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Summary 
Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is an 
unmet global health challenge. Here we apply high-throughput tandem mass spectrometry to 
delineate the plasma proteome for sepsis and comparator groups (non-infected critical illness, post-
operative inflammation and healthy volunteers) involving 2622 samples and 4553 liquid 
chromatography-mass spectrometry analyses in a single batch, at 100 samples/day. We show how 
this scale of data can establish shared and specific proteins, pathways and co-expression modules 
in sepsis, and be integrated with paired leukocyte transcriptomic data (n=837 samples) using matrix 
decomposition. We map the landscape of the host response in sepsis including changes over time, 
and identify features relating to etiology, clinical phenotypes and severity. This work reveals novel 
subphenotypes informative for sepsis response state, disease processes and outcome, highlights 
potential biomarkers, pathways and processes for drug targets, and advances a systems-based 
precision medicine approach to sepsis. 
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Introduction 
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to 
infection (Singer et al., 2016). Currently we lack effective immunomodulatory therapies to address 
the high mortality and global burden of this disease (van der Poll et al., 2021; Rudd et al., 2020). 
Incomplete knowledge of pathophysiology and failure to differentiate individual patient variation in 
the nature and timing of maladaptive host responses within the heterogeneous clinical syndrome of 
sepsis currently limit clinical trials (Marshall, 2014; van der Poll et al., 2021; Stanski and Wong, 
2019). Sepsis subphenotypes informative for immune response state, outcome and therapeutic 
response are proposed based on clinical, laboratory and molecular stratifiers (Baghela et al., 2022; 
Cano-Gamez et al., 2022; Davenport et al., 2016; Kwok et al., 2022; Scicluna et al., 2017; Seymour 
et al., 2019; Sweeney et al., 2018; Wong et al., 2019). However, establishing the nature of the 
sepsis host response has been limited by incomplete knowledge of the sepsis plasma proteome. 
The plasma proteome reflects the function of organ systems through the secretome and tissue 
leakage products, offering the opportunity to identify key mediators of the sepsis response, potential 
therapeutic targets and biomarkers of individual variation in response. 
 
To date there have been technological limitations to high throughput application of quantitative 
assays that are able to capture the high dynamic abundance range of proteins in the blood. Analysis 
of the sepsis plasma proteome has focused on mouse models, a small number of plasma cytokines 
and metabolites in patients, or mortality prediction and comparison with healthy individuals and 
sterile inflammation, involving relatively small numbers of patients (De Coux et al., 2015; Fjell et al., 
2013; Kiehntopf et al., 2011; Langley et al., 2013; Leite et al., 2021; Miao et al., 2021; Pimienta et 
al., 2019; Sharma et al., 2017, 2019; Thavarajah et al., 2020; Toledo et al., 2019). 
 
Tandem mass spectrometry (MS) provides protein measurements in an untargeted and hypothesis-
free manner suitable for discovery-led characterization of the sepsis blood proteome response. 
Here we show how with higher-throughput automated and robust methods for sample preparation, 
MS-based data acquisition and data analysis it is feasible to analyze >2500 non-depleted blood 
plasma samples in a single batch using a liquid chromatography-MS (LC-MS) platform. We report 
the plasma proteome of >1000 adult sepsis patients at multiple timepoints and integrate with 
leukocyte transcriptomics to provide insights into the nature of the sepsis response and observed 
clinical heterogeneity. 
 

Results 
 
High throughput MS delineates the plasma proteome at scale for critical illness cohorts 
We aimed to characterize the acute sepsis plasma proteome. To do this we analyzed patients with 
sepsis due to community acquired pneumonia (CAP) or fecal peritonitis (FP) admitted to the 
intensive care unit (ICU) and serially sampled during their admission (n=1190 patients, 1889 
samples from the UK Genomic Advances in Sepsis (UK GAinS) study); and septic shock patients 
(n=45 patients, 154 samples from the VANISH study) (Figure 1A; Table S1; STAR Methods). Non-
sepsis controls, including healthy volunteers (HV) (n=152 individuals and samples), elective surgery 
patients pre- and post- operation (BIONIC, X-MINS studies; n=149 patients, 351 samples) and non-
infected ICU patients (MOTION, TACE and MONOGRAM studies; n=76 samples, 76 patients), were 
also assayed to compare sepsis with non-infectious causes of inflammation and critical illness. We 
defined discovery and validation cohort sets from these cases and controls (Figure 1A; Table S1; 
STAR Methods). 
 
Traditionally, MS-based proteomics is a low throughput technique in the range of 10-20 
samples/day when nano-flow UPLC is employed to maximize sensitivity (Aebersold and Mann, 
2003). In this study we developed a high throughput quantitative proteomics workflow, using a 
combination of Evosep One HPLC and Bruker timsTOF Pro on a total of 2622 plasma samples from 
1612 individuals (Figure 1A) in one batch across 28 fully randomized acquisition plates to minimize 
assay variability between individuals and cohorts. In total we acquired 4553 LC-MS analyses 



including a pre-fractionated, super-depleted (Beer et al., 2017) master pool at 100 samples/day in 
data dependent acquisition mode (DDA-PASEF). The complete dataset comprises 250 million 
MS/MS spectra matching to a total of 2782 protein groups. In addition, we injected two non-depleted 
master pool samples every 24 cohort sample injections for subsequent identification transfer 
(“match between runs”, STAR methods) and quality control (Figure S1). 

 
In addition to the data sparsity common to MS, the highly heterogeneous sample composition and 
long acquisition process introduced potential variation. We customized data pre-processing to 
minimize potential technical bias and maximize comparability between samples (workflow Figure 
S1A, STAR Methods). We analyzed raw protein intensities derived from FragPipe (STAR Methods), 
identifying 291 proteins reliably detected (in ≥50% samples) in at least one biological group, and 
removed 32 samples with few proteins detected and 22 proteins affected by cell residue 
contaminations in the plasma (Figure S1B-E; STAR Methods). We used Variance Stabilizing 
Normalization to normalize raw intensities and account for systematic bias, and applied K-Nearest-
Neighbors to impute missing values based on the most similar proteins (for 170 proteins detected in 
≥60% of the samples) or imputation by random draw from down-shifted normal distributions for the 
remainder. The processed data comprised 269 proteins in 2575 samples from 1598 patients (Figure 
1A). 
 
An axis of severity across cohorts revealed by the proteome profile 
We first sought to understand variation in plasma protein abundance and enrichment for biological 
processes across all cohorts. Reducing the dimensionality of the data, we found principal 
component (PC) 1 formed a sample gradient from HV and pre-operative, to post-operative and non-
infectious critical illness, to sepsis and septic shock (Figure 1B). Across the patient and control 
cohorts, proteins with high positive loadings for PC1 included acute-phase (CRP, SAA1, SAA2, 
SERPINA1, SERPINA3, HP, C1RL), S100 pro-inflammatory (S100A8, S100A9, S100A12), innate 
immune or anti-bacterial (LCN2, LBP, USP15), and extracellular matrix (ECM) proteins (TNC, 
MMP2, COL1A2, COL6A1), while lipid transport protein APOM (Apolipoprotein M) had a high 
negative loading (Figure 1C). We identified protein clusters enriched for biological processes based 
on protein-protein interactions (Figure S1F). 
 
We further analyzed functional groupings by deriving protein set enrichment scores using GSEA 
(STAR Methods). We analyzed the resulting matrix by principal component analysis and found that 
PC1 showed a gradient across sample cohorts with highest loadings for antimicrobial humoral 
response, cell chemotaxis, and positive regulation of response to external stimulus (towards 
sepsis/severe disease); and lipoprotein metabolic process (highest scores in non-sepsis controls). 
PC2 involved regulation of B cell activation, and Fc receptor signaling pathway (Figure 1D). 
 
We also derived protein co-expression networks (STAR Methods), grouping 184 proteins into 16 co-
expression modules that varied by comparator cohort and were enriched for acute-phase proteins 
(blue module, higher in sepsis), plasma lipoprotein assembly (yellow, higher in HV), platelet 
degranulation (brown, higher in sepsis) and immunoglobulins (black, purple and magenta, higher in 
sepsis and/or non-infected ICU patients) (Figures 1E, 1F, S1G). 
 
Sepsis is associated with a distinct plasma proteome profile 
We proceeded to investigate differential protein abundance and pathway enrichment in sepsis. Here 
and subsequently, sepsis refers to the CAP/FP patients with sepsis admitted to ICU in the UK 
GAinS study unless stated otherwise. Across the six sepsis-comparator group contrasts in the 
discovery and validation cohorts (Figure 2A), we found 11 proteins differentially abundant in all 
contrasts, all with highest abundance in sepsis. These involved the acute phase response (CRP, 
LCN2, SERPINA1, HP), extra-cellular matrix (MMP2, COL6A1, TNC), protection in tissue damage 
(SERPINA1, HP, TNC), neutrophil function (LCN2, MMP2, SERPINA1, S100A9, S100A12), 
cytokine production (LCN2, MMP2, USP15, SERPINA1, HP, TNC, S100A12), and galactose 
metabolism (B4GALT1) (Figures 2B, 2C, S2A). 
 



Compared with HV, we found 53 proteins were differentially abundant (FDR<0.05, |FC|>1.5) in both 
the discovery and validation cohorts (Figures 2B, 2D, S2B). Proteins more abundant in sepsis were 
implicated in the acute-phase response (CRP, SAA1, SAA2), coagulation process (VWF, FGB, 
FGA), and immune or immune-regulatory functions (LBP, S100A9, FGL1, ORM1, CD14), while 
reduced levels of apolipoproteins, alpha-2-HS-glycoprotein (AHSG), hepatocyte growth factor 
activator (HGFAC), plasma serine protease inhibitor (SERPINA5), transthyretin (TTR, inhibited by 
inflammation), and transcription regulator protein BACH2 (regulates apoptosis and adaptive 
immunity) were found. 
 
We further compared sepsis with post-operative samples from elective surgery (X-MINS, BIONIC 
cohorts) reflective of a sterile inflammatory response and found 14 proteins including HP 
(haptoglobin), TNC (tenascin), B4GALT1, and S100A12 to be consistently differentially abundant. 
Of these, only one (ficolin-2, FCN2 which activates the lectin complement pathway (Matsushita, 
2010)) was not also differentially abundant in the sepsis vs HV contrast (Figures 2B, 2E, S2C). 
 
When we compared sepsis ICU patients to non-infected ICU patients, 14 proteins were differentially 
abundant in both the discovery and validation cohorts including S100A9, HP, SERPINA1, and 
B4GALT1 (Figures 2B, 2F, S2D) of which only C1RL (prohaptoglobin serine hydrolase), SAA2, and 
IGHV4-34 (BCR Ig) were not differentially abundant when sepsis was compared with post-operative 
samples. 
 
We then sought to identify biological pathways consistently altered in sepsis. In the discovery 
cohort, sepsis differed from all comparator groups in acute-phase response, neutrophil 
degranulation, regulation of IGF (insulin-like growth factor) transport and uptake by IGF binding 
proteins, innate immune system, and post-translational protein modification (Figure 2G). Immune 
and metabolic processes that differed in sepsis vs HV and were not differential between sepsis and 
post-operative patients included TLR signaling, clotting, and IL-4 and IL-13 signaling. All these 
enriched terms were replicated in the validation cohort. 
 
Specific plasma protein subsets associate with sepsis severity, clinical covariates, source, 
and progression 
We then investigated whether specific plasma proteins were associated with particular clinical 
features of the sepsis response, combining samples from the sepsis discovery and validation 
cohorts. We first analyzed overall variance in the proteome within sepsis patients. The largest 
component of variance, PC1, showed significant positive correlations with features relating to illness 
severity including blood lactate, Sequential Organ Failure Assessment (SOFA) scores, presence of 
shock, and mortality; and significant negative correlations with blood pressure, platelets and 
lymphocyte proportion (Figures S3A, 3B). In terms of individual plasma protein abundance, we 
identified a protein set (including PTGDS, B2M, CFD, LCN2, VWF, COL6A1, USP15, MMP2, 
COL1A2, CD14, PLTP and CRP) highly correlated with clinical variables reflecting more severe 
illness, including total SOFA, APACHE, occurrence of shock or renal failure, and prothrombin time, 
while a second set (including SERPIND1, C3, APOA1, HRG, KNG1, and VTN) had strong negative 
associations (Figure 3A).We found five proteins (CRP, LCN2, USP15, COL1A2, MMP2) significantly 
more abundant in patients with FP compared to CAP (Figures 3A, 3B). Within CAP, bacterial 
compared with viral infections showed higher abundance of LCN2 (Lipocalin-2) which limits bacterial 
growth by sequestering iron-containing siderophores (Shields-Cutler et al., 2016). 
 
Using the protein co-expression modules identified from all cohorts (Figures 1E, 1F; STAR 
Methods) we found specific modules were significantly correlated with comparator group contrasts 
and with specific clinical variables (Figures 3C, 3D, S3C). For example, the blue module, enriched 
for acute-phase response proteins, positively correlated with sepsis in all comparator contrasts but 
did not associate with mortality, showed modest association with level of organ dysfunction and the 
strongest association with high temperature. The tan module (contains S100 family proteins, 
enriched for neutrophil degranulation) showed a positive correlation in all comparator group 
contrasts with sepsis and a moderate positive correlation with severity features, high temperature 



and acute respiratory distress syndrome. The greenyellow module comprising many extracellular 
matrix proteins, while also positively correlated with sepsis, showed a stronger positive correlation 
with severity measures, together with renal impairment, lymphopenia, low temperature, increased 
mortality and increased age. The red module (complement activation) was associated with sepsis 
but correlated with less severe disease. Lipoprotein metabolic processes, reflected by the yellow 
module, were negatively correlated with sepsis, positively correlated with lymphocyte count, 
hematocrit, and a negative correlation with severity scores, renal impairment, mortality and 
mechanical ventilation. 
 
Among sepsis patients with serial samples, 12 of 16 co-expression modules showed a change 
between ICU admission, Day3 and/or Day5 using paired samples (Figure S3D; Table S2). The blue 
(acute-phase), red (complement activation) and greenyellow (ECM) modules showed a consistent 
decrease over time from admission with the change in greenyellow module eigengene from Day1 to 
Day5 positively correlated with the change in SOFA total score (FDR=0.00052, rho=0.33 
Spearman). 

 
Sepsis subphenotypes can be identified from the plasma proteome 
We next sought evidence for sepsis subphenotypes from the plasma proteome. Consensus 
clustering on the protein intensities for the sepsis discovery cohort (Figure 1A) using all timepoints 
identified three subgroups, which we denote as Sepsis Plasma proteome-based Clusters 
(SPC1/2/3), and which represented the optimal cluster stability and number shown by cumulative 
distribution of the consensus index (Figures 4A-C, S4A; STAR Methods). 
 
We then investigated the clinical correlates of these clusters (Figures 4D, S4B; Table S3). Using the 
SPC assignments for the first available sample for each patient following ICU admission, we found 
that SPC1 comprised a more clinically severe subset of patients, with higher SOFA scores (except 
for respiratory SOFA) and more frequent occurrence of shock and renal failure (Figures 4D, S4B). 
SPC1 patients had significantly higher mortality than SPC2 and SPC3 at both 28 days (SPC1 vs 
2+3 Hazard Ratio (HR) (95% CI) =2.5 (1.7-3.7), p=1.3×10-6) and 6 months (HR=2.3 (1.7-3.2), 
p=5.4×10-7) after sampling (Figure 4E). SPC3 patients were significantly younger than those in the 
other two clusters. SPC1 was enriched for FP patients and earlier time point samples. Restricting to 
CAP patients, we found those clustered as SPC1 had worse respiratory function and required more 
respiratory support, indicating that SPC1 identifies more severely ill patients after accounting for the 
original source of sepsis. 
 
To confirm that the clustering was not biased by relatedness between serial samples from the same 
individual, we repeated our analysis of all discovery cohort patients using only the first available 
sample for each patient. Consensus clustering showed a robust three-cluster structure (88.7% of 
samples assigned as before). The first-sample cluster with the largest overlap with SPC1 also had 
significantly higher mortality than the other two clusters combined (HR (95% CI)=2.3 (1.6-3.2) at 28-
day). 
 
We then sought to understand the proteomic differences between SPCs. Compared to HV, more 
plasma proteins were differentially abundant in SPC1 (81, 74, and 55 proteins for SPC1, 2, and 3 
sepsis patients respectively) including immunoglobulins and apolipoproteins specific to SPC1, 
enrichment for phagocytosis and positive regulation of B cell activation in SPC1, and lower levels of 
immunoglobulins in SPC2 (Figure S4C). Restricting the differential abundance analysis to between 
SPCs (Figures 4F, S4D), we found the proteins most abundant in SPC1 vs SPC3 were Ubiquitin 
carboxyl-terminal hydrolase 15 (USP15) and Collagen type I α-2 chain (COL1A2). Few proteins 
showed lower abundance in SPC1; these included apolipoprotein A-II (APOA2), transcription 
regulator protein BACH2, and Rho activator ARHGEF18. Compared to SPC2, SPC1 showed higher 
abundance of immune function proteins and immunoglobulins and lower albumin, apolipoproteins, 
haptoglobin, and cell adhesion mediators. SPC2 showed mostly lower protein abundance vs SPC3, 
specifically of intracellular proteins such as microtubule-associated protein 1A (MAP1A), metabolic 
regulator glycine N-methyltransferase (GNMT), and BACH2. Comparing SPC1 to SPC2 or to SPC3, 



we observed relatively greater activity of immune pathways, including interleukin signaling, Fc-γ or 
Fc-ϵ receptor signaling, leukocyte migration, complement activation, and ECM organization (Figure 
4G). 
 
Proteomic patient subgroups are reproducible and involve specific pathways and 
biomarkers 
In order to validate and further characterize these subgroups, we developed SPC prediction models. 
An elastic net model with 181 predictors performed best in terms of test-set accuracy (91.4%, Figure 
S5A). We applied this model to the sepsis validation cohort and replicated the associations with 
mortality (Figure 5A) and measures of severity including lactate, cell counts, vasopressor and renal 
support, and SOFA scores (Figures 5B, S5B). Differential abundance and pathway enrichment 
analysis between the validation cohort clusters and HV showed strong concordance with the 
discovery cohort (Figure S5C-E). We further tested cluster prediction based on a small number of 
informative protein biomarkers. We derived a new minimal elastic net model with 8 predictors 
(USP15, COL1A2, APOA2, MAP1A, GNMT, TSPAN11, LCP1, ALB), which successfully classified 
79.5% of the test set, with a 72.7% sensitivity for SPC1. 

 
We also investigated the transitions between clusters. Cluster membership was significantly 
associated with time following ICU admission (χ2 p=0.0012). Considering only the 526 patients with 

multiple time points available, 57.4% of patients changed group over time, most frequently from 
SPC1 to SPC3 suggesting a general trajectory of recovery (Figure 5C, Table S4). SPC assignment 
could therefore be useful not only for defining sepsis response state and prognostication, but also 
for therapeutic intervention (based on evidence of patient movement between SPCs) and 
monitoring disease progression. 
 
The EvosepOne-timsTOF platform enabled us to profile unprecedented numbers of patient 
samples, but with limitations in the range of proteins that could be detected. We therefore employed 
two additional methods to more fully characterize these clusters in a subset of patients. Firstly, we 
profiled 148 sepsis samples from 100 patients on a QE-HF mass spectrometer after depleting 12 
highly abundant proteins. This permitted measurement of many more proteins (1123 detected in 
≥70% samples, STAR Methods). Recognizing power was greatly reduced due to the restricted 
sample size, and potential limitations associated with the depletion process, we identified 144 
proteins with higher and 63 proteins with lower abundance in SPC1 vs SPC3, and no signal in the 
two contrasts with SPC2 (Figure 5D). Pathway enrichment analysis again highlighted immune 
response pathways, ECM organization and lipoprotein metabolism differentiating SPC1 and SPC3, 
along with IL-4 and IL-13 signaling, collagen organization and the cell cycle. Secondly, we used the 
Luminex immunoassay to investigate 65 cytokines and other signaling molecules in 204 samples 
from 146 patients with SPC assignments. At the first available timepoint, the majority of analytes 
measured had higher sampled median concentrations in SPC1 vs SPC3, with significantly 
increased chemokines MCP-1, IL-8, and MIP-3α; cytokines involved in B cell proliferation (APRIL, 
IL-6), and immune inhibitory functions (IL-2R, LIF), and the interstitial collagenase MMP-1 (FDR 
<0.05 and FC>1.5) (Figures 5E, S5F). The cytokine profile of SPC1 indicated greater activity in 
chemotaxis and IL-6 regulated pathways. 
 
Overall, SPC1 was characterized by higher abundance of immune response proteins, including 
specific cytokines and immunoglobulins, and more collagen and ECM components in the circulating 
plasma, implying a greater degree of tissue damage in these patients (Figure 5F; Table S5). 
Lipoprotein metabolism and transport were comparatively downregulated in SPC1. SPC2 by 
contrast had lower levels of immunoglobulins and B cell signaling pathway proteins, whereas in 
SPC3 interleukin signaling and cytokine concentrations were relatively reduced. 
 
Integration of plasma proteome and leukocyte transcriptome reveals components 
contributing to the sepsis response 
We next sought to maximize the informativeness of the sepsis plasma proteomics (MS) by 
integrating with paired white blood cell transcriptomics (RNAseq) for 837 samples (649 patients), 



using matrix decomposition (Hore et al., 2016) to derive 284 latent components. These each 
comprised vectors of scores (loadings) that indicate the contribution of individual proteins and/or 
genes linked by that component, with 76 components having significant contributions from proteins. 
We then tested for correlation or association of the 284 components with clinical severity, patient 
subgroup, etiology, and time point (Figure 6; Table S6). To illustrate the approach, for sex we found 
a single highly significant component (Figure S6A), but for other phenotypes several components 
were correlated. 
 
The two components (187, 164) most significantly correlated with disease severity (total SOFA 
scores) involved only differential gene expression and implicated metabolic and immune processes 
(Figures S6B, S6C). By contrast component 141 linked lower SOFA scores to genes enriched for 
HLA class II and proteins implicated in lipid biology (APOA1, PON1) and histidine-rich glycoprotein 
(HRG) (a proposed sepsis biomarker important in maintaining neutrophils in a quiescent state 
(Kuroda et al., 2018; Takahashi et al., 2021)) with overall enrichment for negative regulation of 
endopeptidase activity, platelet degranulation, and regulation of complement activation (Figure 6B). 
 
In terms of components significantly correlated with source of sepsis (CAP vs FP), component 134 
had only gene expression contributions, including neutrophil activation marker CD177, bone marrow 
kinase BMX (role in endothelial permeability in sepsis (Li et al., 2020)) and matrix metalloprotease 
MMP9 (ECM degradation, implicated as a sepsis biomarker (Lorente et al., 2009)) (Figure S6D). 
The second most significant component 266 linked contributions from multiple differentially 
expressed genes and cognate proteins for immunoglobulin variable and constant chains, and 
enrichment in receptor-mediated endocytosis (FDR=0.016) in FP (Figure 6C). 
 
We also identified components correlated with time from ICU admission (Table S6). Component 106 
linked differential gene expression and later timepoint, involving ephrin receptor (endothelial cell 
migration) EPHB4, cholesterol metabolism (CYP27A1), inflammation and tissue remodeling 
(CHI3L1), transferrin neutrophil granules (LTF) and integrin (ITGB4) but not proteins, while 
component 174 revealed genes contributing to early time points including T cell activation 
(costimulatory gene TNFSF4), transcriptional regulation (FAM172A, MAML3), fatty acid biosynthesis 
(OLAH) and glycolysis (TPK1) (Figure S6E,F). Component 241 had the third highest significance, 
with proteins associated involving PRSS8 (prostasin serine protease), CD5L (lipid synthesis, 
macrophage apoptosis), and FN1 (Fibronectin, cell adhesion and motility); and regulation of 
chemotaxis and signaling pathways indicated by gene expression loadings (Figure 6D). 
 
The most significant components for SPCs all involved protein abundances only (Figure 6E). 
Component 242 had the most significant association with SPC1vs3 (Padj=9.2×10-34, Mann-Whitney 
test) and the second highest in SPC1vs2 (Padj=1.1×10-19), with contributions from proteins enriched 
for ECM and metabolism (USP15, COL1A2, MMP2, VWF). Component 133 showed the most 
significant association with both SPC1vs2 (Padj=3.3×10-36) and SPC2vs3 (Padj=1.0×10-67). Multiple 
proteins had high loading scores for this component, including GNMT, MAP1A, BACH2, and 
ARHGEF18. Component 204 differentiated SPC1 from SPC2 (Padj=2.3×10-18) and SPC3 
(Padj=1.1×10-22), highlighting immunoglobulin variable chains that mostly had higher abundance in 
SPC1. 
 
We have previously reported sepsis response signatures (SRS) from leukocyte transcriptomic 
datasets associated with outcome and differential response to therapy (Antcliffe et al., 2019; 
Burnham et al., 2017; Davenport et al., 2016), including patients with evidence of granulopoietic 
dysfunction involving specific neutrophil subsets, relative immune compromise and high mortality 
(SRS1) or changes involving T cell and adaptive immunity (SRS2) measurable as a quantitative trait 
SRSq (Cano-Gamez et al., 2022; Kwok et al., 2022). We found component 92 strongly correlated 
with lower SRSq (more similar to SRS2) (Padj=1.6×10-172, rho=0.78 Spearman) which included 
increased apolipoprotein APOF and differential RNA abundance including repressive chromatin 
regulator SAMD1 and T cell regulator ligase RNF114 (Figure S6G). Most components most strongly 
associated with SRS did not have contributions from proteins, for example, the second most 



correlated component 232 linked lower SRSq with higher expressed genes enriched for TCR 
signaling, cytokine signaling, and adaptive immunity (Figure S6H). Component 160 linked higher 
SRSq (SRS1) with contributions from proteins including COLEC11 (collectin-11, role in innate 
immunity and apoptosis), CRP, DEFA1 (neutrophil defensin 1), LBP (LPS-binding protein), ECPAS 
(proteasome adapter and scaffold protein), CPN2 (carboxypeptidase N subunit 2), and from genes 
enriched for secreted soluble factors, GPCR ligand binding, neutrophil degranulation and 
immunoregulatory interactions (Figure 6F). 
 
Overall, the matrix decomposition analysis identified features of the plasma proteome and leukocyte 
transcriptome associated with sepsis severity, disease etiology, progression, and subphenotype; in 
some cases dominated by proteomic or transcriptomic features, and in others linking features 
across these domains. 
 
Transcriptomic and proteomic profiling reveal complementary but distinct sepsis 
subphenotypes and response states 
We further explored the relationship between plasma proteome- and leukocyte transcriptome-
derived sepsis subphenotypes by analyzing 1016 patients (1361 samples) where both SPC and 
SRS assignments (derived from gene expression, STAR Methods, (Cano-Gamez et al., 2022)) were 
available. Considering the first available time points, we found 70% of SPC1 patients were also 
assigned to SRS1 in the discovery cohort, compared to 37% and 34% in SPC2 and SPC3 (71%, 
48% and 31% in validation cohort) (χ2 p<0.0001; Figures 7A, 7B). The subsequent movement 

between the clusters over ICU admission showed greater likelihood of transition from SPC1 and 
SRS1 to another state (Figures S7A, S7B). 
 
We identified differentially abundant proteins between SRS groups (Figure 7C), some of which 
overlapped with the proteins discriminating SPC1 from SPC2+3 (Figure 7D) including higher 
abundance of CRP, LCN2, USP15, COL1A2, SAA2, MMP2, S100A8, TNC and S100A12 in both 
SRS1 and SPC1. On the other hand, a set of immunoglobulins, HP and APOA2 differed only 
between SPC, and SAA2 only in the SRS contrast. Gene expression differences between SRS 
groups and SPC groups were strongly correlated (Figure S7C). Pathways enriched in the differential 
proteins and genes showed shared and specific features (Table S7), including cytokine signaling 
and innate immunity inferred from higher-abundance proteins in both SRS1 and SPC1, together 
with neutrophil degranulation and oxidation-reduction (upregulated) and adaptive immune response 
and T cell co-stimulation (downregulated) in both SRS1 and SPC1 from gene expression analysis. 
However, each contrast also had unique features, with MHC class II genes downregulated uniquely 
in SRS1, and IFN signaling and cell division terms only enriched in the SPC analysis (Table S7). 
 
Finally, given SRS1 and SPC1 both associated with poor outcome (Figure 7E), we tested whether 
the two classifications can be combined to further inform risk stratification. We found the patients 
assigned to both SRS1 and SPC1 (~11% patients) had the highest mortality rate of 33.3% at 28 
days (31.7% in validation cohort), with Hazard Ratio (HR)=3.9 (95% CI 2.3-6.7) p<0.0001 
(discovery) (HR=3.0 (1.5-6.0) p=0.002 (validation)) vs ‘SPC3 non-SRS1' patients (~43%) who had 
the lowest mortality of 10.4% (12.8% in validation cohort) (Figures 7F, S7D, S7E). 
 

 
Discussion 
In this study we have mapped the human sepsis plasma proteome, applying an innovative mass-
spectrometry based approach at scale to understand how sepsis differs from health, sterile 
inflammatory states and non-infected critical illness as well as individual variation in the sepsis 
response. The sepsis plasma proteome reflects mechanisms underlying the dysregulated host 
response to infection, as well as the wider consequences of organ dysfunction (reduced metabolism 
and excretion for example) and tissue injury. This offers the opportunity to identify new aspects of 
pathogenesis together with measures of organ dysfunction and disease severity. 
 



We report evidence of specific proteins, co-expression modules and networks differentially 
abundant in sepsis involving innate immunity, acute-phase response, neutrophil function, cytokine 
production, lipometabolism, tissue damage protection and extra-cellular matrix organization. More 
severe illness was associated with specific proteins including PTGDS, B2M, CFD, LCN2, VWF, 
COL6A1, USP15, MMP2, COL1A2, CD14, PLTP and CRP, and modules enriched for S100 family 
proteins and extracellular matrix proteins (positive correlation), complement and lipoprotein 
metabolic proteins (negative correlation). We found dynamic changes over ICU admission, 
particularly involving acute-phase, complement and ECM related modules. 
 
A key challenge relates to disease heterogeneity within sepsis, and the extent to which biological 
processes causing disease are shared or specific within critical illness more generally (Maslove et 
al., 2022). We and others have found evidence of sepsis subphenotypes based, for example, on 
clinical and lab variables (Seymour et al., 2019; Zador et al., 2019), inflammatory mediators (Fjell et 
al., 2013), and the leukocyte transcriptome (Baghela et al., 2022; Burnham et al., 2017; Davenport 
et al., 2016; Scicluna et al., 2017; Sweeney et al., 2018; Wong et al., 2019). Here we identify and 
validate three patient clusters from the sepsis plasma proteome, informative for response state, 
disease severity and outcome. SPC1 patients have the most severe disease and show differences 
in proteins related to phagocytosis, lipoprotein metabolism, interleukin signaling, chemotaxis, B cell 
activation and circulating immunoglobulins. These complement and add granularity to the leukocyte 
transcriptomics SRS groups. When considered together, patients in both SPC1 and SRS1 have the 
worst outcome, with shared features relating to cytokine signaling and innate immunity, neutrophil 
degranulation and oxidative metabolism. 
 
Further work is needed to establish the mechanisms driving SPC and whether they are reflective of 
treatable traits. Animal and human studies, for example, already highlight lipoproteins as potential 
therapeutic targets in sepsis (Tanaka et al., 2020) and COVID-19 (Chidambaram et al., 2022). 
Additional work is also required to determine the maximally informative biomarkers appropriate for 
point of care testing, and whether these can be applied in combination with other ‘omic platforms 
and currently available clinical or laboratory variables to better stratify patients. 
 
The increasing availability of multi-modal high dimensional data for clinical and molecular disease 
phenotyping requires innovative approaches to analyze and integrate such datasets (Graw et al., 
2021; Rajczewski et al., 2022). Here, we have leveraged analytical strategies developed for 
transcriptomics to investigate protein co-expression networks and modules, and signatures of 
response. We have further shown how matrix decomposition allows integration of paired plasma 
proteomic and leukocyte transcriptomic data, demonstrating instances where these are linked in a 
specific component and informative for illness severity or disease subgroup. Reassuringly, we find a 
high concordance with proteins and processes identified from analysis of individual proteins, 
modules and latent components.  
 
In this study we show that medium to high throughput proteomics across multiple large cohorts in a 

single batch is feasible on a single LC-MS platform. A simple semi-automatic sample preparation 

strategy in combination with the MS-based analysis of >2500 clinical, non-depleted plasma samples 

and further ~2000 quality control and library samples at 100 samples/day now reaches throughputs 

employed by other proteomics technologies such as Olink or SOMAscan, but at significantly lower 

costs and sample usage. Although measured proteome depth is limited due to the extreme dynamic 

range of plasma protein abundance, we achieve good coverage of the acute phase proteome and 

markers of disease routinely quantified in single measurement assays such as ELISA. The 

throughput, cost effectiveness and robustness of modern LC-MS platforms mean this technology is 

now competitive with standard clinical practice measurements such as ELISA for absolute protein 

quantitation if heavy isotope labeled peptide standards are spiked into the clinical samples, marking 

a transition from a pure discovery tool towards a more clinical point of care application in the coming 

years. At the same time, LC-MS based proteomic analysis of plasma samples allows unprejudiced 

discovery analysis of novel biomarkers without compromising clinical, patient specific 



measurements. Future work will focus on streamlining sample and data processing workflows 

towards clinical certification and point of care use. 

 

Limitations of the study 
Further work is needed to fully establish the complete sepsis proteome across a wide dynamic 
range of protein abundance and size, and differentiate protein variation (proteoforms) (Melani et al., 
2022). Recent advances in Data Independent Acquisition (DIA) for MS would be compatible with 
high throughput proteomics platforms and offer future opportunities to increase depth and data 
completeness. It is not known to what extent individual organs and tissue beds contribute to the 
observed plasma proteome in sepsis and it would be valuable to quantify disease relevant tissue-
specific proteomes, recognizing that obtaining tissue samples from the critically ill is very 
challenging. Application of co-expression analysis is limited by the relatively sparse nature of the 
proteomic data. Network-based methods such as similarity network fusion (Wang et al., 2014) and 
multi-layer patient similarity networks (Kivelä et al., 2014) may further facilitate inference of patient 
connectivity and subgroup detection. 
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Figure legends 
 
Figure 1. Study overview and differentiation by plasma proteome 
(A) Study design, workflow and cohorts (study name, numbers of individuals assayed, and number 
of samples in brackets) (STAR Methods). CAP, community acquired pneumonia; FP, fecal 
peritonitis. 
(B, C) Protein abundance all samples (B) Principal component analysis (PCA) showing PC1 vs PC2 
with 95% data ellipses (assuming a multivariate t-distribution) (C) protein loadings on PC1 and PC2. 
(D) PCA of enrichment scores matrix on all samples from Gene Set Enrichment analysis using 
protein abundance for single samples. Arrows, gene ontology biological processes (top 8 loadings 
PC1 and PC2), length scaled to loading. 
(E, F) Protein co-expression network from Weighted Gene Co-expression Network Analysis (E) 
Module network, with edge weight denoting topological overlap between connected nodes, node 
size denoting within-module connectivity (F) Relationship with cohorts, showing mean level of 
module eigengenes. 
 
Figure 2. Sepsis-specific proteomic response 
(A) Contrasts made. n, number of individuals (samples). 
(B) Venn diagram of differentially abundant (DA) proteins overlapping between contrasts.  
(C) Summary heatmap of mean protein abundance in sepsis and comparator groups, scaled by row. 
94 proteins DA in any of the six contrasts in (A) are included, with significance level shown; 11 
proteins DA in all contrasts shaded yellow. Only the first available samples per sepsis patient 
included. 
(D-F) Volcano plots of differential protein abundance for discovery cohort contrasts. Significantly 
different proteins (FDR<0.05 and |FC|>1.5) shown in red. 
(G) Pathway enrichment of DA proteins. Terms significantly enriched in all discovery cohort 
contrasts shaded in yellow. Horizontal bars indicate 95% confidence intervals of log2(odds ratio). 
 
Figure 3. Variation within sepsis plasma proteome 
(A) Heatmap of correlations between clinical characteristics (Table S1) and protein abundance 
(FDR<0.05, n=68 proteins shown), using first sample per patient (sepsis n=1182). Level 0/1 
indicates absence/presence of trait. 
(B) Differential protein abundance for sepsis due to fecal peritonitis (FP) vs community acquired 
pneumonia (CAP) (using first available sample). 
(C) Heatmap of Spearman’s correlation between co-expression module eigengenes, group 
contrasts, and clinical variables. Row order aligned to (A). 
(D) Balloon plot of pathway enrichment for module member proteins (module size shown as n) using 
GOBP annotations. 
 
Figure 4: Sepsis Plasma proteome-based Clusters (SPC) in discovery cohort 
(A-C) Consensus clustering (n=1236 samples, from 788 patients). (A) Cluster dendrogram and 
heatmap of consensus index (frequency of the sample pair being in the same cluster) for a cluster 
number of 3 with % of samples for each SPC noted (B) Cumulative distribution function (CDF) 
curves of the consensus index for increasing cluster number (k). (C) Relative change in area under 
CDF with k. 
(D) Bar plots of representative clinical variables between SPC (x-axis). Bar height represents 
proportion of each level. Age: SPC1 median 67 yrs (IQR 56-77), SPC2 67 (53-77), SPC3 63 (51-74) 
(Kruskal-Wallis FDR=0.014). Total SOFA score: median SPC1 7 (IQR 5-10), SPC2=SPC3 5(3-7), 
Dunn’s FDR SPC1vs2=2.3×10-10, SPC1vs3=1.2×10-11). Shock: SPC1=77%, SPC2=49%, 
SPC3=54% (χ2 FDR=1.4×10-7). Renal failure: SPC1=38%, SPC2=17%, SPC3=16% (χ2 

FDR=3.4×10-8). Proportion FP (of FP+CAP patients): SPC1=59%, SPC2=28%, SPC3=27% (χ2 

FDR=5.0×10-12). 
(E) Kaplan-Meier survival curves by SPC. For patients with multiple samples (Day1/3/5) cluster 
assignment from latest available sample used. Global p-values from log-rank tests; shading 95% 
confidence intervals. 



(F) Differential protein abundance between SPC. 
(G) GOBP and Reactome terms enriched in differentially abundant proteins. Only contrasts with 
significant terms detected shown. 
 
Figure 5: Validation and molecular characteristics of Sepsis Plasma proteome-based 
Clusters (SPC) 
(A, B) Sepsis validation cohort (A) Kaplan-Meier survival curves (n=392). (B) Bar plots comparing 
categorical clinical variables between SPC. 
(C) SPC movement Day1-5 of ICU admission (n=346 sepsis patients with a Day1 and at least one 
subsequent sample available, discovery and validation cohorts. Flow widths proportional to number 
of patients with the corresponding SPC transition. 
(D-E) Differential abundance analysis between SPCs using QE-HF mass spectrometer (D) or 
Luminex immunoassay (E) in subsets of sepsis samples. 
(F) Summary of molecular characteristics for each SPC (see also Table S7). Red and blue arrows 
indicate higher or lower abundance of the corresponding proteins respectively.  
 
Figure 6: Integration of plasma proteomics and leukocyte transcriptomics 
Matrix decomposition of proteomic and transcriptomic data (n=837 samples from 649 sepsis 
patients). 
(A) Heatmap showing 75 latent components with highest significance in correlation tests/group 
contrasts. Red arrowheads indicate components described in text. 
(B-F) For representative components: sample loading scores by group (boxplots), protein or gene 
loading scores for those significantly contributing to the component (posterior inclusion probability 
>0.5), z-scores of representative proteins, and pathway enrichment of significantly contributing 
proteins or genes. 
 
Figure 7: Interaction of proteomic (SPC) and transcriptomic (SRS) patient subgroups 
(A-B) Overlap in SRS and SPC assignments in sepsis patients by (A) patient numbers and (B) 
proportions. First available samples per patient used. 
(C-D) Protein differential abundance analysis for SRS (C) and SPC (D). 
(E) Multivariate Cox proportional hazard regression on 28-day mortality considering both SPC and 
SRS assignments. Cluster assignments of last sample (within ICU Day1/3/5) per patient with both 
SRS and SPC assignments used. 
(F) Kaplan-Meier curves comparing survival at 6-months post-sampling by combined SPC and SRS 
assignments. 
  



Supplementary figure legends 
Figure S1. Mass spectrometry data pre-processing and protein co-expression modules, 
related to Figure 1 
(A) Flowchart of the data pre-processing steps. Quality control (QC) injections refer to all the 
injections that did not come from individual samples. Samples from five patients were excluded for 
withdrawal of consent or having no clinical information available. 
(B) Heatmap showing whether the 291 remaining proteins post-filtering had ⩾50% detection in each 
of the groups, defined as described in STAR methods. The sepsis group as a whole is shown but 
was not used in protein filtering. 
(C) Scatter plots of numbers of filtered proteins detected and the median intensities in each injection 
along the acquisition process. “QC (system)” are the pools injected among the samples. Injection 
numbers correspond to the machine record in a chronological order, starting at 3390. Only the 
injection period containing the sample injections are plotted. The chromatographic column was 
blocked and changed at injection 5105 (vertical dash-dotted line). The horizontal grey dashed line 

indicates the sample filtering threshold (detection⩾125) used. 
(D) The contamination indices across the cohorts, calculated in the interim processed data. 
Horizontal red dashed lines indicate the sample outlier cut-off (mean + 2 s.d.) calculated in all 
samples, excluding HV in the erythrocytes index and platelets index; horizontal black dashed lines 
were calculated in the plotted samples. The two cut-offs are used only for visualization purposes but 
not for filtering samples. 
(E) List of proteins removed for being potential cell residue contaminations. 
(F) Clusters identified from protein-protein interaction (PPI) network of 141 measured proteins 
(STAR Methods) with node color mapped to Pearson’s correlation coefficients between the protein 
level and PC1 score across the samples, which correlated with disease severity. Within this network 
clusters enriched for coagulation and fibrinolysis, complement activation, cholesterol metabolic 
process, acute-phase response, ECM organization (two clusters), and neutrophil degranulation are 
shown. Gene ontology biological process (GOBP) terms enriched in the member nodes listed for 
each cluster. 
(G) The topological overlap matrix (TOM) based on protein co-expression in WGCNA. Rows and 
columns are the 269 protein species. Darker color in the heatmap represents a higher similarity 
between the two nodes. Gray in the color bar indicates the 85 proteins that were not co-expressed 
with other proteins in the dataset and should not be interpreted as a co-expression module. 

 
Figure S2. Sepsis-specific proteomic response, related to Figure 2 
(A) Boxplots showing distribution of 20 representative proteins across the sepsis and non-septic 
comparator groups in the discovery and validation cohorts. 
(B-D) Volcano plots for the differential protein abundance for the sepsis-control contrasts (Figure 
2A) in the validation cohort. Significantly different proteins (FDR<0.05 and |FC|>1.5) shown in red. 

 
Figure S3. Variation within sepsis, related to Figure 3 
 (A) Heatmap of correlations between clinical characteristics in sepsis and the PC1-4 scores 
calculated using all samples. Correlations calculated in the first available samples after admission of 
Sepsis (CAP/FP) ICU patients. Level 0/1 indicates absence/presence. 
(B) Distribution of Sepsis (CAP/FP) ICU samples on PC1 and PC2 scores calculated using all 
samples, shaded by the SOFA-total scores on the day sampled. 
(C) Reactome pathway enrichment for member proteins of each co-expression module. Order of 
modules are as in Figure 3 B,C. 
(D) Module eigengene values on Day1/3/5 of ICU admission for Sepsis ICU samples. 1204 samples 
for 526 patients with at least two timepoints sampled are shown. Significance from group contrasts 
reduced to using paired samples are shown in Table S4. 
 
Figure S4. Characterization of the proteome-based patient subgroups in the discovery 
cohort, related to Figure 4 



(A) Distribution of the sepsis subgroups on the first two principal components, plotted along with 
non-sepsis controls. Data ellipses are plotted for each group at a 95% confidence level assuming a 
multivariate normal distribution. 
(B) Box plots of numerical clinical variables that were significantly different between the subgroups 
(SPC). INR: international normalized ratio for prothrombin time. PaO2/FiO2: partial pressure of 
oxygen divided by fraction of inspired oxygen. 
(C) Heatmap of log fold changes comparing protein profiles of each cluster against HV, plotted for 
111 proteins differentially abundant (* FDR<0.05 and |FC|>1.5) in any of the three contrasts.  
(D) Boxplots of representative proteins across the three clusters. 
 
Figure S5. Validation and further characterization of the proteomic patient subgroups, 
related to Figure 5 
(A) Performances of three-cluster SPC prediction models. Partial least squares discriminative 
analysis (PLS-DA), generalized linear models (GLM) and random forest (RF) class prediction 
models were tested using 80% of the sepsis discovery cohort samples for training (n=992) and 20% 
held-out samples for model evaluation (n=244). SPC assignments derived from consensus 
clustering in the sepsis discovery cohort were taken as the ground truth. Training and test set 
accuracy are based on three-cluster predictions. SPC1 sensitivity is the number of true SPC1 
samples successfully predicted out of the total number of true SPC1. Numbers in model names 
indicate the numbers of protein candidates input to train each model. 
(B-E) Characterization of the validation cohort sepsis patient subgroups predicted from the best-
performance model (“ElasticNet_269”). (B) Numerical clinical variables. (C) Representative protein 
abundance. (D) Comparison of protein profiles between the clusters. (E) Pathways enriched in the 
differentially abundant (FDR<0.05 and |FC|>1.5) proteins. Minimum overlap between data and 
annotation was set to 4. Only protein sets with any significant terms detected are shown. 
(F) Distribution of eight Luminex analytes differentially abundant between the clusters, in the subset 
of sepsis samples with Luminex data. Concentrations are in the unit of pg/mL. 
 
Figure S6. Integration with leukocyte transcriptomics, related to Figure 6 
Matrix decomposition of proteomic and transcriptomic data for the same patients. Representative 
components are shown based on significance for association with clinical variables, SPC and SRS. 
For each component, the set of plots show sample scores by group (boxplots), protein or gene 
loadings for those significantly contributing to the component (posterior inclusion probability >0.5), z-
scores of representative proteins (calculated within samples used for the matrix decomposition 
analysis), and pathway enrichment of significantly contributing genes. (A) Component most strongly 
associated with sex (component 57 Padj=1.3e-135, Mann-Whitney test). (B,C) The two most strongly 
associated components with total SOFA score, neither involving any plasma proteins (B) component 
187, the component most strongly associated with total SOFA score (Padj=1.7e-18, rho=-0.35 
Spearman) linking differential gene expression including nucleoside triphosphate catabolism 
enzyme SMPDL3A, aromatase CYP19A1 and neutrophil collagenase MMP8 (linked to higher SOFA 
scores) and showing overall pathway enrichment for ECM, vitamin and cofactor metabolism (C) 
component 164, the component second most strongly associated with total SOFA score (Padj=4.3e-
16, rho=-0.33) linking transforming growth factor-beta-induced protein TGFBI, probable serine 
carboxypeptidase CPVL and DNA-binding protein MYCL with lower SOFA score. (D) Component 
most strongly associated with source of sepsis (CAP vs FP) (component 134 Padj=1.9e-50, Mann-
Whitney test) was restricted to gene expression. (E,F) Components most strongly associated with 
time of sampling following ICU admission, (E) component 106 Padj=1.0e-61 rho=-0.54 Spearman (F) 
component 174 Padj=1.5e-43 rho=-0.35. (G,H) Components most strongly associated with sepsis 
response signature (SRS) (G) component 92 Padj=1.6e-172, rho=0.78 Spearman (H) component 
232 Padj=5.5e-168, rho=-0.78. 
 
Figure S7. Interaction of the proteomic (SPC) and transcriptomic (SRS) patient subgroups, 
related to Figure 7 
(A-B) Overlap between SRS and SPC cluster movement. Cluster movement observed in patients 
with at least two timepoints were used for comparison (n=258). Patients with 3 timepoints who 



moved in different directions over time were excluded. (A) Contingency table. (B) Stacked bar plots 
with heights of the bars corresponding to proportions of each SRS movement group in each SPC 
movement group. 
(C) Correlation plots for fold changes in comparing gene expression between SRS or SPC clusters. 
1354 samples for 1010 patients had leukocyte gene expression data from either microarray or 
RNAseq. DE: differentially expressed (FDR<0.05 and |FC|>1.5). 
(D) Kaplan-Meier curves comparing survival probabilities at 28-day post-sampling between six 
groups of patients with a combined SPC and SRS classification. 
(E) Univariate Cox proportional hazard regression of 28-day mortality in six groups combining SPC 
and SRS classifications. Cluster assignments of the last available samples (within ICU Day 1/3/5) 
per patient with both SRS and SPC assigned were used. Hazards at 28-day post-sampling were 
compared. 

  



STAR Methods 

 
RESOURCE AVAILABILITY 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by Julian Knight (julian.knight@well.ox.ac.uk). 

 
Materials Availability 

This study did not generate new unique reagents. 
 
Data and Code Availability 

The raw and processed timsTOF mass spectrometry data will be publicly available on the Proteomics 
Identification Database (PRIDE) (deposition in progress, accession ID TBC). 

RNAseq gene expression data for GAinS study samples will be made available in the European 
Genome-Phenome Archive before publication. Microarray gene expression data for GAinS study 
samples are publicly available in ArrayExpress (E-MTAB-4421, E-MTAB-4451, E-MTAB-5273, and 
E-MTAB-5274). 
 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
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The UK Genomic Advances in Sepsis (GAinS) Study 

Design 

The Genomic Advances in Sepsis (GAinS) Study was an observational study of patients admitted to 
adult ICU with sepsis due to community acquired pneumonia or fecal peritonitis, as previously 
described (Davenport et al., 2016; Rautanen et al., 2015). Adult patients (>18y) were recruited at 34 
UK ICUs between 2006 and 2019. Ethics approval was granted nationally (REC Reference Number 
05/MRE00/38 and 08/H0505/78) and for individual participating centers, with informed consent 
obtained from patients or their legal representative. 

In the GAinS study, sepsis was diagnosed according to the ACCP/SCCM guidelines (Sepsis-2) 
(Levy et al., 2003) as infection with signs of systemic inflammation with all patients showing organ 
dysfunction during ICU admission. Community acquired pneumonia (CAP) was defined as a febrile 
illness associated with a cough, sputum production, breathlessness, leukocytosis and radiological 
features of pneumonia which was acquired in the community or within two days of ICU admission 
(Angus et al., 2002; Walden et al., 2014). Fecal peritonitis (FP) was diagnosed at laparotomy as 
inflammation of the peritoneal membrane secondary to large bowel perforation and fecal 
contamination (Tridente et al., 2014).  

 Exclusion Criteria 

Patient or legal representative unwilling or unable to give consent; age <18 years; pregnancy; an 
advanced directive to withhold or withdraw life sustaining treatment; admission for palliative care 
only; or immune-compromise. 

Blood Sampling 

Blood samples were collected on the first, third, and fifth day of ICU admission where possible. For 
the plasma samples, blood was collected into one 5ml EDTA vacutainer. The tube was inverted 
gently 10 times, and then centrifuged at 1600RCF for 10min at 4◦C. Four 500μL aliquots of the 
plasma layer was then transferred into cryotubes and stored at -20◦C until being transferred to 
Oxford in batches and stored at -80◦C. 

Clinical phenotyping 

Demographics and clinical measurements were recorded using an electronic case report form. 
Some of the clinical measurements including total white cell counts, blood pressure, heart rate, 
blood creatinine and bilirubin were recorded as the highest and lowest value measured on each 
day. Outcome in terms of death or survival was followed up for 6 months following ICU admission. 

 

 

Other cohorts 

Vasopressin vs Norepinephrine as Initial Therapy in Septic Shock (VANISH; REC reference 
12/SC/0014) was a randomized clinical trial enrolling adult patients who had septic shock requiring 
vasopressors despite fluid resuscitation. Details of the study design and patient recruitment have 
been previously described (Gordon et al., 2016). The study reported no significant difference in 



outcome between vasopressin and norepinephrine groups, or between hydrocortisone and placebo 
groups. Up to four timepoints were included for each of the 45 VANISH patients in this study. The 
baseline timepoint (TP0) was mostly taken within 6 hours after the onset of shock and before the 
study drugs were given. Time from diagnosis of shock to study drug1 administration was within 6hr 
for 43 of the patients, and had a median of 4hr. Blood samples were collected into 10mL EDTA 
vacutainers on ice. The tube was inverted 5-8 times and then centrifuged at 1000RCF for 10min 
before the plasma layer was aliquoted. 

The Oxford BioBank (OBB; REC reference 18/SC/0588) is a random, population-based biobank of 
healthy participants initially recruited between the ages of 30 and 50 years from the Oxfordshire 
general population (Karpe et al., 2018). Individuals with: previous diagnosis of myocardial infarction 
or heart failure currently on treatment; untreated malignancies; or other systemic ongoing disease, 
and pregnant women were excluded. One sample was included for each of the 152 OBB 
participants in this study. To match the demographics of other cohorts as closely as possible, older 
OBB participants were selected. Plasma samples were collected with EDTA as the anti-coagulant. 

X-MINS (Acquired loss of cardiac vagal activity is associated with myocardial injury in patients 
undergoing non-cardiac surgery; REC reference 16/LO/0635) was an observational mechanistic 
cohort study at the University College London Hospital, recruiting adult patients undergoing major 
elective noncardiac surgeries including orthopedic, upper GI and colorectal surgeries. The X-MINS 
cohort has been utilized to examine whether serial measures of cardiac vagal dysfunction were 
associated with perioperative myocardial injury and noncardiac morbidity (May et al., 2019), and 
had measured microRNA concentrations in extracellular vesicles (May et al., 2020). Two samples 
for each of the 106 X-MINS patients were included in this study, one taken pre-operation (PreOp 
(disc)) and one taken within 24hr post-operation (PostOp (disc)). Blood samples were collected into 
EDTA vacutainers and centrifuged at 3500RCF for 10min before the plasma layer was aliquoted 
sterile filtered. 

BIONIC (Biomarker based Identification Of Nosocomial Infective Complications; REC reference 
14/EM/1223) was a prospective observational study at the Royal London Hospital that recruited 
patients undergoing elective major abdominal surgeries encompassing colorectal, upper GI 
(gastrointestinal) and HPB (Hepato-Pancreato-Biliary) surgeries. For each of the 43 patients 
included in this study, three samples were included, taken either immediately before induction of 
anesthesia (PreOp (vali)), or 24hr post-operation (PostOp (vali)), or 48hr post-operation. Ten 
patients also had a 2-6hr post-operation sample included. Blood samples were collected into 4.5mL 
citrate vacutainers and centrifuged at 1860RCF for 10min before the plasma layer was aliquoted. 

The MOTION (Methylnaltrexone for the Treatment of Opioid Induced Constipation and 
Gastrointestinal Stasis in Intensive Care Patients; REC reference 14/LO/2004) trial recruited adult 
ICU patients who were mechanically ventilated, receiving opioids and were constipated (Patel et al., 
2020). For the 50 patients included in this study, reasons for ICU admission included non-operative 
medical causes (n=34) and emergency(n=13) or elective (n=3) operative procedures. Patients 
admitted to ICU for infection or respiratory causes were not included. One sample from each 
patient, taken before the study drug was given, was included for this study. Blood samples were 
collected into citrate vacutainers on ice and centrifuged at 1500RCF for 15min before the plasma 
layer was aliquoted. 

The MONOGRAM (REC reference 15/LO/0933) study was set up for diagnosing and monitoring 
infection in critically ill patients using metabolic and immunological signatures. Baseline samples 
taken within 48hr of ICU admission for 14 mechanically ventilated patients with systemic 
inflammatory response syndrome (SIRS) but without identified infection were included in this study. 
Blood samples were collected into 10mL EDTA vacutainers on ice. The tube was inverted 5-8 times 
and then centrifuged at 1000RCF for 10min before the plasma layer was aliquoted. 

TACE (REC reference 10/H0709/77) is a general abbreviation for observational studies on the 
mechanisms of monocyte priming and tolerance in vitro and in vivo to ascertain TNF-α converting 
enzyme (TACE) activity and metabolic signatures of patients with direct and indirect acute lung 
injury (ALI). Adult patients with or at risk of ALI, admitted to ICU within Imperial College Healthcare 



NHS Trust, were recruited within 48hr of onset of ALI or intubation. More details were described in 
associated publications (Antcliffe et al., 2017, 2018; O’Callaghan et al., 2015). The baseline 
samples on study entry for twelve patients with noninfectious SIRS (ten with brain injury, one with 
cardiac arrest, one with motor neurone disease) were included in this study. Plasma samples were 
collected with EDTA or heparin as the anti-coagulant. 
 
 
METHOD DETAILS 

 
TimsTOF mass spectrometry 
 
Sample preparation of non-depleted plasma for high-throughput LC-MS/MS platform  

 

Plasma samples were thawed at 4◦C. 50μL aliquots of each of the 2622 clinical plasma samples 

from the 8 cohorts were pipetted into 28 96-well plates in randomized positions. Three microliters of 

plasma were then diluted in 50mM ammonium bicarbonate at 1:30 ratio (sample: buffer) in 96-well 

plates. Plates were centrifuged at 2000g for five minutes before transferring thirty microliters of 

diluted plasma into clean 96-well plates for subsequent in-solution digest using the BravoAssaymap 

liquid handler robot (Agilent). In brief, samples were reduced with DTT (15mM final concentration) 

for 30 minutes at room temperature, alkylated with iodoacetamide (70mM final concentration) for 30 

min at room temperature followed by the addition of 100 μl of 50mM ammonium bicarbonate 

containing 10mM DTT to quench the reaction. Samples were incubated with 1 μg of Trypsin 

(Worthington TPCK) at 37C overnight. Trypsin digestion was stopped by adding trifluoroacetic acid 

at 1% final concentration.  

 

Pools 

A pool was built using thirty microliters of the diluted plasma for each patient. This pool was 

included in each digestion plate as a “QC Plate pool” to monitor trypsin digestion. An additional pool 

was created post digestion (labelled as QC system) and run every twenty-four samples to monitor 

the performance of the LC system across the whole dataset.  

 

Generation of a plasma library combining top 64 depletion with High pH fractionation 

Plasma has a high dynamic range at protein level. To increase the detection range of proteins in 

plasma and to generate a protein library we created a super-depleted plasma by combining two-

consecutive antibody-based depletions using first the SepproIgY14 column (SEP030 column 

Sigma-Aldrich) to deplete for the top 14 most abundant plasma proteins followed by a Seppro 

Supermix column (SPE050 column, Sigma-Aldrich). 200μL of the pooled plasma was diluted to 1ml 

with ‘Dilution buffer’ containing 0.1%N-Octyl-B-D-glucopyranoside then applied to a prewashed 

Costar 45uM spin filter and cleared by centrifugation 14,000 x g for 10mins at room temperature. 

1ml of the filtrate was injected into a BioRad NGC medium pressure system following the method 

described (Keshishian et al., 2017), with some additional changes to accommodate the use of the 

two columns. In brief, the two depletion columns were attached in tandem, first passing the Seppro 

IgY14 column then the Supermix column resulting in the unbound depleted plasma directly flowing 

into the second column. The columns were pre-equilibrated for 3.33mins at 1.5ml/min in dilution 

buffer followed by sample application at 1ml/min for 1min then 0.5ml/min for a further 3mins. Flow 

rate was then increased to 1.5ml/min and dilution buffer isocratically for 15mins. The column was 

then stripped of the proteins which had been depleted, using stripping buffer at a flow rate 2mls/min 

for 6mins. Depleted proteins were collected in 0.5ml fractions between min 12.33 and 22.33 and in 

1ml fractions until min 28.33. The column was then neutralized and re-equilibrated into dilution 

buffer for 9.33mins at 1.5ml/min. 50μL of each fraction was evaluated using Ag stain and the 

depleted fractions pooled together according to the Abs280nm. The plasma elution profile showed 

that the depleted peak appeared between min 3.5 and 13.5 and accounted for approximately 40% 



of the total protein present in the sample. The fractions were pooled into 15 pools containing 

approximately 3% total proteins present and labelled ‘A’ to ‘O’. Each fraction ‘A’ to ‘O’ was 

chloroform/methanol precipitated and the pellets resuspended into 50μL of 6M Urea in 0.1M Tris pH 

7.8. To ensure protein pellets were solubilized, samples were mixed at room temperature for 20min 

and sonicated for 10min in a sonicating water bath. Urea concentration was diluted down to 1M by 

adding 250μL H2O. Samples were incubated with 1μg of smart trypsin (ThermoFisher) at 70oC for 

an 1h shaking at 300rpm. 150μL of the sample was then HpH fractionated into 12 fractions on RP-

W cartridges using the Bravo Assaymap liquid handler (Agilent technologies). Each individual 

fraction was then loaded onto C18 EvoTips for subsequent LC-MS/MS analysis. 

  

LC_MS/MS using the high-throughput Evosep One - Bruker timsTOF Pro platform 

Samples were analyzed using an Evosep One LC system connected to the timsTOF Pro mass 

spectrometer (Bruker Daltonics) (COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium, 2022). 

Briefly, Peptides were analyzed using the pre-built 100 samples / per day method (EvosepOne) with 

an 11.5 min gradient (total cycle time of 14.4min) at a 1.2 µl/min flow rat (Bache et al.). In brief, 

tryptic peptides were transferred from the pre-loaded C18 Evotips with a pre-built gradient to a 

sample loop and separated on an 8cm C18 analytical column (Evosep Pepsep, 3um beads, 100 um 

ID) with an overall gradient from 3 to 40% acetonitrile. 

Mass spectrometry data were acquired in PASEF mode (oTOF control v6.0.0.12). The ion mobility 

window was set to 1/k0 start = 0.85 Vs/cm2 to 1/k0 end = 1.3 Vs/cm2, ramp time 100 ms with 

locked duty cycle, mass range 100 - 1700 m/z. MS/MS were acquired in 4 PASEF frames (3 cycles 

overlap). Target intensity was set to 6000 and threshold intensity 200. The data acquisition method 

has been deposited with the raw data in the PRIDE data repository (deposition in progress, 

accession ID TBC). To assess the technical reproducibility, QC system pools were run every 

twenty-four samples. QC plate pools were run to monitor the performance of the trypsin digestion in 

each plate. 

 

 
QE-HF mass spectrometry 
 

Sample preparation of top 12 depleted plasma analyzed using a low throughput platform 

(QE-HF) 

Five microliters of blood plasma collected from acute inflammation patients were depleted for the 12 

most abundant proteins using spin columns (Pierce, Waltham, MA). Depleted plasma protein 

solutions were then precipitated using TCA/DOC. Protein pellets were digested using Smart digest 

kit (ThermoFisher) and desalted on SOLA SPE cartridges as described in (Prianichnikov et al., 

2020).  

 

Peptides were injected into a LC-MS system comprised of a Dionex Ultimate 3000 nano LC and a 

Thermo Q-Exactive HF. Peptides were separated on a 50-cm-long EasySpray column (ES803; 

Thermo Fisher) with a 75-µm inner diameter and a 60-minute gradient of 2 to 35% acetonitrile in 

0.1% formic acid and 5% DMSO at t flow rate of 250 nL/min. MS1 spectra were acquired with a 

resolution of 60,000 and AGC target of 3e6 ions for a maximum injection time of 45 ms. The Top12 

most abundant peaks were fragmented after isolation with a mass window of 1.2 Th at a resolution 

of 30,000. Normalized collision energy was 28% (HCD). 

 

 
Luminex assay 

Sixty-five inflammatory mediators were measured in 204 samples from 146 patients from the GAinS 
study using the ProcartaPlex™ Luminex platform (ThermoFisher Scientific, Waltham, MA, USA), as 
has been described previously (Antcliffe et al., 2022). Briefly, plasma samples were measured 



across three 96-well plates with data acquired on Luminex 100 system. For each analyte, 
background fluorescence was corrected for and the lower/upper limits of quantification (LOQs) were 
determined. Absolute concentrations were derived from concentration-response standard curves 
fitted with a five-parameter logistic model for each analyte on each plate. Sample concentrations 
beyond the LOQs were censored at the LOQ values. Outlying samples of poor quality were 
identified and removed. 
 
Leukocyte whole-genome expression profiling 

For the GAinS patient-timepoints included in this study, 1354 (1010 patients) have paired leukocyte 
gene expression data available through either microarray profiling (518 patients, 642 samples), 
RNA sequencing (649 patients, 837 samples), or both platforms. 

The microarray datasets were acquired using Illumina Human-HT-12 v4 Expression BeadChips, full 
details of which have been described previously (Davenport et al. 2016; Burnham et al. 2017). Four 
batches of microarray data have been cleaned-up, combined and the batches normalized. Gene 
expression was represented at gene-level for 22130 genes. The RNAseq dataset was generated on 
NovaSeq with 100bp paired end reads across 12 lanes. After quality control, gene expression was 
represented as TMM (trimmed mean of M-value)-normalized log-transformed counts per million for 
20416 features. 

The SRS transcriptomic endotypes have been assigned based on these datasets as well as for 7 
samples with qPCR data using a 7-gene set random forest model previously described (Cano-
Gamez et al., 2022). For the small number (11) of border-line samples that had different 
assignments from the platforms, assignments were taken in the order of priority as microarray 
before RNAseq before qPCR. Since there was only a small number (48) of patient-timepoints 
assigned to SRS3 (transcriptionally closer to healthy volunteers) and that SRS3 patients are more 
similar to SRS2, SRS3 was combined with SRS2 as a ”non-SRS1” category in the analysis of this 
study.  
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 

TimsTOF protein identification and quantification 

 

Data was analyzed by the FragPipe pipeline consisting of FragPipe 14.1, MSFragger 3.1 (Kong et al., 

2017; Yu et al., 2020), Philosopher 3.3.11 (da Veiga Leprevost et al., 2020) and Python 3. Blank runs 

were excluded and each file defined as Experiment to facilitate LFQ. Data was searched against a 

fused target/decoy database generated by Philosopher and consisting of human UniProt SwissProt 

sequences, plus common contaminants. The database had 40860 entries (including 50% decoy 

entries). MSFragger parameters were set to allow a precursor mass tolerance of plus/minus 10ppm 

and a fragment tolerance of 20ppm. Isotope error was left at 0/1/2 and masses were set to re-calibrate. 

Protein digestion was set to semi specific trypsin with up to 2 allowed missed cleavage sites, allowing 

peptides between 7 and 50 residues and mass range 500 to 5000 Da. N-terminal protein acetylation 

and Methionine oxidation were set as variable modifications. ID validation was done with 

PeptideProphet (Keller et al., 2002) and ProteinProphet (Nesvizhskii et al., 2003) with default settings.  

  

Label free quantitation was conducted with IonQuant (Yu et al., 2021) and Match-Between-Runs 

enabled with 10 selected pool injections from the beginning and end of the sample queue (tag “lib” 

in experimental design tab) in addition to the 10 best correlating runs for each file, using Top-3 

quantitation. Feature detection tolerance was set to 10ppm and RT Window to 0.6 minutes with an 

IM Window of 0.051/k0. For matching, ion, peptide and protein FDRs were relaxed to 0.1. MBR top 

runs was set to 10 in addition to selected runs tagged “lib”.  

 



TimsTOF data pre-processing 

From the FragPipe output of label-free quantifications (LFQ) of 4570 sample and quality control 
injections, we subsetted and used razor intensities of 2782 proteins identified by at least one unique 
peptide. This was a sparse matrix since the majority of proteins were only detected in the 
fractionated libraries instead of in actual samples. Zeroes were taken as missing values. Gene 
names for the proteins were retrieved by mapping accession IDs on the UniProt protein 
knowledgebase (Bateman et al., 2021).  

 

Protein and sample filtering 

In order to retain proteins that reach a detectable level in only certain biological conditions, protein 
detection was counted within each of the biological groups. Among the cohorts, the GAinS study is 
the majority group constituting >70% samples. Filtering based on the heterogeneous syndrome of 
sepsis as one group could potentially miss out the proteins with distinct patterns between unknown 
biological subgroups. Therefore, the GAinS samples were further separated by unsupervised 
consensus clustering on a matrix of binary states detected (1) or missing (0), which identified four 
GAinS protein detection subgroups, the smallest of which comprised 292 samples. Protein detection 
was then counted within nine groups including: the healthy volunteers of OBB; the pre-operation 
samples of X-MINS and BIONIC; the post-operation samples of X-MINS and BIONIC; the no-
infection ICU samples of MOTION, MONOGRAM and TACE; the septic shock samples of VANISH; 
and the four GAinS detection groups (Figure S1B). We kept 291 proteins that were detected in at 
least 50% sample injections in at least one of the nine groups. 

Sample quality represented by sample-wise protein detection numbers showed variation 
corresponding to the changes of the chromatographic column. We excluded 32 sample injections 
for having outlying low detections (<125 proteins), the threshold of which was determined by plotting 
the detection numbers (Figure S1C). The raw intensity data matrix post-filtering contained 
quantifications for 291 proteins in 2615 sample injections. 

 

Correction for cell residue contaminations 

After filtering, the data was normalized, missing values imputed and batches corrected to derive an 
"interim processed data" version, as shown in the flowchart (Figure S1A). Although all plasma 
samples were extracted by the standard approach of centrifuging whole blood taken with 
anticoagulants, samples from different studies recruited in a variety of clinical settings could 
potentially have differences in pre-analytical handling. Even within a single study following the same 
protocol, in the interim processed data the GAinS samples, recruited over 14 years in 34 ICUs, 
showed a small subset of ~12% samples that were significantly higher in proteins including actins 
and actin-binding proteins that point to higher platelet residues in plasma. Therefore, it is necessary 
to assess and account for the impact of the technical effects. 

We calculated three contamination indices (Figure S1D) to assess plasma sample contamination by 
erythrocyte lysis, platelet contamination, or partial coagulation, based on the protein marker panels 
proposed by Geyer et al. (Geyer et al., 2019). We calculated and considered the contamination 
indices using both the log-transformed raw intensities and the interim processed data as both have 
uncorrected biases. X-MINS samples were collected using the strictest protocol (higher speed in 
centrifugation and filtered through 0.8μm membrane filters) and were among the samples with the 
lowest level and least variation in the cell residues (erythrocytes index and platelets index) (Figure 
S1D). As the coagulation index was less variable across the cohorts, and as sepsis pathophysiology 
involves dysregulated thrombosis, the difference in coagulation index was considered to be 
biological signal and not corrected for. 

We corrected for cell residue contamination by identifying and removing the most affected proteins 
species from the dataset. In addition to proteins on the marker panels, we also removed proteins 
that correlated with either the platelet or erythrocyte index in both the raw and interim processed 



data (Pearson’s r > 0.20). In total 22 proteins were removed, leaving 269 to be further processed 
(Figure S1E). The potentially contaminated samples did not need to be excluded, since these were 
not outlying in protein detection numbers or on PCA after excluding the contamination proteins, and 
the removed proteins did not compromise the detection of other proteins. 

 

Normalization and imputation 

We used Variance Stabilizing Normalization (VSN) (Huber et al., 2002) to normalize the raw 
intensities and account for systematic bias. This method was selected based on running a smaller 
sepsis pilot dataset through Normalyzer (Chawade et al., 2014) which compared different 
normalization algorithms, as well as based on others’ work showing the advantage of VSN in 
addressing the variance heterogeneity in mass spectrometry-based proteomics (Karp et al., 2010; 
Välikangas et al., 2016).  

Assuming proteins are missing not completely at random, we applied a hybrid imputation approach. 
For 170 proteins detected in ≥60% of the samples, we applied the K-Nearest Neighbors (KNN) 
algorithm which is more tolerant on the assumption of the causes of missingness. For each protein 
with missing values to be imputed, KNN finds the k (k=6) most similar proteins (neighbors) based on 
the non-missing values, and fills in the missing value by the mean observed for the neighbor 
proteins in this sample (Hastie et al., 2021). When there is a higher proportion of missingness in a 
protein, KNN is not suitable since neighbor proteins cannot be accurately located. For the 99 
proteins detected in <60% of the samples, missing values were imputed by random draw from a 
protein-specific normal distribution with a standard deviation (s.d.) of 30% s.d. of the measured 
values and a down-shift of the mean by 1.8 s.d. 

 

Batch correction 

The 28 randomized sample plates were profiled in a single mass spectrometry experiment but the 
long acquisition duration introduced technical variation. We performed batch correction across the 
plates using the ComBat function from the sva package (Leek et al., 2021). Seventeen batches 
were determined based on the pattern of PC1 scores of the plates in uncorrected data and the 
spectral yields and detection numbers in spiked-in pool injections repeated along the plates. Seven 
plates that were the most consistent between each other were used as the reference batch where 
measurements were not altered. 

 

Discovery and validation cohorts 

For downstream analysis, we defined the discovery and validation cohort sets from the sepsis and 
control cohorts (Figure 1A). The GAinS and OBB patients were each separated into a discovery and 
a validation cohort with a split of 2:1 by random draws after pre-processing. Serial samples from the 
same patient were kept together. 

 

QE-HF data pre-processing 

Mass spectrometry data were analyzed using Progenesis QI software combined with PEAKS v8.5 
as a data search engine using standard settings. 1356 proteins were identified by at least one 
unique peptide in the raw intensity output. The 0.5% lowest measurements were considered to be 
machine noise and removed from the distribution. Proteins missing in more than 30% samples were 
filtered out, leaving 1123 proteins in the cleaned-up dataset. All samples passed quality control. The 
dataset was then normalized by VSN and imputed by KNN.  

 

Pathway and network analysis 



Gene names were mapped from the UniProt accessions using the UniProt (Bateman et al., 2021) 
retrieve/ID mapping tool. Pathway enrichment analysis was performed using the XGR R package 
(Fang et al., 2016) with annotations from Gene Ontology Biological Process (GOBP), Gene 
Ontology Cellular Component (GOCC), or the Reactome pathway database. Annotation items with a 
size between 5 and 2000 and a minimum overlap with input data of 5 were included for the 
enrichment tests, unless otherwise specified. Significantly enriched terms were defined by FDR < 
0.05 in hypergeometric tests with all proteins or genes detected in the experiment (including in 
fractionated and depleted library samples for proteins) as the background. Pathway enrichment in 
proteins differentially abundant between SPC (Figure 4G, S5E) were tested in proteins with higher 
or lower abundance in each contrast separately, with minimum overlap between data and 
annotation set to 4. 

Protein-protein interaction (PPI) data was retrieved from the STRING v11 database with a 
confidence score cut-off of 0.7 and zero additional interactors. The PPI network was constructed 
and visualized through the Cytoscape v3.8.2 platform (Shannon et al., 2003) using perfuse force 
directed layout. The main network comprising 141 proteins was then divided into clusters by the 
Markov cluster algorithm applied in the “clusterMaker” plugin (Morris et al., 2011). Proteins in each 
clusters were tested for GOBP enrichment, using a minimum overlap of three for the six smaller 
clusters. Node color was mapped to Pearson’s correlation coefficients of PC1 scores and the 
protein level across samples, as higher PC1 score was shown to correlate with higher disease 
severity towards the sepsis end in Figure 1B. 

The protein co-expression network was constructed using the WGCNA R package (Langfelder and 
Horvath, 2008) and visualized using Cytoscape. The soft thresholding power of 3 was chosen 
based on the lowest power for which the scale-free topology fit index curve reaches a high value 
(>0.85). For network construction we used a signed hybrid type of network, unsigned type of 
topological overlap matrix (TOM), biweight mid-correlations, and a maximum 5% of samples that 
can be considered as outliers on either side of the median. The minimum module size was set to 5 
considering the smaller number of features in proteomics compared with transcriptomics datasets. 
For visualization of the co-expression network (Figure 1F), nodes with larger width and height have 
higher intramodular connectivity, which is the sum of adjacency with all other nodes in the same 
module. Exact positions of the nodes have been manually adjusted to display all the labels. Only 
edges with topological overlap ⩾0.02 are included thus 180 out of the 184 nodes with a co-
expression module assigned are shown. For visualization of the topological overlap matrix (TOM) 
(Figure S1G), dissimilarity (1-TOM) was raised to the power of 15 to minimize effects of noise and 
spurious associations. Distance used in the dendrogram is based on the topological overlap 
between two proteins nodes, which is a function of the adjacency between the two nodes and 
between either node with all other nodes. Correlation of module eigengenes with clinical 
characteristics and dummy-coded sepsis-control contrasts were calculated using Spearman’s 
correlations, shown in Figure 3C. 

In the single sample gene set enrichment analysis (ssGSEA), the enrichment scores of gene sets 
were calculated based on walking down a list of proteins ranked by their intensity in each single 
sample. Through the ssGSEA projection the matrix of protein intensities in samples is converted to 
a matrix of enrichment scores of gene sets in samples. This projection was performed using the 
Gene Pattern platform (Reich et al., 2006). Gene sets with less than 10 overlaps with the input 
proteins were excluded, identifying 296 gene sets using the GOBP annotation. PCA on the 
projected matrix revealed the gene sets that differentiated among the samples. Eight gene sets with 
top loadings on PC1 and 8 gene sets with top loadings on PC2 were labelled (Figure 1D). 

 

Bioinformatic and statistical analysis 

Exploratory analysis 



We performed principal component analysis on all samples in the pre-processed data using the 
prcomp R function without scaling. We explored the relationship between the first four PCs or 
individual proteins with sepsis severity by testing Spearman correlation with the clinical variables, 
restricted to the first available samples of GAinS patients. Clinical variables detected in less than 
30% of patients were excluded. Variables only available in certain groups of the patients (e.g. 
estimated days from CAP/FP onset) were retained. All statistical analysis were performed in R (R 
Core Team, 2015). 

Statistical tests 

Differential abundance analysis for proteins and differential expression analysis for genes were 
performed by fitting the intensities in linear models using the limma R package (Ritchie et al., 2015), 
using only the first available sample of each patient and including age and sex as covariates. The 
Benjamini-Hochberg procedure was used to adjust for multiple testing. Significance for downstream 
analysis was defined as FDR < 0.05 and fold change (FC) > 1.5 unless otherwise specified. 
Comparisons between the pre- and post- operative samples are paired and with no additional 
covariates. All tests are two-sided. 

Welch’s t-test, also known as unequal variances t-test, is more conservative when the group size 
and variance differs by a large amount between the two groups. The differential abundance analysis 
between GAinS and MONOGRAM+TACE was also performed using Welch’s t-test and highly 
consistent results were obtained as when using limma (Pearson’s r for log2FC > 0.99). 

Cytokine concentrations measured by Luminex assay were compared by Wilcoxon rank-sum tests 
(i.e. Mann-Whitney tests) using the first available sample of each patient. 

Categorical clinical variables were compared using Chi-squared tests without Yate’s correction. 
Numerical clinical variables were compared between two groups using Wilcoxon rank-sum tests. 
For comparing numerical clinical variables between three groups, Kruskal–Wallis test (i.e. one-away 
analysis of variance on ranks) was used to determine whether there was any significant difference 
(FDR<0.05) between the groups. For variables where the null hypothesis in Kruskal–Wallis tests 
were rejected, Dunn’s post-hoc tests were performed to compare between each pair of the three 
groups, the significance levels of which were labelled on boxplots after adjusting for multiple testing 
within the variable. SOFA scores and ARDS levels were considered as numerical variables. Only 
the first available samples following ICU admission of each patients were included in comparing the 
total of 66 clinical variables. 

Survival differences were assessed and Kaplan-Meier curves plotted using the R packages survival 
and survminer (Kassambara et al., 2021; Therneau and Grambsch, 2000). The input data is a data 
frame specifying the time to event from the sampling day, the event (death or end of 28-day or 6-
month observation) and the patient subgroups. For patients with multiple timepoints sampled, 
cluster assignment from the last available sample within five days of ICU admission was used. The 
p values were given by log-rank tests. Hazard ratios and the confidence intervals were calculated 
using univariate (SPC) or multivariate (SPC and SRS) Cox proportional hazard models. 

Data visualization 

On all boxplots, hinges show the first and third quartiles on both sides of the median, and the 
whiskers extend to the highest or lowest values within 1.5*IQR of the hinges. Data points are plotted 
on horizontally jittered positions on the boxplots. For sepsis patients with serial sample points, only 
the first available samples following ICU admission were plotted. 

On all volcano plots, proteins more abundant in Group A of the contrast “Group A vs B” are plotted 
on the right-hand side of the plot. Differentially abundant proteins (FDR<0.05 and |FC|>1.5) are 
plotted in red points. 

Trajectories of patients’ movements between the proteomic clusters were visualized using the 
ggalluvial package (Brunson, 2020), restricted to patients with a baseline (Day1) sample available. 
Widths of the flows on the y axis are scaled to the number of patients in each movement type. 



Figure 5F and a subset of the icons in Figure 1A “Downstream analysis” panel were generated with 
BioRender.com. 

Unsupervised clustering 

We applied consensus clustering to generate unsupervised clusters in 1236 discovery cohort GAinS 
samples, using the ConsensusClusterPlus R package (Wilkerson and Hayes, 2010). Compared with 
a single-run hierarchical clustering performed on all available samples and features, the consensus 
clustering approach has the advantage of cluster results being robust to small variations in sample 
or feature composition. For each cluster number k tested from two to ten, 500 iterations were 
performed, randomly sampling 80% of samples and 90% of proteins in each iteration. In each 
iteration, unsupervised hierarchical clustering was performed based on Euclidean distance for 
dissimilarity between samples and Ward’s method as linkage for cluster agglomeration. 

The cumulative distribution function (CDF) curves (Figure 4C) were inspected to assess cluster 
stability along an increasing number of clusters (k). The increases in area under the CDF were the 
largest when k increased from 2 to 3, and reached an elbow point at k=4 (Figure 4D). We also 
assessed how model accuracy improved as cluster number increased by calculating the total within-
cluster variation in 10-fold cross-validation with k-means clustering. The fit of test points to the 
nearest centers improved gradually as the cluster numbers increased from 1 to 10, and the step 
widths were the largest from k=1 to k=3. Therefore, k=3 was chosen as the optimal number of 
partitioning for this dataset, balancing the need for explaining most of the variability and for the 
simplicity of describing the major patient subgroups. 

Cluster prediction models 

To validate the three patient clusters (SPC) in independent samples, cluster prediction models were 
built based on SPC assignments in GAinS discovery cohort samples, and the model with the 
highest accuracy was applied to the GAinS validation cohort samples. In evaluating the prediction 
model performances, accuracy is the sum of the diagonal of the contingency table divided by the 
total number. A random 3-cluster classification keeping the same proportions in each cluster as in 
the discovery cohort would have an expected accuracy of (21%)2+(24%)2+(55%)2 = 40%. Sensitivity 
for a particular event is the proportion of events correctly predicted, out of the number of true 
events. The best-performing model was selected based on the test set accuracy. 

We tested eight models in total for SPC prediction using three statistical learning methods: partial 
least squares discriminative analysis (PLS-DA), generalized linear models (GLM), and class 
prediction by random forest through the R packages ropls, glmnet, caret and randomForest 
(Friedman et al., 2010; Kuhn, 2021; Liaw and Wiener, 2002; Thévenot et al., 2015). Input 
candidates are either the total 269 proteins in pre-processed data, or restricted to the 138 proteins 
that were differentially abundant between any pair of the 3 discovery cohort clusters at a less 
stringent threshold (FDR<0.05 and |FC|>1.2), or the 41 proteins at a larger fold change (FDR<0.05 
and |FC|>1.5). 

The numbers of predictive components to include in PLS-DA models were determined by 
calculating the proportion of variation explained in 7-fold cross-validation and evaluating model 
significance with label permutations 

GLM models were tested with lasso, ridge, and elastic net regressions to include the overfitting 
penalty and enable variable selection. Symmetric multinomial models were fit so that each of the 3 
SPC classes were represented by a GLM. Two parameters were optimized: the tuning parameter λ 
which controls the overall strength of the penalty by defining the amount of coefficient shrinkage; 
and the elastic net mixing parameter α which controls whether the penalty behaves more towards a 
lasso (α=1) or ridge (α=0) regression for correlated predictors. 

For lasso and ridge regressions, the value of λ was determined by minimizing the prediction error 
rate in 10-fold cross validation (CV) within the training set. When there was not a great increase in 
CV misclassification rate between the λ that gives the smallest error, and the largest λ such that the 



error is within the smallest error plus one standard error, the latter value of λ was chosen so that the 
model was less heavily based on the training set. For elastic net regression (0<α<1), the best 
values for λ and α were selected by testing a grid of 20*20 combinations, and selecting the 
combination that gave the highest prediction accuracy in cross validation.  

Since the elastic net model with 269 protein candidates had the best performance in GLM models, 
269 proteins were used as candidate inputs to train the random forest model. The 3-cluster 
accuracy from 10-fold cross validation was used as the optimizing metric for tuning the parameters. 
In the optimized random forest model, 35 variables were randomly sampled for each iteration; the 
maximum number of terminal nodes of each tree was 42; 350 trees were trained; the other 
parameters were kept as default values in the package. 

The 8 protein predictors in the minimal elastic net model were selected by restricting to 3 proteins 
with the strongest signals in the differential abundance analyses between each cluster pair, whilst 
also ensuring at least one higher- and one lower- abundance protein were retained for each 
pairwise contrast. 

 

Matrix decomposition 

We performed matrix decomposition on the 837 samples with both RNAseq (for 20,416 genes) and 
plasma proteome data (for 269 proteins), using the SDA method (Hore et al., 2016), with the same 
number of iterations (10), clustering and cutoffs to end up with 284 latent components. Within the 
components, we also used the same cutoff for the posterior inclusion probability (0.5) as (Hore et 
al., 2016) for the inclusion of the gene or protein loading scores. This resulted in 76 components 
with protein loading scores. Similarly to our work in (COvid-19 Multi-omics Blood ATlas (COMBAT) 
Consortium, 2022) we matched these to clinical features as well as the SRS or SPC using either 
Spearman's correlation coefficient or Mann-Whitney U rank test, adjusting for multiple testing using 
the Benjamini/Hochberg (non-negative) method. Correlation of the latent components with SRS 
were tested with the quantitative SRS scores (Cano-Gamez et al., 2022). Z-scores of representative 
proteins shown in Figure 6 were calculated within the first available samples used in matrix 
decomposition analysis. 

 

 
ADDITIONAL RESOURCES 
 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, peptides, and recombinant proteins 

DL-Dithiothreitol (DTT)  Sigma-Aldrich D9779 

Iodoacetamide Sigma-Aldrich I1149-5g 

Ammonium bicarbonate Sigma-Aldrich 09830-500 

SepproIgY14 column Sigma-Aldrich SPE030 

Seppro Supermix column Sigma-Aldrich SPE050 

Pierce™ Top 12 Abundant Protein 
Depletion Spin Columns 

ThermoScientific 85165 

trichloroacetic acid (TCA) Sigma-Aldrich T0699 

Sodium Deoxycholate (DOC) Sigma-Aldrich D6750-25g 

N-Octyl-B-D-Glucopyranoside Sigma-Aldrich O0630 

Urea Sigma-Aldrich U1250 

Trizbase Sigma-Aldrich T1503 

Water, LiChrosolv grade  Merck  1-15333.2500  

Acetonitrile, LiChrosolv grade  Merck  1.00030.2500  



Methanol, LiChrosolv grade  Merck  1.06035.2500  

Chloroform Fisher C/4966/15 

Formic Acid Optima LC-MS grade  Fisher Scientific  10596814  

1-Propanolol  Sigma-Aldrich  34871-1L  

Trifluoroacetic acid (TFA)  Sigma-Aldrich  74664-10ml  

Triethylammonium bicarbonate buffer 
(TEAB, 1M)  

Sigma-Aldrich  T7408-100ml  

Ammonium formate  Sigma-Aldrich  70221-100g  

TPCK treated Trypsin (100µg)  Worthington, UK distributor: 
Lorne Labs ltd  

LS003740  

Smart trypsin  ThermoFisher 60113-101 

C18 Evotips  Evosep One (Odense, 
Denmark)  

EV-2001  

PQ500 reference peptide  Biognosys  K-3019  

SOLA HRP SPE 10mg/1ml  Fisher Scientific  11879163  

Deposited data 

Mass spectrometry Raw and 
analyzed data  

PRIDE  (Deposition in progress, 
accession ID TBC) 

Software and algorithms 

FragPipe (Kong et al., 2017; da 
Veiga Leprevost et al., 
2020; Yu et al., 2020, 2021) 

V14.1, 
https://github.com/Nesvilab/
FragPipe 

MSFragger (Kong et al., 2017; Yu et 
al., 2020) 

V3.1 

Philosopher (da Veiga Leprevost et al., 
2020) 

V3.3.11 

PeptideProphet (Keller et al., 2002)  

ProteinProphet (Nesvizhskii et al., 2003)  

IonQuant (Yu et al., 2021) V1.3.0 

PEAKS Bioinformatics Solutions Inc V8.5 

Progenesis QI  Waters  V4.1.6675.48614 

caret (Kuhn, 2021) V6.0-88 

ConsensusClusterPlus (Wilkerson and Hayes, 
2010) 

V1.56.0 

Cytoscape  (Shannon et al., 2003) V3.8.2 

eXploring Genomic Relations (XGR)  (Fang et al., 2016) http://galahad.well.ox.ac.uk/
XGR 

Gene Pattern (Reich et al., 2006) https://www.genepattern.org/ 

glmnet (Friedman et al., 2010) V4.1-2 

Limma  (Ritchie et al., 2015) https://bioconductor.org/pack
ages/release/bioc/html/limm
a.html 

impute (Hastie et al., 2021) V1.66.0 

Priority Index (Pi)  (Fang and Knight, 2022) http://galahad.well.ox.ac.uk/
Pi 

randomForest (Liaw and Wiener, 2002) V4.6-14 

ropls (Thévenot et al., 2015) V1.24.0 

R Studio and R environment The R project for Statistical 
Computing 

https://www.rstudio.com/ and 
https://cran.r-project.org/ 

Sparse Decomposition of Arrays  (Hore et al., 2016) https://jmarchini.org/software
/#sda 

survival  (Therneau and Grambsch, 
2000) 

V3.2-11 

survminer  (Kassambara et al., 2021) V0.4.9 



sva (Leek et al., 2021) V3.40.0 

UniProt (Bateman et al., 2021) https://www.uniprot.org/ 

Variance Stabilizing Normalization (Huber et al., 2002) V3.60.0 

WGCNA (Langfelder and Horvath, 
2008) 

https://horvath.genetics.ucla.
edu/html/ 
CoexpressionNetwork/Rpac
kages/ 
WGCNA/ 
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Supplementary Tables 

Table S1. Related to Figure 1. Clinical characteristics of cohorts included.  

Attached as a separate Excel file. 

 

Table S2. Related to Figure 3. Time-series analysis of protein co-expression modules in Sepsis_ICU. 

Paired tests of module eigengene (ME) levels between the three time intervals among the first 5 days 

following ICU admission of sepsis. Numbers of patients with sample pairs available for each interval are 

showed as n. Multiple testing was corrected for within each interval. Significant differences (FDR<0.05) are 

indicated in bold. 

 FDR from paired tests Module member proteins. 

 Day3vs1 Day5vs3 Day5vs1   

Modules n=291 n=332 n=207 N  

MEblack 8.85E-01 7.81E-02 2.31E-02 11 IGHV5-51, JCHAIN, IGLV1-47, IGLV3-19, IGLV6-57, 
IGHM, IGHA2, IGKV3D-15, IGKV3-11, IGHV3-7, 
IGHV4-34 

MEcyan 8.37E-02 6.89E-01 9.46E-01 6 C1QA, C1QB, C1QC, C7, FBLN1, LUM 

MEmagenta 6.48E-02 7.91E-01 7.04E-01 10 IGHV1-18, IGLV3-25, IGHA1, IGLV3-21, LGALS3BP, 
IGHV3-9, IGHV3-66, IGLC2, IGLL5, IGLL1 

MEred 1.32E-04 3.51E-04 1.76E-04 12 FCN3, CFB, C5, LRG1, C4BPA, A1BG, PROS1, 
C8G, SERPINA6, C4B, CPN1, CPN2 

MEpink 5.40E-01 6.11E-01 2.53E-01 10 HR, APOB, GP1BA, GARS, MAP1A, ARHGEF18, 
BACH2, GNMT, SIX6OS1, C15orf65 

MEpurple 1.96E-01 7.13E-01 4.32E-01 9 IGHV3-15, IGKC, IGHG1, IGHG2, IGHG3, IGHG4, 
TGFBI, IGKV3-20, SURF1 

MElightcyan 3.17E-02 8.34E-02 2.36E-03 5 IGKV1-39, IGKV1-5, IGLV3-27, IGHD, VASN 

MEturquoise 6.20E-08 1.25E-02 3.60E-02 22 APOM, F2, FN1, AHSG, TTR, TF, KLKB1, HRG, 
SERPIND1, CFH, ITIH2, ITIH1, PON1, SERPINA4, 
AFM, HGFAC, PGLYRP2, FETUB, PLG, VPS50, 
CIART, C17orf80 

MEmidnightblue 5.40E-01 6.11E-01 1.76E-04 6 F13B, IGFBP3, IGFALS, GPLD1, CNDP1, PRSS8 

MEyellow 3.17E-02 8.61E-02 2.64E-01 17 APOL1, ATRN, F12, A2M, C3, KNG1, APOA1, 
APOA2, APOC1, ALB, SAA4, APOC4, KIF1A, 
CCDC141, MGA, RFX7, CHRNA10 

MEblue 8.54E-05 2.81E-22 8.71E-12 21 CP, SERPINA1, AGT, CRP, VWF, CD14, SAA1, 
SAA2, LCP1, LBP, ORM2, MAN1A1, PLTP, ITIH3, 
FGL1, PRG4, COLEC11, C1RL, SERPINA10, 
FCGBP, GPX3 

MEbrown 4.23E-01 1.25E-02 9.46E-01 18 C1R, HPR, F9, SERPINA3, APOC3, FGA, FGB, 
FGG, AMBP, ORM1, HPX, C8A, C1S, AZGP1, 
SERPINF1, SACS, HLA-DOB, SAT1 

MEsalmon 8.85E-04 6.11E-01 6.81E-02 8 F10, APCS, PROC, CFI, CLEC3B, C2, C6, BTD 

MEgreen 7.65E-06 7.13E-01 4.12E-05 12 HP, SERPINC1, C9, GC, VTN, SERPING1, C8B, 
SERPINF2, MST1, HABP2, ITIH4, ERN1 

MEgreenyellow 1.32E-04 1.89E-16 2.25E-14 9 CFD, CST3, COL1A2, MMP2, COL6A1, VCAM1, 
PTGDS, LCN2, USP15 

MEtan 3.17E-02 2.94E-03 9.18E-01 8 MASP2, FCGR3B, IGLV1-40, S100A8, S100A9, 
B4GALT1, TNC, S100A12 

 

 



Table S3. Related to Figure 4. Comparison of clinical variables between sepsis discovery cohort clusters.  

Only variables with a significant difference between the clusters are shown. Abbreviations are used as in Table S2. K-W = Kruskal-Wallis test. Dunn’s = 

Dunn’s post-hoc test. “Dunn’s FDR” shows the p values corrected within the three pairs tested for each variable, in the order of “Dunn’s test pairs”. 

(a) Categorical variables.  

  No. / total patients with information (%) 

Clinical variable χ2 FDR SPC1 SPC2 SPC3 

Diagnosis - FP 5.00E-12 99/169 (59) 51/180 (28) 117/434 (27) 

Timepoint 0.0024 

   

  - Day1 

 

109/170 (64) 87/183 (48) 210/435 (48) 

  - Day5 

 

10/170 (6) 31/183 (17) 77/435 (18) 

Shock 1.40E-07 130/168 (77) 87/179 (49) 231/426 (54) 

Mechanical ventilation/CPAP 0.015 126/169 (75) 114/181 (63) 260/431 (60) 

Acute renal failure 3.40E-08 64/169 (38) 30/181 (17) 68/431 (16) 

 

(b) Numerical variables. 

    Median (IQR) N(patients) with information 

Clinical variable K-W FDR Dunn's FDR Dunn's test pairs SPC1 SPC2 SPC3 SPC1 SPC2 SPC3 

Age 0.014 0.012, 0.020 SPC1vs3, SPC2vs3 67 (56-77) 67 (53-77) 63 (51-74) 170 183 435 

Estimated day from onset (FP) 0.062 0.049, 0.028 SPC1vs2, SPC1vs3 2 (1-3) 3.0 (1.2-4.0) 3 (1-5) 99 50 116 

Systolic blood pressure (low) 9.6E-06 5.1e-05, 1.4e-06 SPC1vs2, SPC1vs3  94 ( 82-102) 101 ( 90-110) 100 ( 89-113) 169 180 430 

Mean arterial pressure (low) 4.6E-06 2.7e-05, 6.6e-07 SPC1vs2, SPC1vs3 62 (56-70) 66 (61-75) 67 (60-75) 168 180 426 

Heart rate (high) 0.014 0.0275, 0.0035 SPC1vs2, SPC1vs3 115 (100-129) 108 ( 95-123) 107 ( 95-124) 169 180 430 

Inotropic support (days) 2.3E-06 1.6e-06, 1.5e-06 SPC1vs2, SPC1vs3 3 (1-6) 1 (0-3) 1 (0-4) 169 183 434 

Arterial pH 0.0001 4.5e-05, 1.7e-04 SPC1vs2, SPC1vs3 7.3 (7.2-7.4) 7.4 (7.3-7.4) 7.4 (7.3-7.4) 108 86 209 

Respiratory rate 0.000026 4.5e-06, 1.0e-04, 
4.1e-02 

SPC1vs2, SPC1vs3, 
SPC2vs3 

23 (18-29) 27 (21-35) 26 (20-33) 168 180 430 

Partial pressure of oxygen 0.00049 5.1e-03, 6.3e-05 SPC1vs2, SPC1vs3  9.4 ( 8.4-10.8)  8.9 ( 7.9-10.2)  8.8 ( 7.8-10.1) 166 168 403 

Lactate 3.1E-13 5.5e-09, 4.4e-15 SPC1vs2, SPC1vs3 2.9 (1.8-4.3) 1.6 (1.2-2.3) 1.6 (1.2-2.2) 111 115 265 

Bicarbonate 1.6E-12 3.1e-09, 1.2e-13 SPC1vs2, SPC1vs3 21 (18-24) 25 (21-28) 25 (21-28) 168 170 409 



Urea (high) 1.2E-11 2.0e-08, 9.7e-13 SPC1vs2, SPC1vs3 12.4 ( 8.6-
18.0) 

 8.0 ( 5.4-14.0)  8.0 ( 4.9-12.0) 168 180 427 

Urine volume 7.4E-16 3.1e-13, 9.1e-17 SPC1vs2, SPC1vs3  953 ( 318-
1595) 

1910 (1100-
2710) 

1730 (1142-
2642) 

169 177 427 

Creatinine (high) 3.4E-13 4.1e-09, 7.5e-15 SPC1vs2, SPC1vs3 123 ( 89-200)  78 ( 57-126)  77 ( 56-118) 169 180 431 

Creatinine (low) 1.3E-11 1.4e-08, 1.4e-12 SPC1vs2, SPC1vs3 108 ( 80-175)  72 ( 53-109)  72 ( 53-112) 169 180 431 

Renal support (days) 2.8E-09 1.6e-09, 1.9e-08, 
4.9e-02 

SPC1vs2, SPC1vs3, 
SPC2vs3 

0 (0-2) 0 (0-0) 0 (0-0) 169 183 434 

Prothrombin time 0.0012 0.03199, 0.00017 SPC1vs2, SPC1vs3 16 (14-20) 15 (12-17) 14 (12-16) 68 56 141 

The international normalized 
ratio 

0.000026 1.1e-04, 3.3e-06 SPC1vs2, SPC1vs3 1.3 (1.2-1.7) 1.2 (1.1-1.3) 1.2 (1.1-1.3) 67 88 201 

Bilirubin (high) 0.0054 0.0033, 0.0020 SPC1vs2, SPC1vs3 13 ( 8-22) 10 ( 6-16) 10 ( 6-17) 163 174 416 

Temperature (low) 0.0025 0.00222, 0.00075 SPC1vs2, SPC1vs3 36 (36-36) 36 (36-37) 36 (36-37) 169 180 430 

Platelets (low) 0.00034 3.7e-03, 4.1e-05 SPC1vs2, SPC1vs3 172 (106-265) 205 (146-280) 215 (156-298) 169 179 431 

White cell count (low) 0.0038 4e-02, 7e-04 SPC1vs2, SPC1vs3  9.7 ( 5.7-15.0) 11.4 ( 7.5-
15.2) 

12 ( 8-16) 169 180 431 

Hematocrit 3.4E-08 1.8e-06, 9.4e-09 SPC1vs2, SPC1vs3 31 (28-35) 35 (32-40) 36 (31-41) 92 71 175 

Lymphocytes (raw) 0.00082 0.03499, 0.00014, 
0.04981 

SPC1vs2, SPC1vs3, 
SPC2vs3 

0.70 (0.48-
1.00) 

0.8 (0.5-1.2) 0.90 (0.58-
1.39) 

160 177 421 

Monocytes (raw) 0.00012 2.3e-02, 1.6e-05, 
2.7e-02 

SPC1vs2, SPC1vs3, 
SPC2vs3 

0.4 (0.2-0.8) 0.50 (0.33-
0.80) 

0.64 (0.36-
0.98) 

160 177 422 

Monocytes (proportion) 0.0097 0.032, 0.002 SPC1vs2, SPC1vs3 0.043 (0.023-
0.069) 

0.048 (0.030-
0.078) 

0.052 (0.032-
0.079) 

160 177 421 

APACHE 0.000029 6.8e-06, 2.4e-04, 
4.0e-02 

SPC1vs2, SPC1vs3, 
SPC2vs3 

16 (12-22) 12 (10-15) 14 (10-17) 107 84 185 

SOFA-Total 1.2E-11 2.3e-10, 1.2e-11 SPC1vs2, SPC1vs3  7 ( 5-10) 5 (3-7) 5 (3-7) 163 164 391 

SOFA-CVS 1.2E-11 6.8e-10, 5.0e-12 SPC1vs2, SPC1vs3 4 (1-4) 1 (0-3) 1 (0-3) 169 181 431 

SOFA-Haem 0.00002 2.0e-04, 2.1e-06 SPC1vs2, SPC1vs3 0 (0-1) 0 (0-1) 0 (0-0) 169 179 431 

SOFA-Hep 0.0015 0.00089, 0.00055 SPC1vs2, SPC1vs3 0 (0-1) 0 (0-0) 0 (0-0) 164 174 416 

SOFA-Renal 1.2E-12 5.5e-10, 1.1e-13 SPC1vs2, SPC1vs3 1 (0-4) 0 (0-1) 0 (0-1) 169 181 431 

SOFA-Resp 0.0031 0.0013, 0.0019 SPC1vs2, SPC1vs3 2 (2-2) 2 (2-2) 2 (2-2) 168 170 404 
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Table S4. Related to Figure 5. Patient numbers for proteomic cluster movement. 

Tables show number of patients who moved between specified proteomic clusters at specified 

sampling timepoints, in the sepsis discovery and validation cohorts. Patients with samples available at 

both specified timepoints are counted in each table. 

From Day1 to Day3 

 To SPC1 To SPC2 To SPC3 

From SPC1 43 19 24 

From SPC2 7 28 26 

From SPC3 10 26 108 

From Day3 to Day5 

 To SPC1 To SPC2 To SPC3 

From SPC1 50 15 25 

From SPC2 2 36 35 

From SPC3 5 36 128 

From Day1 to Day5 

 To SPC1 To SPC2 To SPC3 

From SPC1 21 17 29 

From SPC2 2 20 18 

From SPC3 6 16 78 
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Table S5. Related to Figure 5. Evidence for each entry in the summary graph of molecular 

characteristics of the clusters. 

Pathway enrichment refers to enrichment of proteins with either significantly higher or lower 

abundance in each contrast, using GOBP or Reactome annotations. Levels indicated were verified by 

visual examinations of the distributions across the clusters for the overlapping differentially abundant 

proteins. 1This is a general term including phagocytosis, Fc-γ/ϵ receptor signaling, leukocyte 

migration, defense response to bacterium, and complement activation of classical pathway. The 

overlapping proteins annotated for these pathways as well as for “B cell signaling” were mainly 

constituted of immunoglobulins including the constant and variable regions. Abbreviations: disc – 

discovery cohort; vali – validation cohort; HV – healthy volunteers; DA – differentially abundant. 

Term listed 
Cluste

r 
Leve

l 

Evidence from 

Dataset Contrast Approach 

USP15, COL1A2 SPC1 up disc, vali SPC1vs3, SPC1vs2 Top DA proteins 

MAP1A, GNMT SPC2 down disc, vali SPC2vs3, SPC1vs2 Top DA proteins 

TSPAN11 SPC2 up disc, vali SPC2vs3, SPC1vs2 Top DA proteins 

Cytokines and 
chemokines 

SPC1 up Luminex SPC1vs3 
Individual DA 

proteins 

SPC3 down Luminex SPC1vs3 
Individual DA 

proteins 

Regulation of immune 
response1 

SPC1 up disc, vali, QE-HF SPC1vs2, SPC1vs3 Pathway enrichment 

Immunoglobulins 

SPC1 up disc, vali SPC1vs2 
Individual DA 

proteins 

SPC2 down disc, vali SPC1vs2 
Individual DA 

proteins 

B cell signaling 
SPC1 up 

disc, vali SPC1vs2 Pathway enrichment 

disc SPC1vsHV Pathway enrichment 

Luminex SPC1vs3 
Individual protein 

functions 

SPC2 down disc, vali SPC1vs2 Pathway enrichment 

Interleukin signaling 
SPC1 up 

disc, vali SPC1vs2, SPC1vs3 Pathway enrichment 

QE-HF SPC1vs3 Pathway enrichment 

SPC3 down QE-HF SPC1vs3 Pathway enrichment 

ECM organization 
SPC1 up 

disc, vali SPC1vs2, SPC1vs3 Pathway enrichment 

QE-HF SPC1vs3 Pathway enrichment 

SPC3 down QE-HF SPC1vs3 Pathway enrichment 

Collagen fibril 
organization 

SPC1 up QE-HF SPC1vs3 Pathway enrichment 

SPC3 down QE-HF SPC1vs3 Pathway enrichment 

Cell division 
SPC1 up QE-HF SPC1vs3 Pathway enrichment 

SPC3 down QE-HF SPC1vs3 Pathway enrichment 

Lipoprotein metabolic 
process 

SPC1 down 
disc, vali SPC1vs2 Pathway enrichment 

QE-HF SPC1vs3 Pathway enrichment 

SPC2 up disc, vali SPC1vs2 Pathway enrichment 

SPC3 up QE-HF SPC1vs3 Pathway enrichment 

Transport of small 
molecules 

SPC1 down 
disc SPC1vs2 Pathway enrichment 

QE-HF SPC1vs3 Pathway enrichment 

SPC2 up disc SPC1vs2 Pathway enrichment 

SPC3 up QE-HF SPC1vs3 Pathway enrichment 
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Table S6. Related to Figure 6. Matrix decomposition for integrating plasma proteome and 

leukocyte transcriptome in sepsis. Attached as a separate Excel file. 

Table S7. Related to Figure 7. Comparison of enriched pathways in SRS1 or SPC1 contrasts. 

Significantly enriched terms (FDR<0.05) are listed in the table. Terms shared between the SRS1 and 

SPC1 contrasts are underlined. At protein level, top 10% proteins by significance were tested for 

enrichment against the total 269 proteins as background, using both GOBP and Reactome 

annotations. A minimum of 5 overlaps between input data and genes in the terms was required for the 

term to be tested. At gene expression level, top 2% genes by significance were tested for enrichment 

against the total genes as background, using only GOBP annotations. A minimum of 10 overlaps 

between input data and genes in the terms was required for the term to be tested. Redundant terms 

have been removed by the function xEnrichConciser from package XGR. Only terms identified in both 

microarray and RNAseq data are listed. 

 Higher in SRS1 or SPC1 Lower in SRS1 or SPC1 

SRS1 vs 
non-SRS1, 
at protein 

level 

neutrophil degranulation; 
inflammatory response; 
acute-phase response; 
ECM organization; 
innate immune response; 
cytokine signaling; 
TLR cascades. 

No differentially abundant proteins to test. 

SPC1 vs 
non-SPC1, 
at protein 

level 

defense response to bacterium; 
regulation of immune response; 
Fc-gamma receptor signaling involved in 
phagocytosis; 
cytokine signaling; 
leukocyte migration; 
complement activation, classical pathway; 
receptor-mediated endocytosis; 
innate immune response. 

Too few differentially abundant proteins to test. 

SRS1 vs 
non-SRS1, 

at gene 
expression 

level 

innate immune response; 
neutrophil degranulation; 
oxidation-reduction process. 
 

adaptive immune response; 
antigen processing and presentation of 
exogenous peptide antigen via MHC class II; 
cell surface receptor signaling pathway; 
immune response; 
inflammatory response; 
innate immune response; 
leukocyte migration; 
positive regulation of ERK1 and ERK2 cascade; 
regulation of immune response; 
T cell activation; 
T cell co-stimulation; 
T cell receptor signaling pathway. 

SPC1 vs 
non-SPC1, 

at gene 
expression 

level 

cell division; 
innate immune response; 
mitotic cell cycle; 
neutrophil degranulation; 
oxidation-reduction process; 
response to drug. 
  

adaptive immune response; 
apoptotic process; 
cell adhesion; 
cell surface receptor signaling pathway; 
defense response to virus; 
G-protein coupled receptor signaling pathway; 
immune response; 
inflammatory response; 
innate immune response; 
interferon-gamma-mediated signaling pathway; 
regulation of immune response; 
response to virus; 
T cell co-stimulation; 
T cell receptor signaling pathway; 
type I interferon signaling pathway. 
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