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Abstract  1 

The neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal 2 

dementia (FTD) reside on a clinical and pathological continuum. Heterogeneity in clinical 3 

presentation too often delays clinical diagnosis and calls for molecular biomarkers to assist 4 

diagnosis, including cell free microRNAs (miRNA). However, nonlinearity in the relationship of 5 

miRNAs to clinical states and underpowered cohorts has limited research in this domain. Here, 6 

we prospectively enrolled a large cohort of 495 subjects with ALS (n=202) and FTD (n=168), or 7 

non-neurodegenerative controls (n=125). Based on cell-free plasma miRNA profiling by next 8 

generation sequencing and machine learning approaches, we develop nonlinear prediction 9 

models that accurately distinguish ALS and FTD from non-neurodegenerative controls in ~90% 10 

of cases. Among the miRNAs that contribute to classifying disease, we identified miRNAs 11 

shared between conditions as well as disease-specific miRNAs. The fascinating potential of 12 

diagnostic miRNA biomarkers might enable early-stage detection and a cost-effective screening 13 

approach for clinical trials that can facilitate drug development.   14 
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Introduction 15 

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two 16 

neurodegenerative diseases that reside along a clinico-pathological continuum (Ling et al, 2013; 17 

Majounie et al, 2012; Neumann et al, 2006; Renton et al, 2011; Strong et al, 2017; van Es et al, 18 

2017).  ALS is primarily a disease of the human motor neuron system, resulting in muscle 19 

atrophy, paralysis and death (Al-Chalabi & Hardiman, 2013; Hardiman et al, 2011; Robberecht 20 

& Philips, 2013), whereas FTD is characterized by frontal and temporal lobe atrophy, and 21 

typically manifests with behavioral or language deficits (Strong et al., 2017).   22 

Shared neuropathological inclusions of the RNA-binding proteins TAR DNA-binding protein 43 23 

(TDP-43) (Neumann et al., 2006) and shared causative genes, chromosome 9 open reading 24 

frame 72 (C9ORF72), TARDBP (TDP-43), VCP and TBK1 (Abramzon et al, 2020; Conforti et al, 25 

2021), further resonate with comorbidity and clinical symptoms of both diseases in 10-20% of 26 

patients. Thus, one in five ALS patients meets the clinical criteria for a concomitant diagnosis of 27 

FTD, and one in eight FTD patients is also diagnosed with ALS. However, there are also unique 28 

mutations to each disease entity. For example, mutations in heterogeneous nuclear 29 

ribonucleoprotein A1 (hnRNPA1) cause ALS, but not FTD (Andersen & Al-Chalabi, 2011; Chen 30 

et al, 2013; Cirulli et al, 2015; Peters et al, 2015; Renton et al., 2011), and mutations in 31 

progranulin (GRN), and charged multivesicular body protein 2B (CHMP2B) may cause FTD but 32 

not ALS.  33 

The diagnosis of ALS is currently based on medical history, clinical examination and exclusion 34 

of mimicking disorders. Full-blown ALS is easily diagnosed by trained practitioners, however the 35 

diagnostic process often takes 1-1.5 years, since progressive deterioration, indicating both 36 

upper and lower motor neuron involvement, is required to define ALS. FTD can also be difficult 37 

to diagnose, due to heterogeneity in clinical presentation (McKhann et al, 2001). Three main 38 

phenotypes of FTD are described: behavioral variant frontotemporal dementia (bvFTD), 39 

characterized by changes in social behaviour and conduct, semantic dementia (SD), 40 

characterized by the loss of semantic knowledge, leading to impaired word comprehension, and 41 

progressive non-fluent aphasia (PNFA), characterized by progressive difficulties in speech 42 

production (McKhann et al., 2001; Snowden et al, 2002).  43 

Brain imaging and several biofluid proteins have been proposed as biomarkers for both ALS 44 

and FTD (Al Shweiki et al, 2019; Ashton et al, 2021; Bellini et al, 2022; Benussi et al, 2019; Bian 45 

et al, 2008; Borroni et al, 2015; Bourbouli et al, 2017; Bright et al, 2019; Chouliaras et al, 2022; 46 

Das et al, 2022; Delaby et al, 2020; Eratne et al, 2022; Feneberg et al, 2018; Forgrave et al, 47 
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2019; Goncalves et al, 2017; Gonzalez-Garza et al, 2018; Hansson et al, 2019; Hu et al, 2013; 48 

Jiskoot et al, 2019; Katisko et al, 2021; Katisko et al, 2020; Krishnan et al, 2022; McCarthy et al, 49 

2018; Meeter et al, 2017; Meeter et al, 2018; Niikado et al, 2019; Oeckl et al, 2022; Prado et al, 50 

2018; Rossi et al, 2018; Sheikh-Bahaei et al, 2017; Silva-Spinola et al, 2022; Teunissen et al, 51 

2016; Thijssen et al, 2022; Turner et al, 2009; van der Ende et al, 2020; Verde et al, 2021; 52 

Wilson et al, 2022; Xu et al, 2016). Among the proteins, noticeable are neurofilament light chain 53 

(NfL), TDP-43 and, phospho-tau, amyloid beta and glial fibrillary acidic protein (GFAP). In this 54 

context, a recent study concluded that high NfL blood levels are indicative of the intensity of 55 

neurodegeneration or the extent of the degenerated axons in both ALS and FTD (Ashton et al., 56 

2021)  but cannot contribute to the distinction between these two diseases. 57 

miRNAs are a class of small, non-coding RNAs, that can be quantified in biofluids in a 58 

massively parallel fashion, yielding fine-grained profiles (Coenen-Stass et al, 2018). miRNAs 59 

play important roles in ALS pathogenesis and in motor neuron survival (Eitan & Hornstein, 2016; 60 

Emde et al, 2015; Haramati et al, 2010; Reichenstein et al, 2019) and we have previously 61 

shown the power of cell-free miRNAs as biomarkers in neurodegeneration (Magen et al, 2022; 62 

Magen et al, 2021). Plasma miRNAs were also suggested as diagnostic biomarkers for ALS 63 

(Banack et al, 2020; Benigni et al, 2016; Cloutier et al, 2015; de Andrade et al, 2016; Joilin et al, 64 

2019; Ravnik-Glavač & Glavač, 2020; Ricci et al, 2018; Saucier et al, 2019; Sheinerman et al, 65 

2017; Takahashi et al, 2015; Toivonen et al, 2014; Waller et al, 2017a; Wang & Zhang, 2020) or 66 

FTD (Denk et al, 2018; Grasso et al, 2019; Kmetzsch et al, 2021; Muller et al, 2016; Piscopo et 67 

al, 2018; Schneider et al, 2018; Sheinerman et al., 2017; Sproviero et al, 2021; Tan et al, 2021).  68 

However, definitive markers have not been reported so far and initial biomarker studies were 69 

confounded by cohort size, sample heterogeneity biased or pre-selection of candidate miRNA. 70 

Furthermore, diagnosis of comorbid ALS-FTD patients with miRNAs has not been pursued.    71 

In this study, we profiled blood plasma miRNAs (Coenen-Stass et al., 2018), in a cohort of 533 72 

subjects and developed miRNA-based classifiers for diagnosing ALS and FTD. We 73 

implemented ensemble machine learning approach, to address biomarker nonlinearity and were 74 

able to expose unrevealed disease-associated signals. The diagnostic power of the study roots 75 

from unbiased miRNA signature in a large and heterogeneous meta-cohort, and is validated in 76 

an independent held-out cohort according to the TRIPOD guidelines (Collins et al, 2015). 77 

Therefore, circulating miRNAs hold a fascinating potential as diagnostic biomarkers and as 78 

means for patient stratification in clinical trials.  79 
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Results 80 

We sought to determine the overall diagnostic capability of miRNA measurements in ALS and 81 

FTD. To this end, we based our study on analysis of plasma miRNA expression and the 82 

development of computational diagnostic models. The initial cohorts included a total of 533 83 

participants, enrolled between 2009 and 2019, with clinical follow up time that ranged between 3 84 

and 66 months. Summary of participants’ basic characteristics are described in Table 1.  85 

Quality control of data  86 

We have performed next generation RNA sequencing for all samples and subjected miRNA 87 

data to quality control steps prior to prediction model development. We observed a younger 88 

mean age in both ALS controls (mean age 49.9±13, 95% CI [47.2- 52.5]) and in FTD controls 89 

(mean age of 61±13, 95% CI [57-64]), whereas in other groups the mean age was around 65 90 

(Figure S1). Since both ALS and FTD symptoms manifest late in life, with median disease onset 91 

at 55 and 58 years of age, respectively, we reduced age-variance by excluding 38 participants 92 

younger than 40, which reduced differences in mean age across the remaining meta-cohort of 93 

495 subjects by 33%. Thus, 168 out of 169 FTD patients and 202 out of 206 patients with ALS 94 

were included in the analysis along with 125 out of 158 non-neurodegenerative control samples 95 

(Table S1). We then verified that a merged dataset of ALS and FTD controls, collected in two 96 

different clinical centers does not introduce biases, using Kullback–Leibler divergence measure 97 

and a t-distributed stochastic neighbor embedding (t-SNE) analysis (Figure S2A). This enabled 98 

analysis of all control data in a unified manner. ALS and FTD cases did not differ from the 99 

merged control group, or from each other (Figure S2B).  100 

 101 

Out of the >2000 miRNA species that were aligned to the genome, only 132 fulfilled QC criteria. 102 

Next, we quantified the differential miRNA levels in ALS, FTD and control samples (Figure 1A-103 

C), noting miRNAs that may distinguish ALS and FTD from control and from one another. 104 

Development of binary classifiers for the diagnosis of ALS or FTD 105 

We first established a baseline single-disease predictor for either ALS or FTD. A diagnostic 106 

prediction model for FTD was developed on a randomly selected training set of 135 FTD cases 107 

and 84 controls, comprising 75% of the total cohort (168 cases, 125 controls). As a replication 108 

cohort, the remaining 25% of the data were held out for model validation (33 FTD, 41 control 109 

samples).  110 
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The 132 miRNAs were tested as potential predictors, using an ensemble machine learning 111 

approach. miRNAs were ranked by their predictive value in the diagnosis of FTD, vs. individuals 112 

that did not suffer from neurodegeneration and considered healthy. For selecting the most 113 

predictive features during model development, we used Recursive Feature Elimination (RFE), 114 

an efficient approach that removes miRNAs (features) iteratively to identify those that contribute 115 

the most to prediction accuracy (Figure 2A). RFE obtained a set of 13 miRNAs with highest 116 

feature importance. The 13-miRNA-based predictor presented a mean receiver operating 117 

characteristic area under the curve (ROC AUC) of 0.9, by internal cross validation (Figure 2B). 118 

Furthermore, the 13-miRNA-based predictor was capable of predicting the diagnosis of FTD in 119 

an independent held-out (replication) cohort of 74 individuals with an ROC AUC of >0.9 (Figure 120 

2C) and an average precision of 0.9. At a defined probability threshold (0.6), the classifier 121 

exhibits a 0.8 precision (PPV) with a 0.85 recall (sensitivity), a 0.87 specificity and a 0.2 false 122 

discovery rate values. The model is well calibrated and satisfactorily performs on held-out data 123 

(Figure 2D, E). Furthermore, a family of models trained with only a subset of the 13 most 124 

predictive features, displays a stable AUC ROC performance and reassures that the selected 125 

final features are suitable (Figure 2F). In summary, we determined 13 miRNAs that are able to 126 

call the diagnosis of FTD with high accuracy. 127 

We then sought to better understand the prediction model by investigating the relative effect of 128 

each individual miRNA. Therefore, we utilized post-hoc SHapley Additive exPlanations (SHAP) 129 

feature importance analysis to uncover the contribution of individual miRNAs to the FTD 130 

diagnostic predictor (Figure 3A, B). The key predictor revealed by SHAP is the astrocyte-derived 131 

exosomal miR-361 (Bu et al, 2020). Little is known about other miRNAs contributing to 132 

prediction. 133 

We further tested individual miRNAs as single predictors of FTD diagnosis. The ROC analysis 134 

revealed maximal AUC values of ~0.69 for miR-423-5p and miR-125b-5p (Table S2). In 135 

conclusion, 13 miRNAs are able to call the diagnosis of FTD with high accuracy.  136 

Similarly, an ALS-prediction model was developed by ensemble machine learning with RFE, 137 

using data from 149 ALS cases and 96 controls (training set). 53 ALS and 29 controls were 138 

held-out as an independent replication (validation) cohort. Following a computational RFE 139 

approach comparable to that developed for FTD (in Figure 2A), we depicted 12 miRNAs with 140 

the highest feature importance (Figure 4A). The predictor developed with these 12 miRNAs 141 

presented a mean ROC AUC of 0.86, by internal cross validation (Figure 4B). Furthermore, that 142 

12-miRNA-based predictor was capable of predicting the diagnosis of ALS in an independent 143 
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held-out (replication) cohort of 82 individuals with an ROC AUC of 0.78 (Figure 4C).  The ALS 144 

model is sufficiently calibrated and a family of models, trained with only a subset of the 12 most 145 

predictive features, displays a stable AUC ROC performance (Figure 4 D-F). With a defined 146 

probability threshold set to 0.45, the classifier obtained a 0.81 precision (PPV) with a recall 147 

(sensitivity) of 0.98 over 0.94 specificity and a 0.19 false discovery rate.    148 

SHAP feature importance analysis uncovered the contribution of miR-206 and miR-1-3p, two 149 

homologous muscle-expressed miRNAs, that were reported to increase in the blood of ALS 150 

patients (de Andrade et al., 2016; Malacarne et al, 2021; Raheja et al, 2018; Tasca et al, 2016; 151 

Waller et al, 2017b). Likewise, miR-103a and miR-181b-5p are enriched in brain tissue and in 152 

spinal cord tissues (Ludwig et al, 2016), and miR-181b-5p has been proposed as a prognostic 153 

marker for ALS  (Magen et al., 2021).  In addition, we tested the diagnostic ability of each 154 

individual miRNAs as single predictors in terms of ROC AUC, which revealed predictive value at 155 

the range of 0.75 for miR-186-5p (maximal value) and down to 0.39 for miR-320a (minimal 156 

value, Table S3). We conclude that some individual miRNAs can be used on their own, however 157 

miRNA cooperative predictive value provides a superior performance (>0.78 vs. ~0.75 AUC 158 

ROC). 159 

 160 

Development of multi-class predictor of ALS and FTD Diagnosis 161 

Multi-disease classifiers may display improved performance by solving a single optimization 162 

problem, while exploiting a larger meta-cohort. Such classifiers can take into account the 163 

varying levels of relationships that may exist among the different disease entities. Additionally, a 164 

predictor that is potentially able to compare ALS and FTD may be informative about the 165 

molecular biomarker interpretation of the FTD-ALS continuum (ALS-FTD)(Strong et al., 2017).   166 

We established a meta-cohort composed of 495 subjects, with measurements of 132 miRNAs 167 

that passed QC. Then, we applied RFE on to the meta-cohort to reveal 16 miRNAs useful for 168 

creating a ternary classifier (ALS vs. FTD vs. healthy, Figure 6A). The multi-disease classifier 169 

achieved a weighted mean “one-vs-all” ROC AUC of 0.9 across all folds for all classes during 170 

training (Figure 6B) and a weighted “one-vs-all” AUC-ROC of 0.88 on untouched replication 171 

cohort (AUC ROC 0.76, 0.86, 0.97 for controls, ALS, FTD, respectively, Figure 6C). The model 172 

obtained sensitivity of 0.92/0.83, specificity of 0.95/0.79 and an NPV of 0.96/0.88 for FTD/ALS, 173 

respectively (Table 2). We also computed AUC ROC metric for one-vs-one classification, 174 
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according to the Hand & Till algorithm (Hand & Till, 2001): FTD vs controls 0.88, ALS vs 175 

controls 0.74, FTD vs ALS 0.97.   176 

In addition, we tested the performance of each of the 16 most predictive miRNAs as single 177 

predictors (Table S4) and present the confusion matrices (Figure 6D, E). One miRNA, miR-185-178 

5p, is used to predict both ALS and FTD (Figure 6F). Three other miRNAs, not selected in any 179 

of the binary single-disease models, are exclusively selected in the multi-disease model (miR-180 

24-3p, miR-148a-3p and miR-339-5p, Figure 6F). 181 

SHAP feature importance analysis uncovered the contribution of individual miRNAs to the multi 182 

disease predictor (Figure 7A, B, C). The most predictive miRNA, miR-1-3p, is shown to equally 183 

influence predicting FTD and ALS, while having only a minor contribution in predicting ‘controls’ 184 

class (Figure 7B,C). miR-206, which is a muscular miRNA like miR-1-3p, is the most predictive 185 

in ALS, with almost no predictive capacity in the FTD model. Similarly, miR-361 mostly 186 

contribute to risk of FTD. This suggests shared miRNAs that are robust features that may be 187 

biologically relevant to the ALS-FTD continuum. 188 

Finally, we tested whether miRNA plasma miRNA classifiers reported in previous works 189 

(Kmetzsch et al., 2021; Sheinerman et al., 2017) perform equally to, better or worse than our 190 

classifiers in the training and held out datasets. Combination of  miR-34a-5p, miR-345-5p, miR-191 

200c-3p and miR-10a-3p, selected previously (Kmetzsch et al., 2021), was consistently inferior 192 

to our classifiers in distinguishing between FTD and controls, ALS and controls, and FTD and 193 

ALS, with lower AUC values (Figure 8). Similarly, the classifiers selected in Sheinerman et al., 194 

2017 (42) were inferior to our panels of miRNA classifiers.  Thus, when tested in comparison to 195 

reported miRNA classifiers from the literature, our panels of miRNA classifiers perform better, 196 

with AUC values ≥0.78 and in some cases exceeding 0.9.  197 

In summary, we have shown that a panel of <16 miRNAs can distinguish between patients with 198 

ALS or FTD and non-degeneration controls, as well as between ALS, FTD and controls, in a 199 

multiclass model.   200 
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Discussion 201 

The need to facilitate the diagnosis of neurodegeneration, in early disease stages and in the 202 

face of clinical heterogeneity, raises the hope for new effective biomarkers for ALS and FTD. 203 

Biomarkers may further inform about the comorbidity risk within the ALS-FTD continuum (Strong 204 

et al., 2017)  205 

Circulating miRNAs hold a fascinating potential as diagnostic biomarkers that were not fully 206 

addressed to date. By using a large cohort of 495 subjects, an unbiased, next generation 207 

sequencing approach and advanced computational methods, we overcome limitations of past 208 

works in developing biomarkers for neurodegeneration. First, we overcome the specificity 209 

problem recently reported for NfL. Since NfL levels are high in many neurodegenerative states, 210 

it cannot distinguish ALS from FTD (Ashton et al., 2021). In addition, within miRNA biomarker 211 

development, our binary classifiers are more precise than published predictors (Kmetzsch et al., 212 

2021; Sheinerman et al., 2017). In addition, we develop a multi-disease miRNA predictor model 213 

for ALS and FTD.  214 

The use of gradient boosting trees, an ensemble learning approach, allows discovering miRNAs 215 

that are in a nonlinear relationship with the disease status. Machine-learning classifiers gain 216 

affirmation by cross validation in the training dataset. Furthermore, our models are externally 217 

validated on held-out data, which was not used during feature selection and model 218 

development, according to the TRIPOD guidelines (Collins et al., 2015). 219 

The multi-disease model learns about related (but different) diagnostic tasks, and jointly selects 220 

features for all tasks. This way sample size is increased, features-to-sample ratio of the data is 221 

reduced and yet the particularities of each data set are kept (Azencott, 2020). In the selection of 222 

features, the multi-disease model is intentionally optimized to separate between ALS and FTD 223 

by penalizing for features that enhance disease misclassification and prioritizing miRNAs that 224 

are differentially measured. This is deciphered when the relative contribution of individual 225 

features to the predictive model unfolds by SHAP analysis (Lundberg et al, 2020).  226 

We revealed that 16 miRNAs are able to classify FTD, ALS or healthy controls, most of which 227 

are disease-specific (e.g., miR-206 for ALS and miR-361 for FTD). Interestingly, the most 228 

predictive miRNAs are abundant in the neuromuscular and immune systems, which is 229 

conceivable, as neuronal loss, muscle atrophy and neuro-inflammation, come into play in these 230 

pathologies.  231 
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According to the human miRNA tissue atlas (Ludwig et al., 2016), most of the selected miRNAs 232 

are CNS-enriched (let-7c-5p/7i-5p, miR-23b-3p, miR-26a-5p, miR-103a-3p, miR-107, miR-125b-233 

5p, miR-148a-3p, miR-181b-5p, miR-185-5p, miR-320a, miR-339-5p, miR-379 and miR-484), or 234 

muscle-enriched (miR-1-3p, miR-26a-5p, and miR-206).  235 

miR-26a, miR-326, miR-484 and miR-361 were associated with FTD diagnosis in our data and 236 

with cognitive deficits or Alzheimer’s disease (AD) in other analyses (Allach El Khattabi et al, 237 

2020; Chang et al, 2017; Cogswell et al, 2008; Goncalves et al, 2019; He et al, 2020; Ludwig et 238 

al, 2019; Wingo et al, 2020). In mice, miR-326 inhibited tau phosphorylation, a hallmark of FTD 239 

(He et al., 2020). Interestingly, miR-326, miR-484 and miR-361 contributed to FTD diagnosis 240 

more than to ALS diagnosis.  241 

miR-23b improved cognitive impairments in a rat model of traumatic brain injury (Sun et al, 242 

2018) and alleviated neuronal apoptosis (Chen et al, 2014).  Brain-enriched miR-107 was 243 

selected as predictor in the FTD model and in the multi-disease model, and was also implicated 244 

in AD (Muller et al, 2014; Nelson & Wang, 2010; Prendecki et al, 2019; Wang et al, 2020; Wang 245 

et al, 2008; Yilmaz et al, 2016).  246 

miR-206 and miR-1-3p are muscle-derived miRNAs, that were shown to increase in the blood of 247 

ALS patients (de Andrade et al., 2016; Malacarne et al., 2021; Raheja et al., 2018; Tasca et al., 248 

2016; Waller et al., 2017b), presumably as a result of muscle tissue breakdown. Accordingly, 249 

both miRNAs were selected as predictive features in the ALS and multiclass models but not the 250 

FTD model. However, when breaking out the contribution of these two miRNAs to the diagnosis 251 

of ALS, FTD and controls, miR-206 specifically contributes to the diagnosis of ALS, but not of 252 

FTD, while the plasma levels of miR-1-3p contribute to prediction of both diseases in the 253 

multiclass model. According to the SHAP analysis, it seems that low levels of miR-1-3p 254 

contribute to the diagnosis of FTD plausibly by distinguishing it from high levels of miR-1-3p in 255 

ALS. 256 

Let-7c and miR-326 are associated with suppression of neuroinflammation (Ni et al, 2015; Zhao 257 

et al, 2019). Changes in blood levels of miR-326, miR-26a, and miR-629 are associated with 258 

multiple sclerosis (MS), a disease that results from autoimmune neuroinflammation, (Baulina et 259 

al, 2018; Dolati et al, 2018; Honardoost et al, 2014; Lindberg et al, 2010; Niwald et al, 2017; 260 

Regev et al, 2018; Sharaf-Eldin et al, 2017; Yang et al, 2014). Moreover, serum miR-629 was 261 

negatively correlated with MS patient brain volume and lesion severity, respectively (Regev et 262 

al, 2017). Thus, some of our miRNA predictors are associated directly or indirectly with 263 

neuroinflammation, a process which occurs in both FTD and ALS.   264 
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We would like to put forward a few notable limitations: as is the case with machine learning, the 265 

study is limited in providing mechanistic insight for the measured changes in cell-free miRNA 266 

levels and why defined nonlinear patterns are strongly predictive of disease states. 267 

Discrepancies from conclusions of past studies (Denk et al., 2018; Grasso et al., 2019; 268 

Kmetzsch et al., 2021; Piscopo et al., 2018; Sheinerman et al., 2017) are plausibly related to 269 

the progress we present in power (larger cohort) and to our unbiased analysis that contrasts 270 

past biased choice of miRNA candidates. While we kept held-out cohort for external validation, 271 

towards clinical diagnostic usage, it is warranted to test the predictor on an independent cohort 272 

of different ethnicity. In addition, the documentation of FTD patients with neuromuscular 273 

symptoms and of ALS patients with behavioral symptoms is limited and reduced our ability to 274 

investigate the full range of information at the ALS-FTD continuum. 275 

In summary, we have found specific molecular miRNA patterns that can contribute to diagnosis 276 

of FTD and ALS. These patterns are further alluding to differences and commonalities in the 277 

underlying molecular changes in the ALS - FTD continuum. Therefore, the work encourages 278 

testing if circulating miRNAs biomarkers can be used as a cost-effective screening approach to 279 

increase speed or precision in the diagnosis of suspected neurodegenerative states, thereby 280 

allowing early-stage detection of high-risk individuals prior to inclusion in prospective clinical 281 

trials. More broadly, the findings demonstrate the importance of integrating machine learning 282 

into clinical biomarker studies, addressing nonlinearity and exposing otherwise cryptic disease-283 

associated signals.   284 
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Methods 285 

Standard protocol approvals, registrations, and patient consents  286 

Approvals were obtained from the local research ethics committee and all participants provided 287 

written consent (or gave verbal permission for a carer to sign on their behalf). For ALS samples, 288 

recruitment, sampling procedures and data collection have been performed according to 289 

Protocol (Protocol number 001, version 5.0 Final – 30th November 2015). 290 

 291 

Participants and Sampling 292 

Demographic data of study participants are detailed in Table 1. ALS samples and their 293 

respective healthy controls (N = 206 and 102, respectively) were obtained from the ALS 294 

biomarker study. ALS patients were diagnosed according to standard criteria by experienced 295 

ALS neurologists. Healthy controls were typically spouses or relatives of patients.  296 

FTD subjects and their respective controls were enrolled in the longitudinal FTD cohort studies 297 

at UCL. Study cohort included 169 FTD patients and 56 healthy controls.  298 

Blood was collected by venipuncture in EDTA tubes, and plasma was recovered from the whole 299 

blood sample by centrifugation and stored at −80°C until RNA extraction subsequent small RNA 300 

next generation sequencing. Frozen plasma samples of ALS, FTD and controls from the UCL 301 

Biobanks were shipped to the Weizmann Institute of Science for molecular analysis.   302 

 303 

Study Design 304 

We determined the sample size by the following power analysis: 150 controls and 150 cases 305 

(either ALS or FTD) are required to obtain an ROC AUC of 0.7 with a power of 99% and a p-306 

value of 0.0001. Phenotypic data on de-identified patients was separated and blinded during 307 

steps of the molecular analysis.  308 

Small RNA Next Generation Sequencing  309 

Total RNA was extracted from plasma using the miRNeasy micro kit (Qiagen, Hilden, Germany) 310 

and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher 311 

Scientific, Waltham, MA). For small RNA next generation sequencing (RNA-seq), libraries were 312 

prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA 313 

NGS 48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. 314 

Samples were randomly allocated to library preparation and sequencing in batches. Precise 315 

linear quantification of miRNA is achieved by using unique molecular identifiers (UMIs), of 316 

random 12-nucleotide after 3’ and 5’ adapter ligation, within the reverse transcription primers 317 
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(Coenen-Stass et al., 2018). cDNA libraries were amplified by PCR for 22 cycles, with a 3’ 318 

primer that includes a 6-nucleotide unique index, followed by on-bead size selection and 319 

cleaning. Library concentration was determined with Qubit fluorometer (dsDNA high sensitivity 320 

assay kit; Thermo Fisher Scientific, Waltham, MA) and library size with Tapestation D1000 321 

(Agilent). Libraries with different indices were multiplexed and sequenced on NextSeq 500/550 322 

v2 flow cell or Novaseq SP100 (Illumina), with 75bp single read and 6bp index read. Fastq files 323 

were de-multiplexed using the user-friendly transcriptome analysis pipeline (UTAP) (Kohen et 324 

al, 2019). Human miRNAs, as defined by miRBase (Kozomara & Griffiths-Jones, 2014), were 325 

mapped using the GeneGlobe pipeline (https://geneglobe.qiagen.com/us/analyze). Sequencing 326 

data were normalized with DESeq2 package (Love et al, 2014) under the assumption that 327 

miRNA counts followed negative binomial distribution and data were corrected for the library 328 

preparation batch in order to reduce its potential bias. 329 

 330 

Constructing Cohorts and Biases Associated with the Data-gathering Process 331 

Each disease cohort has been utilized for building and validating a single-disease (binary) 332 

classifier that can be used as an applicative predictor for clinicians. Then, a meta-cohort, a 333 

unified case-control cohort for both ALS and FTD disease, was constructed to be used for 334 

development and assessment of a multi-disease risk prediction model. As our dataset is 335 

observational and generated by fusion of few study cohorts, we particularly considered bias 336 

associated with the data-gathering process. First, we verified that the control cohorts are not 337 

coming from an underlying different population using t-SNE analysis following batch correction 338 

and DESeq2 normalization. We then performed QC on the age distribution of subjects and 339 

thereby excluded 38 participants younger than 40, to reduce differences in mean age across the 340 

different cohorts. A higher prevalence of males among ALS patients (59%, vs. 31 % in controls) 341 

was observed. This reflects the higher prevalence of ALS in males than in females, as reported 342 

previously (Collaborators, 2018). Therefore, to eliminate the confounding effect, resulting from 343 

statistical relationship between sex and ALS status, the sex variable was removed from the list 344 

of candidate predictors. A higher prevalence of males among FTD patients (65%) than among 345 

the controls (31%) was observed as well. Hence, sex was removed from the list of candidate 346 

predictors to eliminate confounding biases. 347 

 348 

Verifying de-separation of non-degeneration control cohorts  349 

We established a cohort of 158 non-neurodegenerative controls. Since they originated from two 350 

repositories, Queen Mary hospital (N=102) and University College London from (N=56), we first 351 
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verified that the two sets (distributions) can be considered together and that they do not impose 352 

biases, based on the biorepository from which they were collected. Non-neurodegenerative 353 

controls from Queen Mary hospital are presented in light blue (ALS), while controls from 354 

University College London are presented in red. The t-distributed stochastic neighbor 355 

embedding (t-SNE) analysis reveals that both control distributions could have been sampled 356 

from a single population (Figure S1). The Kullback–Leibler divergence, a measure of difference 357 

between probability distributions, indicating a small difference between the two sets in question 358 

(KL = 0.283). Therefore, control samples were unified and considered as a single meta-cohort 359 

for analysis of miRNA abundance, without introducing additional sampling biases.  360 

 361 

Gradient Boosted Trees for the Development of Disease Binary Classifiers  362 

The ALS-disease binary classifier and FTD-disease binary classifier were developed using 363 

Gradient Boosting Classifier, a machine learning algorithm that uses a gradient boosting 364 

framework.  365 

Diagnostic models were developed, validated and reported according to the TRIPOD guidelines 366 

(Collins et al., 2015)  (https://www.tripod-statement.org/). Gradient Boosting trees (Elith et al, 367 

2008; Witten et al, 2017), a decision-tree-based ensemble model, differ fundamentally from 368 

conventional statistical techniques that aim to fit a single model using the entire dataset. Such 369 

ensemble approach improves performance by combining strengths of models that learn the data 370 

by recursive binary splits, such as trees, and of “boosting”, an adaptive method for combining 371 

several simple (base) models. At each iteration of the gradient boosting algorithm, a subsample 372 

of the training data is selected at random (without replacement) from the entire training data set, 373 

and then a simple base learner is fitted on each subsample. The final boosted trees model is an 374 

additive tree model, constructed by sequentially fitting such base learners on different 375 

subsamples. This procedure incorporates randomization, which is known to substantially 376 

improve the predictor accuracy and also increase robustness. Additionally, boosted trees can fit 377 

complex nonlinear relationships, and automatically handle interaction effects between predictors 378 

as addition to other advantages of tree‐based methods, such as handling features of different 379 

types and accommodating missing data. Hence, in many cases their predictive performance is 380 

superior to most traditional modelling methods. 381 

 382 

Additional gain of these algorithms is the various loss functions that can be applied, both for 383 

binary and multi-class problems. Using the softmax loss function, we explicitly estimated the 384 
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class conditional probabilities, which allow us to demonstrate the performance of each of the 385 

classifiers both as “soft-classifiers” (i.e., predicting class probabilities) and “hard-classifiers” (i.e., 386 

setting a probability threshold and predicting a class). The former approximates a continuous 387 

number as output - the class conditional probabilities - and then performs classification based 388 

on these estimated probabilities. In contrast, hard classifiers output a discrete number as the 389 

decision - directly targeting the classification decision boundary, without producing the 390 

probability estimation. 391 

 392 

A gradient boosting classifier was developed with a feature set of 132 miRNA predictors, age 393 

and sex. Dataset was partitioned to training-set (75%) and validation-set (25%) which was used 394 

as held-out data. The training-set was cross-validated during training with stratified 3-fold cross 395 

validation. An ROC was generated for each of the folds and individual and mean AUCs were 396 

calculated along with 95% confidence intervals.  397 

 398 

The chosen hyperparams in ALS-disease classifier: gamma=0.1, learning_rate=0.1, 399 

max_depth=3, n_estimators=120, subsample=0.9 and tol=0.01.  400 

 401 

The chosen hyperparams in FTD-disease classifier: ccp_alpha=0.0, learning_rate=0.5, 402 

max_depth=8, max_features=0.45, min_samples_leaf=14, min_samples_split=8,, 403 

n_estimators=100, subsample=0.45 and tol=0.0001. 404 

  405 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2020.01.22.20018408doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.22.20018408


15 
 

Gradient Boosted Trees for Multi-class Prediction with “one-vs-the-rest” Strategy 406 

A Gradient Boosting multi-class classifier was implemented with “one-vs-all” (or one-vs-the-rest) 407 

strategy for diagnostic prediction between ALS diseased, FTD diseased and control subjects. 408 

Performance of a multi-class model is visualized by plotting the performance of 3 binary 409 

classifiers. “One-vs-rest” strategy involves fitting a single classifier per class, with the samples of 410 

that class considered as positive samples, and all other samples as negatives. A soft-classifier 411 

with “one-vs-rest” strategy outputs 3 probabilities for each subject in the data, where a good 412 

classifier should assign a high probability to the correct class, while assigning low probabilities 413 

to the other classes. Hyperparams for XGBClassifier: objective='multi:softprob', 414 

booster='gbtree', gamma=0.01, learning_rate=0.5, max_depth=3, n_estimators=120, 415 

subsample=0.9 and tol=0.01. 416 

 417 

Dataset was partitioned to training-set (75%, stratified 3-fold cross validation) and validation-set 418 

(25%) which was used as held-out data. An ROC was generated for each of the folds and 419 

individual and mean AUCs were calculated along with 95% confidence intervals. The area 420 

under the ROC curve is a natural measure of separability between the 3 estimated probability 421 

distributions and possesses the singular merit that it is independent of costs, priors, or 422 

(consequently) any classification threshold(Hand & Till, 2001).  423 

 424 

Predictor Selection by Recursive Feature Elimination (RFE) 425 

For selecting the most predictive features during prediction model development, we used 426 

Recursive Feature Elimination (RFE) algorithm, an efficient recursive approach for eliminating 427 

features from a training dataset with K-fold cross validation. RFE works by iteratively removing 428 

features and using model accuracy to identify which features contribute the most to prediction. 429 

Tree-based importance scores of 132 miRNAs were used here in order to rank features, and 430 

thus reduce the dimension of miRNA measurements needed for prediction by ~90% (12-16 431 

features in a model in total). 432 

 433 

RFE was implemented with Extra Trees Classifier and the following hyperparms: 434 

criterion="entropy", max_features=0.9, n_estimators=10. The performance scorer used to 435 

optimize selection: ROC AUC score in single disease models and weighted ROC AUC score in 436 

the multi-disease model.   437 

 438 

 439 
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Feature Importance and SHAP Analysis  440 

Although gradient boosting tree models are complex models, they can automatically provide an 441 

approximation of feature importance from the trained boosted trees. A miRNA predictor is 442 

assigned with an importance score in every single tree, where the Gini purity index is used to 443 

assess split points in the tree. The score of a feature is calculated based on the amount of 444 

improvement in the Gini index achieved by split points that include the feature, weighted by the 445 

number of observations in that node. The final importance score of a feature is calculated by an 446 

average across all decision trees within the final model.  447 

 448 

For local interpretability of the predictive model, we used SHapley Additive exPlanations (SHAP) 449 

(Lundberg et al., 2020), the current state of the art in Machine Learning explainability tools. 450 

Giving the smallest set of features that reduced the loss function the most (by XGBoost feature 451 

importance), SHAP provides estimates and visualizations to infer what decisions the model is 452 

making. This is achieved by quantifying the contribution that each feature brings to each 453 

prediction made by the model.   454 

 455 

Appendix 456 

IDs of 38 subjects removed due to age-based QC:  457 

'CTRL_rep9', 'CTRL_rep10', 'CTRL_rep13', 'CTRL_rep19', 'CTRL_rep16', 458 

'CTRL_rep18', 'CTRL_rep20', 'FTD30', 'CTRL_rep17', 'CTRL12', 'CTRL13', 459 

'CTRL2', 'CTRL5', 'CTRL56', 'CTRL57', 'CTRL58', 'CTRL68', 'CTRL100', 460 

'CTRL111', 'CTRL20', 'CTRL22', 'CTRL23', 'CTRL24', 'CTRL27', 'CTRL29', 461 

'CTRL33', 'CTRL48', 'CTRL50', 'CTRL54', 'CTRL60', 'CTRL62', 'CTRL73', 462 

'CTRL82', 'CTRL83', 'FA42', 'SA22', 'BUH00025', 'UCH00019' 463 
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Main tables and Figures 899 

 900 

 Control ALS Control FTD 

Number of subjects (% males) 102 (28%) 206 (59%) 56 (46%) 169 (65%) 

Age at enrolment 49.9±13.7 yr. 64.4±11.0  yr. 61.0±13.3 yr. 65.6±8.4 yr. 

Age of onset (1st reported 
symptoms) 

 62.1±11.3 yr.  60.1±8.4 yr. 

Disease duration at enrolment  28.2±30.7 m  67.0±41.4 m 

ALSFRS-R at enrolment  36.0±8.1   

El-Escorial (Definite/probable/lab-
supported/possible/suspected/other) 

 57/90/27/29/1/2   

Bulbar onset/total  64/206   

Riluzole treated / total  139/206   

ALS Family history / total  9/206   

C9ORF72 genetics/total  14/206   

 FTD clinical subtype 
(bvFTD/PNFA/SD/FTD-ALS/others) 

   82/40/28/5/14 

FTD Mutation carriers 
(C9ORF72/MAPT/ GRN/TBK1) 

   18/14/13/2 

Likely FTD pathology (TDP-43/Tau)    63/19 

 901 
Table 1. Summary of demographic and clinical characteristics of ALS and FTD cases and their respective 902 
control samples. ALSFRS-R: ALS functional rating scale. bvFTD: behavioural FTD; PNFA: progressive 903 
nonfluent aphasia; SD: semantic dementia. Mean±SD.  904 
 905 
  906 
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 907 

Class/ Metric Precision/ 
PPV 

Sensitivity/ 
Recall 

Specificity/ 
TNR 

NPV f1 # samples 

Controls 66% 50% 88% 80% 57% 38 

FTD 90% 92% 95% 96% 91% 39 

ALS 71% 83% 79% 88% 76% 47 

   macro avg 75% 75%   75% 124 

weighted avg 75% 76%   75% 124 

   908 
Table 2. Performance summary of “one-vs-rest” multi-disease classifier 909 
 910 
 911 
  912 
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 913 
Figure 1. miRNA signature associated with ALS and FTD. MA plot of differential miRNA expression in 914 
(A) ALS patients (N=202) versus non-neurodegenerative controls (N=125); (B) FTD patients (N=168) 915 
versus non-neurodegenerative controls (N=125); (C) FTD versus ALS. Log 2 transformed fold change (y-916 
axis), against mean miRNA abundance (x-axis). Red: significantly changed miRNAs (p<0.05, Wald test). 917 
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 918 
 919 
 920 

Figure 2: Diagnosis of FTD by a distinctive cell free miRNA signature.    921 
(A) Accuracy (AUC ROC, y-axis) as a function of the number of plasma miRNAs used in the FTD 922 

prediction model. Increasing numbers of miRNA features (x-axis) successively-elected in the 923 
recursive feature elimination process reveal an optimum at 13 features (blue line).  924 

(B) ROC curves in the training set: true positive rate (y-axis) vs. false positive rate (x-axis). Mean 925 
values and variance when data from 219 samples with 3-fold cross validation. Mean AUC 0.93 ± 926 
SD. 95% CI is 91%-95%.  927 

(C) Performance and generalizability on held-out data revealed by a ROC curve with AUC of 0.9 and 928 
average precision of 0.89.  929 

(D) Reliability diagram, plotting truly observed vs. predicted average probability in five bins reveals a 930 
sufficient calibrated model on the held-out set.  931 

(E) Confusion matrix showing the prediction errors on held out dataset. At a probability threshold of 932 
60%, and 0.83 Negative predictive value (NPV), over 0.85 True Positive Rate (also, recall/ 933 
sensitivity) and 0.17 False Positive Rate. Specificity is 0.87 and 0.2 false discovery rate.   934 

(F) AUC ROC of a model trained with only a subset of top 13 most predictive features, reveals a 935 
stable performance with the selected final features.  936 
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 937 

 938 
Figure 3: The contribution of individual miRNAs to the predictor of FTD diagnosis. 939 
(A) Mean absolute SHapley Additive exPlanations (SHAP) values break down the impact of specific 940 
miRNAs on FTD disease predictor output in the held-out cohort. (B) Illustration of the relationship 941 
between the miRNA levels (low - blue to high - red), SHAP values and the impact on the prediction in the 942 
held-out cohort   943 
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 944 
        Figure 4: Diagnosis of ALS by a distinctive cell free miRNA signature.   945 

(A) Accuracy (AUC ROC, y-axis) as a function of the number of plasma miRNAs used in the ALS 946 
prediction model. Increasing numbers of miRNA features (x-axis) successively elected in the 947 
recursive feature elimination process reveal an optimum at 12 features (blue line).  948 

(B) ROC curves in the training set: true positive rate (y-axis) vs. false positive rate (x-axis). Mean 949 
values and variance when data from 245 samples with 3-fold cross validation. Mean AUC 0.86 ± 950 
SD. 95% CI is 82%-90%.  951 

(C) Performance and generalizability on held-out data revealed by a ROC curve with AUC of 0.78 952 
and average precision of 0.82.  953 

(D) Reliability diagram, plotting truly observed vs. predicted average probability in five bins reveals a 954 
calibrated model on the held-out set.  955 

(E) Confusion matrix showing the prediction errors on held out dataset. At a probability threshold of 956 
45%, 0.81 precision (PPV), 0.98 True Positive Rate (also, “recall”/”sensitivity”) and 0.19 False 957 
Discovery Rate are demonstrated.  958 

(F) AUC ROC of a model trained with only a subset of top 12 most predictive features reveals a 959 
stable performance with the selected final features.   960 
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961 
Figure 5: The contribution of individual miRNAs to the predictor of ALS diagnosis. 962 
(A) Mean absolute SHapley Additive exPlanations (SHAP) values  break down the impact of specific 963 
miRNAs on ALS disease predictor output in the held-out cohort. (B) Illustration of the relationship 964 
between the miRNA levels (low-blue to high-red), SHAP values and the impact on the prediction in the 965 
held-out cohort.  966 
 967 
 968 
  969 
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 1007 
Figure 6: A multi-disease miRNA-based prediction model displays a superior diagnostic power 1008 
over the binary models. A 3-fold cross-validated RFE with Extra Tree Classifier reveals that 16 features 1009 
out of the original 132 approximate the same weighted mean one-vs-rest ROC AUC. (B) Fitting a 1010 
Gradient Boosting multi-class classifier (“one-vs-all” strategy) on the training set. The multi-disease 1011 
classifier achieved a weighted “one-vs-all” ROC AUC of 0.92, 0.91, 0.89 for each fold, respectively. Mean 1012 
AUC of 90%±7% is obtained, indicating an overall good fit of the soft-classifier to all classes. Variance of 1013 
the curve is shown in gray. (C) Model generalizability by ROC AUC per class in the held-out set (AUC of 1014 
0.76 for controls, 0.97 for FTD and 0.86 for ALS class), reassuring good accuracy for the soft-classifier 1015 
over all three classes (micro-average AUC of 0.88 and macro-average AUC of 0.87), ensuring the model 1016 
is not overfitting. (D) Confusion matrix (with a one-vs-rest strategy) in the held-out data. Interestingly, 1017 
15/19 control subjects that were falsely classified were classified as “ALS”. It can be observed that of the 1018 
16 false positives in ‘ALS’ class, 93.75% were actually healthy control. (E) a Venn diagram of miRNAs 1019 
shared in the three classification models. 1020 
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              1021 
   1022 
Figure 7: The contribution of individual features miRNAs shared and disease-specific miRNA 1023 
predictors. (A) SHAP analysis explains how features impact the multi-disease predictor output, namely, 1024 
class probabilities. Average impact (mean absolute SHAP values) of miRNAs on model output for 1025 
features, ordered according to their importance over all classes. (B-C) Combining feature importance with 1026 
feature effects to illustrate the relationship between the value of the feature and the impact on the 1027 
prediction, for a specific class; each point is a SHAP value for a feature and a specific subject. The 1028 
position on the y-axis is determined by the feature and scattered on the x-axis by the SHAP value. The 1029 
color represents the value of the feature from low (blue) to high (red). For example, the levels of mir-1-3p 1030 
equally influence predictions of FTD and ALS, with negligible contribution to predicting ‘controls’. miR-326 1031 
and mir-629-5p contributes to the FTD predictor more than ALS, whilst high expression of mir-206 1032 
increases the predicted ALS risk (while having no effect on the risk of FTD). High values of miR-326, a 1033 
miRNA inflammatory regulator, increases the predicted FTD risk while miR-185-5p has the reversed 1034 
impact with higher values reducing the risk of FTD. 1035 
 1036 
  1037 
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1038 
Figure 8. AUC values for different miRNA classifiers for discriminating FTD vs control (A) and ALS vs 1039 
controls (B) in the held-out data. The classifiers used in (A) were either the 13 selected in the FTD model 1040 
in our data, a combination of miR-34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p selected in 1041 
Kmetzsch et al., 2020 (Kmetzsch et al., 2021), or a combination of miR-335/let-7e, miR-99b/let-7e and 1042 
miR-9-3p/miR-181a selected in Sheinerman et al., 2017 (Sheinerman et al., 2017); the classifiers used in 1043 
(B) were either the 12 selected in the ALS model in our data, a combination of miR-34a-5p, miR-345-5p, 1044 
miR-200c-3p and miR-10a-3p selected in Kmetzsch et al., 2020 or a combination of miR-206/miR-31, 1045 
miR-206/miR-125b and miR-99/miR-338-3p, selected in Sheinerman et al., 2017.     1046 
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Supplementary tables and figures 1047 
 1048 

 Before Exclusion After Exclusion 

Group 
Name 

Age Sex Mean Age Group 
Size Mean Age Group 

Size Age 

ALS  
cases 

 
(n=206) 

64.4�11.01,  
95% CI  

[62.9, 65.9] 

F 
65.9 84  66.6  82 

64.9�10.4,  
95% CI  

[63.47, 66.35] 

M 63.3 122 63.8  120 

ALS  
controls 

 
(n=102)  

49.9�13.68, 
95% CI  

[47.25, 52.55] 

F 
51.1 73  55.3 59 55.7�10, 

95% CI  
[53.46, 57.94] 

M 46.8 29 57.0 18 

FTD  
cases 

 
(n=169)  

65.58� 8.37, 
95% CI  

[64.32, 66.84] 

F 66.8 59  67.3 58 65.75�8.1, 
95% CI  

[64.53, 66.97] 
M 64.9 110  64.9 110 

FTD  
controls 

 
(n= 56) 

60.96� 
13.28,  
95% CI  

[57.48, 64.44] 

F 61.1 30  65.6  26 65.55� 7.3,  
95% CI  

[63.49, 67.61] 
M 60.8 26  65.6 22 

 1049 
Supplementary Table 1. Age and sex characteristics - before and after exclusion by age (age-based 1050 
QC) 1051 
 1052 
 1053 
 1054 
 1055 
  1056 
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Predictor Single Feature AUC 

miR-423-5p 0.69 

miR-125b-5p 0.69 

miR-26a-5p 0.68 

miR-107 0.68 

miR-185-5p 0.64 

miR-629-5p 0.62 

let-7d-3p 0.61 

miR-379-5p 0.61 

miR-361-5p 0.6 

let-7c-5p 0.6 

miR-326 0.58 

miR-378a-3p 0.56 

miR-484 0.55 

 1057 
Supplementary Table 2. Predictive power of selected features when used as a single predictor for FTD 1058 
on held-out data. Among the most predictive features are miRNAs expressed in the brain, such as miR-1059 
26a-5p, miR-125b-5p and let-7c-5p. 1060 
 1061 
 1062 
 1063 
 1064 
 1065 
 1066 
 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 
 1079 
 1080 
 1081 
 1082 
 1083 
 1084 
 1085 
 1086 
 1087 
 1088 
 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
 1095 
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Predictor Single Feature AUC 

miR-186-5p 0.75 

miR-223-3p 0.73 

miR-23b-3p 0.72 

miR-454-3p 0.72 

miR-1-3p 0.71 

miR-206 0.65 

miR-103a-3p 0.62 

miR-185-5p 0.61 

miR-370-3p 0.56 

miR-181b-5p 0.54 

let-7i-5p 0.44 

miR-320a 0.39 

 1096 
Supplementary Table 3. Predictive power of selected features, when used as a single predictor for ALS 1097 
diagnosis on held-out data.  1098 
 1099 
  1100 
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Predictor Single Feature weighted one-vs.-all AUC 

miR-1-3p 0.71 

miR-185-5p 0.7 

miR-186-5p 0.69 

miR-629-5p 0.65 

miR-206 0.65 

miR-423-3p 0.65 

miR-378a-3p 0.62 

let-7d-3p 0.62 

miR-339-5p 0.61 

miR-23b-3p 0.6 

miR-484 0.58 

miR-148a-3p 0.57 

miR-107 0.57 

miR-361-5p 0.56 

miR-326 0.55 

miR-24-3p 0.45 

 1101 
Supplementary Table 4. List of most predictive features and their predictive power (on held-out data) 1102 
when used as a single predictor for ALS-FTD 1103 
 1104 
 1105 
 1106 
 1107 
 1108 
 1109 
 1110 
 1111 
 1112 
 1113 
 1114 
 1115 
 1116 
 1117 
 1118 
 1119 
  1120 
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 1121 
Supplementary Figure 1: QC of prognostic factors in the meta-cohort. Depicting heterogeneity of 1122 
prognostic factors in the four different groups in the study, before (upper) and after (lower) exclusion of 38 1123 
outlier subjects under the age of 40. While the univariate distribution of age in some sub-groups overlap, 1124 
the difference in the shape of the age distributions may reflect a possible bias induced by age (B). The 1125 
total standardized differences in mean age across sub-groups was reduced by 68% after exclusion. (A), 1126 
(D) Boxplot age quartiles and variation of subjects by group - indicating skewness and variability outside 1127 
the upper and lower quartiles of age in some groups. After outlier exclusion, the groups “ALS-ctr” and 1128 
“FTD ctr” are more comparable and the high variability in “FTD ctr” is reduced.  (B), (E) Distribution of age 1129 
conditioned by group: estimating the shape of the Probability Density Function (PDF) of age by non-1130 
parametric Gaussian kernel density estimate.  Outlier removal has increased the overlap of the different 1131 
PDFs.  (C), (F) Mean age conditioned by gender and group. The different groups in the study are more 1132 
balanced in terms of age and gender after age-outlier removal.  1133 
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 1134 
 1135 
Supplementary Figure 2. t-SNE analysis of control subjects (A) and all subjects (B) presenting de-1136 
separation between different control groups and between disease groups and merged control group. 1137 
 1138 
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