize and diagnose illnesses and ailments that would otherwise be challenging to diagnose,

this might encompass everything from hereditary diseases to early-stage cancers that are difficult to detect.

Due to the high dimensionality of the HCC microarray data, it is necessary to include the features selection to

reduce the dimensionality of the data. PCA was used for the features selection, selecting the 100 most essential

genes to train the different machine learning models, and using the trained models for the classification using

the test data set. The final model was selected with the highest classification accuracy. Based on the model’s

classification accuracy, the random forest model was chosen as the final model and fitted the LIME model as

the explainable AI model. The explainable AI addresses the challenges of understanding the model at the local

level, allowing health professionals to choose whether or not the model should be adopted. When physicians

recognize the most critical genes associated with HCC for a particular patient, they can treat patients more

effectively. Machine learning models have disadvantages, too, because they overfit most of the time, which may
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forecast wrong diagnoses. The proposed method may help clinicians to understand the gap between clinical

reports and machine intelligent reports based on AI explanation.
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